6 精度管理結果

6.1 イオン成分

6.1.1 試料調製

(1) 陰イオン混合試料

市販の Cl^- 、 NO_3^- 、 SO_4^{2-} 混合標準液(それぞれ 10, 50, 100mg/L) 50mL を 1L メスフラスコに分取後、超純水でメスアップし精度管理試料(陰イオン)とした。

(2) 陽イオン混合試料

市販の Na $^+$ 、NH $_4$ $^+$ 、K $^+$ 、Mg 2 $^+$ 、Ca 2 +混合標準液(それぞれ 20, 25, 50, 30, 50mg/L)50 mL を 1L メスフラスコに分取後、超純水でメスアップし精度管理試料(陽イオン)とした。調製濃度は表 6-1-1 のとおり。

表 6-1-1 精度管理試料の調製濃度 (イオン成分)

(単位:mg/L)

		陰イオン	•		陽イオン									
	CI-	NO_3^-	SO ₄ 2-	,	Na ⁺	NH ₄ +	K ⁺	Mg ²⁺	Ca ²⁺					
調製濃度	0.50	2. 5	5. 0		1.0	1. 3	2. 5	1. 7	2. 5					

6.1.2 測定結果

測定結果を表 6-1-2 に示す。

表 6-1-2 各機関の精度管理試料測定結果 (イオン成分)

(単位∶CV を除き mg/L)

		陰イオン	陽イオン									
機関番号	CI-	NO ₃ -	SO ₄ 2-	 Na ⁺	NH	l ₄ +		K ⁺		Mg ²⁺	(Ca ²⁺
1	0. 52	2. 6	5. 2	1.0	1	. 3		2. 5		1. 5		2. 5
2	0.49	2. 5	5. 1	0.98	1	. 3		2. 3		1.4		2. 4
3	0. 55	2.7	5.5	1.1	1	. 4		2. 7		1.6		2. 7
4	0. 50	2. 6	5. 1	0. 97	1	. 3		2. 5		1.5		2. 5
5	0. 51	2.7	5. 2	1.0	1	. 3		2. 4		1.5		2. 5
6	0. 55	2.7	5. 4	1.1	1	. 4		2. 7		1.6		2. 7
7	0. 51	2. 6	5. 1	1.0	1	. 2		2. 6		1.5		2. 7
8	0. 52	2.6	5. 2	1.0	1	. 3		2. 5		1.5		2. 5
9	1. 62	4. 7	2. 1	0. 3	0	. 4		0. 5		0.8		0.8
10	0. 52	2. 5	5.0	1.0	1	. 3		2. 5		1.5		2. 6
11	0. 51	2.6	5. 1	1.0	1	. 3		2. 6		1.5		2. 6
12	0. 52	2. 6	5. 2	1.0	1	. 3		2. 6		1.5		2. 6
13	0. 47	2.6	4. 8	1.1	1	. 3		2. 6		1.4		2. 2
14	0. 50	13	5. 2	0. 98	1	. 3		2. 7		1. 7		2. 7
15	0. 49	2.6	5. 2	0. 95	1	. 2		2. 5		1.5		2. 4
16	0. 54	2.7	5. 4	1.1	1	. 4		2. 8		1.6		2. 8
17	0. 47	2. 6	5.0	1. 1	1	. 3		2. 6		1.4		2. 2
平均値	0.5	2. 6	5. 2	1. 0	1	. 3		2. 6		1. 5		2. 5
標準偏差	0. 02	0.06	0. 16	0.05	0.	06	C	. 12		0. 08		0. 17
C V (%)	4. 6	2.4*	3. 2	5. 2	4	. 3		4. 7		5. 2		6. 7
調製濃度	0. 5	2. 5	5. 0	1.0	1	. 3		2. 5		1. 7		2. 5

*No. 14 を除外して算出した CV%

No. 9 の機関から機器調整不良の申し出があったため除外して平均を算出した。その他の機関の測定結果の平均値は調製濃度と概ね一致した。 NO_3 -以外の変動係数(以下 CV という。)も小さく良好な結果であった。No. 14 の機関の NO_3 -の値が外れていたので変動係数の算出から除外したところ、77%から 2.4%に改善した。

6.2 炭素成分

6.2.1 試料調製

2台のハイボリウムエアーサンプラー (A, B) 2台を用いて大気粉じんを同時に採取した。試料採取には、 350° C 1時間の加熱処理をした石英繊維ろ紙を用いた。採取日は令和元年 (2019) 年 10月 17日 10:00 から 24 時間で、ろ紙の有効捕集面積は A, B 共に $400 \, \mathrm{cm}^2$ 、総大気捕集量は 1440. $0 \, \mathrm{m}^3$ であった。捕集ろ紙をパンチで ϕ 47mm に打ち抜き、試料 A 又は B として配布した。ブランクも試料と同様に作製した。

