平成28年度関東地方大気環境対策推進連絡会第4回浮遊粒子状物質調査会議

日時:平成29年2月22日(水) 13時30分~

場所:東京都庁第二本庁舎31階 特別会議室27

議事次第

- 1 開会
- 2 議事
 - (1) 平成27年度調査結果報告書について

ア本編

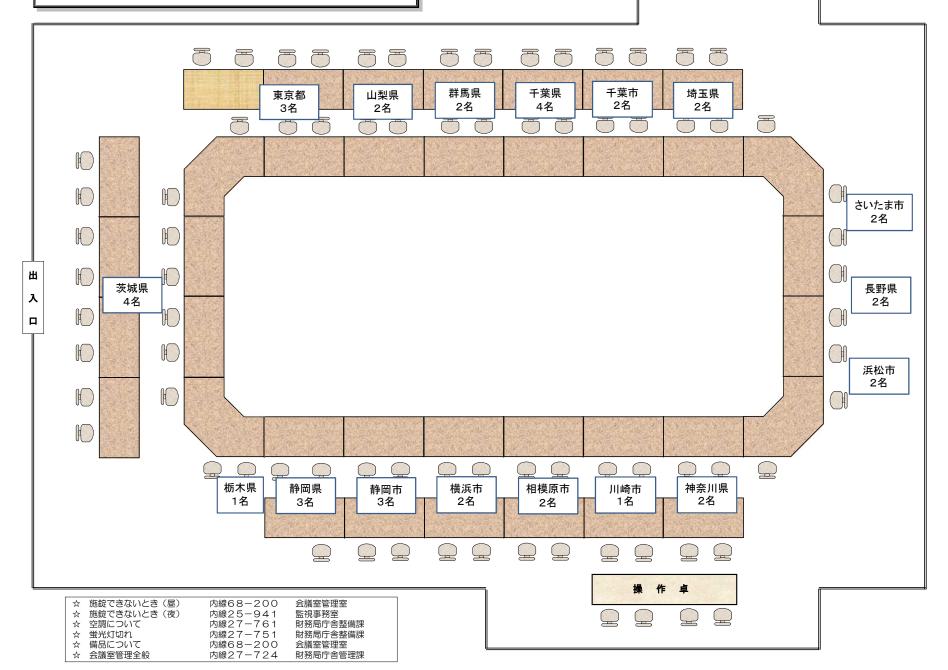
- はじめに(目的)
- 調査方法
- 各季節の概況(春季,夏季,秋季,冬季,四季の比較)
- ・ 年間を通じた高濃度出現状況 (常時監視データによる P M2.5高濃度日出現状況の把握,春季,夏季,秋季,冬季,高濃度イベントのまとめ)
- 発生源寄与の推定
- 今後の課題

イ資料編

- 試料採取要領
- ・ 測定方法及び検出下限・定量下限
- ・ 調査期間の常時監視データ
- 成分濃度測定結果
- ・ 調査地点の概況
- 精度管理結果
- 年間高濃度事象解析の対象地点
- ・ 調査結果の発表及び投稿一覧
- (2) 平成29年度以降の事業計画等について
- (3) 平成28年度浮遊粒子状物質調査会議講演会について
- 3 閉会

【配布資料】

- 資料1 平成28年度第4回浮遊粒子状物質調査会議出席者一覧
- 資料2 平成28年度第4回浮遊粒子状物質調査会議座席表
- 資料3 平成27年度調査報告書の執筆担当自治体一覧
- 資料4 平成27年度浮遊粒子状物質合同調査報告書(第3稿)
- 資料 5 平成27年度浮遊粒子状物質合同調査報告書(第2稿)に対する意見
- 資料6 平成29年度浮遊粒子状物質調査会議事業計画(案)
- 資料7 平成28年度関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議講演会について


平成28年度関東地方大気環境対策推進連絡会 第4回浮遊粒子状物質調査会議 出席者一覧

平成29年2月22日(水)