6.2.2 測定結果

測定結果を表 6–2–1 に示す。0C、EC の平均値はそれぞれ $\frac{13}{13}$ 、 $2.5 \mu g/cm^2$ であり、これを大気中濃度に換算すると 0C は $\frac{3.6 \mu g/m^3}{10.6 \mu g/m^3}$ 、EC は $0.69 \mu g/m^3$ であった。PM2.5 の一般環境の値と比べて 0C は若干高めであったが、ほぼ妥当なレベルであった。

各機関の 0C、EC の測定結果を CV でみると、0C が 7%、EC が 11%と良好な結果であったが、フラクション別でみると、0C1、0C4、EC2、EC3、soot-EC は CV が大きく、特に 0C1 及び EC3 は 63%、91%と大きかったものの、値そのものは一桁以上小さいため影響は少ないと考えられた。

ここで、炭素成分の試料は2つのサンプラーで同時に採取したものであったことから、AとBのサンプル平均値の差がないと仮定しT検定を行った。有意水準を0.05とした場合、EC、TC及びEC3に関して、有意差が認められた。

そこで、機種ごとの評価を行うにあたり、A、B それぞれの試料ごとに仕分けたが機関数が少なくなるため、平均値の±30%を超える値に下線を付し何らかの傾向がないかみたところ、OC4 では DRI の方の値が高め、EC2 では Sunset の方の値が高めであり、機種により値の偏りがある可能性が示唆された。

なお、機種ごとの平均値については、A、B それぞれの試料ごとに分けずに参考値として表 6-2-1 に示した。

6.3 無機元素成分

6.3.1 試料調製

下記に市販されている 2 種の混合標準液 XSTC-1667 及び XSTC-1668 をそれぞれ 0.5mL 及び 5mL を分取し $5\%HNO_3$ 溶液で 1L にメスアップして精度管理試料 (無機元素) とした。各成分の調製濃度は表 6-3-1 に示すとおりである。

<混合標準液>

XSTC-1667 : 9元素 (Si、Ti、V、As、Se、Sb、Hf、Ta、W)

各 10mg/L、2%HNO₃

XSTC-1668 : 23 元素 (Be、Na、Al、K、Ca、Sc、Cr、Mn、Fe、Co、Ni、Cu、Zn

Rb, Mo, Cd, Cs, Ba, La, Ce, Sm, Pb, Th)

各 10mg/L、5%HNO₃

表 6-3-1 精度管理試料の調製濃度 (無機元素成分)

(単位: μ g/L)

混合標準液	XSTC-1667	XSTC-1668
元素	Si, Ti, V, As, Se	Be, Na.Al.K.Ca, Sc, Cr, Mn
	Sb、 <i>Hf、Ta、W</i>	Fe、Co、Ni、Cu、Zn
		Rb、Mo、 <i>Cd</i>
		Cs、Ba、La、Ce、Sm Pb、 <i>Th</i>
調製濃度	5. 0	50

斜字は報告対象外の元素

6.3.2 測定結果

測定結果を表 6-3-2 に示す。概ね良好な結果であった。Na、Ca、Fe で調製濃度から外れた機関があった。また、As、Se については、高めの値となる傾向が見られ 4 機関が平均値の約 1.5 倍の値となっていた。

As、Se については応答値が小さい元素で、干渉や低濃度の検量線について見直すと改良される可能性も示唆された。

表 6-3-2 各機関の精度管理試料測定結果 (無機元素成分)

(単位:CV を除き µg/L)

										• • • •		C F-0/ -/
機関番号	Na	ΑI	K	Ca	Sc	٧	Cr	Mn	Fe	Co	Νi	Cu
1	49	50	49	50	49	5. 0	50	50	49	50	50	50
2	50	50	50	64	49	4.9	49	49	50	49	50	50
3	46	45	50	56	45	5.0	50	49	51	52	54	57
4	50	52	53	54	51	5. 1	51	51	50	52	51	53
5	48	54	47	55	46	4.9	47	48	54	48	51	48
6	46	45	50	56	45	5.0	50	49	51	52	54	57
7	<u>35</u>	39	39	<u>22</u>	48	5. 2	48	50	<u>23</u>	50	48	51
8	50	50	50	50	49	5.0	50	49	50	50	50	50
9	46	45	50	56	45	5.0	50	49	51	52	54	57
10	48	50	49	54	49	4.9	49	49	50	48	49	49
11	46	45	50	56	45	5.0	50	49	51	52	54	57
12	46	49	41	55	46	5.0	47	46	46	46	46	46
13	50	49	50	51	49	4.9	49	50	50	51	49	50
14	49	50	47	56	50	4. 9	51	51	51	51	50	51
15	50	51	47	45	49	5. 1	52	53	49	52	51	52
16	38	49	46	37	51	4.9	48	51	50	51	51	52
17	48	49	49	49	48	4. 7	48	49	49	51	48	48
平均値	47	48	48	51	48	5. 0	49	50	49	50	51	52
標準偏差	4. 1	3.4	3.4	9. 1	2. 1	0.1	1.4	1.5	6.6	1.7	2. 3	3.4
C V (%)	9	7	7	18	4	2	3	3	14	3	5	7
調製濃度	50	50	50	50	50	5	50	50	50	50	50	50

機関番号	Zn	As	Se	Rb	Мо	Sb	Cs	Ba	La	Се	Sm	Pb
1	49	5. 1	5. 0	49	49	5. 0	50	50	50	50	50	50
2	57	6. 2	5. 9	50	48	5. 1	49	49	50	49	49	50
3	50	<u>7. 2</u>	<u>7. 2</u>	51	52	5. 9	50	48	52	51	46	51
4	53	5. 2	5.0	51	51	5. 2	52	51	52	53	51	52
5	50	5.6	5. 1	47	45	4. 8	47	47	47	47	47	47
6	50	<u>7. 2</u>	<u>7. 2</u>	51	52	5. 9	50	48	52	51	46	51
7	43	6.0	5. 1	51	47	4. 8	51	49	49	50	49	49
8	50	5. 1	5.0	49	49	5.0	50	49	50	50	50	50
9	50	<u>7. 2</u>	<u>7. 2</u>	51	52	5. 9	50	48	52	51	46	51
10	55	4.8	4. 9	50	40	5. 1	50	51	50	49	49	51
11	50	<u>7. 2</u>	<u>7. 2</u>	51	52	5. 9	50	48	52	51	46	51
12	48	6.0	4.8	47	43	4. 9	45	45	48	47	46	49
13	52	5.3	5. 1	49	50	5.0	49	50	50	48	50	50
14	57	5. 7	5.9	50	50	4. 8	52	50	49	50	50	49
15	54	5. 7	5. 9	49	49	5.0	52	53	51	50	48	52
16	55	6. 1	6.4	50	49	5. 3	51	50	50	50	49	48
17	51	5. 1	4. 8	48	48	4. 8	48	49	50	48	50	49
平均値	51	6.0	6. 0	50	49	5	50	49	50	50	48	50
標準偏差	3.4	0.8	0. 9	1.3	3. 2	0. 4	1.8	1. 7	1.4	1.5	1. 7	1. 3
C V (%)	7	14	16	3	7	8	4	4	3	3	4	3
調製濃度	50	5	5	50	50	5	50	50	50	50	50	50

下線:調製濃度からのずれが30%以上、平均値、標準偏差。CVの算出に含めている。

各機関の精度管理試料測定結果(炭素成分)

採取日 令和元 (2019) 年10月17日 ハイボリウムエアーサンプラー В В 流量 1000L/min 打ち抜き 捕集時間 24時間 (ф47mm) ろ紙面積(cm²) 捕集大気量(m³) 1440 1440 17.35 17.35 有効捕集面積(cm²) 62.460 400 400 捕集量(m³) 62.460 $\textcircled{1} \div \textcircled{2} (\text{m}^3/\text{cm}^2)$ 3.60 3.60