	都県市名	所属名	職名	9年2月22日(水)
1	栃木県	保健環境センター	技師	飯島 史周
2		環境保全課	主幹	茂木 幸伸
3	群馬県	衛生環境研究所	主任研究員	田子 博
4	4	大気環境課	技師	池上 真人
5	埼玉県	環境科学国際センター	専門研究員	長谷川 就一
6		大気保全課	副主査	大橋 英明
7	イボリ	大気保全課	技師	浅川 達志
8	千葉県	環境研究センター	主席研究員	石井 克巳
9		環境研究センター	主任上席研究員	内藤 季和
10		東京都環境局環境改善部大気保全課	課長代理	飯村 文成
11	東京都	東京都環境局環境改善部計画課	主事	長澤 祐樹
12		東京都環境科学研究所 環境資源研究科	研究員	秋山 薫
13	カケロ 目	環境農政局 環境部 大気水質課	グループリーダー	五本木 顕良
14	神奈川県	環境科学センター 調査研究部	主任研究員	小松 宏昭
15	山梨県	森林環境部大気水質保全課	技師	櫻林 智
16	山架県	福祉保健部衛生環境研究所	研究員	大橋 泰浩
17	日田田	環境部水大気環境課	薬剤師	橋詰 祐希
18	長野県	環境保全研究所	研究員	花岡 良信
19		くらし・環境部 環境局 生活環境課 大気水質班	技師	八木 聡子
20	静岡県	環境衛生科学研究所 大気水質部 大気騒音環境班	主任	金子 智英
21		環境衛生科学研究所 大気水質部 大気騒音環境班	技師	井口大輔
22	さいたま市	環境科学課	主査	城 裕樹
23		環境対策課	主任	米澤 義徳
24	千葉市	環境保全部環境規制課	技師	浅野 雄紀
25		環境保健研究所 環境科学課	主任技師	坂元 宏成
26	横浜市	環境創造局環境保全部環境管理課監視センター	技術職員	小澤 宏樹
27	title ti	環境創造局政策調整部環境科学研究所	技術職員	志村 徹
28	川崎市	環境局環境総合研究所地域環境・公害監視課	技術職員	鈴木 義浩
29	相模原市	環境保全課	技師	池川智子
30		衛生研究所	技師	髙梨 直人
31	*** 57	環境局環境保全課大気係	主任薬剤師	伊藤 誠
32	静岡市	環境局 環境保健研究所 環境科学係	副主幹	原弘
33		環境局 環境保健研究所 環境科学係	副主幹	石野 友季子
34	浜松市	環境部環境保全課	主任	松下佳代
35	•	健康福祉部保健環境研究所	主任	無州 孝哲
36		生活環境部 環境対策課	課長補佐 (大気保全)	仲田 弘美
37	茨城県	生活環境部 環境対策課	技師	宮下 勇二
38		生活環境部 霞ケ浦環境科学センター	大気·化学物質研究室長	
39		生活環境部 霞ケ浦環境科学センター	主任	前田 良彦

特別会議室 27 第二本庁舎31階 🤼 788 68-228

この会議室は机の移動はできません

平成 27 年度調査報告書の執筆担当自治体一覧

本編	主担当	副担当	H27	H26	H25
1 はじめに	茨城県	群馬県	山梨県	静岡県	千葉県
2 調査方法	茨城県	群馬県	山梨県	静岡県	千葉県
3 各季節の概況 気象概況	相模原市	さいたま市	相模原市	相模原市	相模原市
3.1 春季	東京都	横浜市	_	_	_
3.2 夏季	埼玉県	神奈川県	1	1	_
3.3 秋季	長野県	千葉市	_	_	_
3.4 冬季	静岡県	川崎市	_	_	_
3.5 四季の比較	埼玉県	茨城県	_	_	_
4 年間のPM2.5高濃度発生状況 4.1 高濃度日出現状況の把握	群馬県	神奈川県	群馬県	群馬県	_
4.2 高濃度事象の詳細解析 (春季)	横浜市	東京都	_	_	_
4.3 (夏季)	神奈川県	埼玉県	_	_	_
4.4 (秋季)	千葉市	長野県		-	_
4.5 (冬季)	川崎市	静岡県	_	_	_
4.6 高濃度イベントの まとめ	栃木県	群馬県	_	_	_
5 発生源寄与の推定	千葉県、	山梨県、 たま市	千葉県	山梨県	山梨県
6 今後の課題	茨城県	群馬県	山梨県	静岡県	千葉県

	資料編	主担当	H27	H26	H25
1	試料採取要領	茨城県	山梨県	静岡県	千葉県
2	測定方法及び検出下限・定量下限	静岡市	静岡市	静岡市	静岡市
3	調査期間の常時監視データ	茨城県	山梨県	静岡県	千葉県
4	成分濃度測定結果	茨城県	山梨県	静岡県	千葉県
5	調査地点の概況	茨城県	山梨県	静岡県	千葉県
6	精度管理結果	浜松市	長野県 千葉県	長野県 千葉県	長野県
7	本編4章の解析地点	群馬県	群馬県 神奈川県	群馬県	-
8	調査結果の発表及び投稿一覧	茨城県	山梨県	静岡県	千葉県

平成27年度浮遊粒子状物質 合同調查報告書(第3稿)