									$[\mu \mathrm{g/cm^2}]$							[µg/枚]	$[\mu \mathrm{g/cm^2}]$
機関番号	ろ紙	機種	OC	EC	OC1	OC2	OC3	OC4	OCpyro	EC1	EC2	EC3	char-EC	soot-EC	TC	WS	SOC
		-							2	1	<u> </u>		1-2	(2) + (A)			
1	Λ	DRI	14	2.5	0.65	2.9	5.2	2.6	3.2	4.7	0.97	<u>4</u>	1 50	3+4	175	110	(6.3)
7	A				<u>0.65</u>			<u>2.6</u>				<u>0</u>	1.50	0.97	17.5		
/ 1 F	A	DRI	14	2.5	0.55	3.1	5.1	<u>2.6</u>	3.1	4.8	0.72	<u>0.09</u>	1.70	0.81	17.5	47	(2.7)
15	Α	DRI	13	2.1	0.50	2.7	4.5	2.4	2.9	4.2	0.74	<u>0</u>	1.30	0.74	15.1	00	/F 1)
2	A	Sunset	13	2.8	0.3	3.5	4.4	1.4	3.7	4.8	<u>1.6</u>	0.033	1.10	<u>1.76</u>	16.8	89	(5.1)
5	A	Sunset	13	3.2	<u>0.61</u>	3	4.4	1.5	3.9	<u>6.4</u>	<u>0.57</u>	0.067	<u>2.40</u>	0.77	17.2	0.0	(5.5)
6	A	Sunset	11	2.3	0.25	2.7	3.8	1.3	3.7	4.4	<u>1.5</u>	<u>0.065</u>	<u>0.70</u>	<u>1.57</u>	14.3	96	(5.5)
11	Α	Sunset	14	2.6	0.3	3.1	4.5	1.5	3.8	4.8	<u>1.5</u>	0.063	1.00	<u>1.56</u>	16.6	110	(6.3)
13	Α	Sunset	14	2.8	<u>0.23</u>	3.2	4.8	1.4	3.8	4.9	<u>1.6</u>	<u>0.070</u>	1.10	<u>1.67</u>	16.8	92	(5.3)
14	А	Sunset	13	2.6	0.39	3	4.8	<u>2.9</u>	2.3	3.5	<u>1.4</u>	0.084	1.10	1.49	16.6		
8	В	DRI	14	2.3	0.52	2.8	5.1	2.3	3.0	4.5	0.87	<u>0</u>	1.50	0.87	16.3	100	(5.8)
10	В	DRI	13	2.5	<u>1.2</u>	2.3	4.6	2.1	2.9	4.6	0.75	<u>0</u>	1.70	<u>0.75</u>	16.5	102	(5.9)
16	В	DRI	13	2.3	<u>0.51</u>	2.7	4.6	2.1	3.1	4.6	0.75	<u>0</u>	1.30	0.74	15.1	110	(6.3)
3	В	Sunset	12	2.2	0.20	3.4	4.2	<u>0.79</u>	3.3	4.8	0.72	<u>0.036</u>	1.40	0.80	15.2		
4	В	Sunset	13	2.5	0.071	3.3	3.9	2.2	3.1	4.8	0.89	<u>0</u>	1.60	0.90	15.5	95	(5.5)
9	В	Sunset	11	2.1	<u>0.15</u>	3.4	4.0	0.83	3.3	4.6	0.70	<u>0.055</u>	1.20	0.72	14.1		
12	В	Sunset	12	2.3	0.29	3	4.4	1.00	3.8	5.2	0.81	0.051	1.40	0.87	15.3	100	(5.8)
17	В	Sunset	13	2.4	<u>0.22</u>	3.3	4.2	1.3	3.7	4.6	<u>1.5</u>	<u>0</u>	1.00	<u>1.53</u>	15.5		
	平均	匀值	13	2.5	0.41	3.0	4.5	1.8	3.3	4.7	1.0	0.033	1.4	1.1	16	96	(5.5)
全体 _	標準	偏差	0.94	0.27	0.26	0.31	0.40	0.64	0.43	0.55	0.37	0.030	0.37	0.38	1.0	17	1.0
	C V	(%)	7.2	11	63	10	8.9	36	13	12	36	91	27	35	6.4	18	18
Λ	平均	匀值	13	2.6	0.42	3.0	4.6	2.0	3.4	4.7	1.2	0.052	1.3	1.3	16	91	(5.2)
A —	CV	(%)	6.9	11	36	7.8	8.6	31	15	15	34	61	35	32	6.2		
	平均	匀值	13	2.3	0.40	3.0	4.4	1.6	3.3	4.7	0.87	0.022	1.4	0.90	15	101	(5.9)
В —	CV	(%)	5.8	6.0	91	13	5.8	37	9	4.4	30	104	16	29	4.2		
AB間の有意	意差判定(*	: p < 0.05)		*								*			*		
DRI	平均	匀值	14	2.4	0.66	2.8	4.9	2.4	3.0	4.6	0.80	0	1.5	0.81	16	94	(5.4)
Sunset	平均	匀值	13	2.5	0.27	3.2	4.3	1.5	3.5	4.8	1.2	0.051	1.3	1.2	16	97	(5.6)
機種間の有意	意差判定(*	: p < 0.05)			*	*	*	*	*		*			*			

下線:平均値からのずれが±30%を超える値