関東におけるPM2.5のキャラクタリゼーション (第8報)

(平成27年度調査結果)

平成29年3月

関東地方大気環境対策推進連絡会 浮遊粒子状物質調査会議

まえがき

環境省の「平成 26 年度 大気汚染状況報告書」によれば、平成 26 年度における浮遊粒子状物質の環境基準達成率は、一般局で 99.7%、自排局で 100%となり、平成 25 年度と比較して一般局ではやや改善、自排局では改善しました。また、年平均値については、一般局、自排局とも近年ほぼ横ばいで推移しています。

そして、微小粒子状物質 (PM2.5) の環境基準達成率は、一般局で 37.8%、自排局で 25.8% であり、一般局、自排局ともに平成 25 年度と比較して改善しましたが、依然として低い水準でした。また、有効測定局数は 870 局 (一般局 672 局、自排局 198 局) となり、平成 25 年度の 673 局 (一般局 492 局、自排局 181 局) より大幅に増加しています。

こうした中で、最近では中国の経済発展に伴う深刻な大気汚染がメディアでも問題視され、特に西日本を中心として PM2.5 の越境汚染が懸念されています。 PM2.5 については粒子状物質の中でも特に呼吸器疾患や循環器疾患等の健康影響が指摘されていることから、大気汚染物質の中でも喫緊の対策が求められている重要課題のひとつであり、汚染実態の把握や生成機構の解明が強く求められています。

浮遊粒子状物質に対する広域的な取組として、関東地域の自治体を中心に、昭和 56 年度に、一都三県公害防止協議会を母体とした、1 都 3 県 2 市(東京都、神奈川県、千葉県、埼玉県、横浜市、川崎市)による「南関東浮遊粒子状物質合同調査」が開始され、後に山梨県と千葉市が参加、平成 7 年度に栃木県と群馬県が参加し、1 都 6 県 3 市で構成された「関東 SPM 検討会」として調査を実施しました。翌年には茨城県、平成 12 年度には長野県と静岡県が参加し、「関東地方環境対策推進本部大気環境部会」の中に「浮遊粒子状物質調査会議」が組織され、継続的な調査を実施しました。その後、平成 15 年度にはさいたま市、平成 18 年度には静岡市、平成 20 年度には浜松市、平成 22 年度には相模原市が加わり、現在の1 都 9 県 7 市の体制となっています。

このような長い歴史を持つ本調査会議は、平成19年度までを一つの区切りとし、平成20年度からは、PM2.5に着目した調査を始めました。特に夏季のPM2.5中の二次生成粒子の高濃度化現象に焦点をあて、広域的な濃度レベルの把握に加え、二次生成粒子成分濃度とその前駆物質を同時に観測、比較し、広域汚染のメカニズムについて検討してきました。

今年度は、平成27年度に実施した各季節における成分分析調査等の解析結果並びに年間を通した高濃度事象の発生状況及び当該高濃度事象について詳細解析を行った結果を記載しています。

本報告書が、PM2.5 に関する一資料として、広く活用して頂ければ幸いです。

最後に、共同調査の実施及び報告書の取りまとめにあたり、御協力をいただいた関係各位に、深く感謝いたします。

平成 28 年度 浮遊粒子状物質調査会議幹事 茨城県

平成27年度及び28年度 調査会議担当者

茨城県生活環境部環境対策課	間弓 敦子	仲田 弘美	宮下 勇二
茨城県霞ケ浦環境科学センター	宇津野 典彦	前田 良彦	
栃木県環境森林部環境保全課	桐原 広成	齋藤 裕亮	
栃木県保健環境センター	舘野 雄備	飯島 史周	
群馬県環境森林部環境保全課	北村 光弘	妖曲 又问	
群馬県衛生環境研究所	熊谷 貴美代	田子 博	
埼玉県環境部大気環境課	池上 真人	本庄 隆成	
埼玉県環境科学国際センター	他工 兵八 米持 真一	長谷川 就一	
千葉県環境生活部大気保全課	木村 剛	荻原 由紀恵	
一条示块先工伯印入风水主味	大伴 正人	浅川 達志	
千葉県環境研究センター	内藤 季和	石井 克巳	
東京都環境局環境改善部計画課	折原 岳朗	唐木 良子	
宋·尔伊朱·克内朱·克以音·印·司 画味	藤島 明日香	長澤 祐樹	
(公財)東京都環境公社 東京都環境科学研究所	秋山 薫	星 純也	齊藤 伸治
(公別) 未求都來発公性 未求都來先付于明九月	機島 智恵子	國分 優孝	月除 中日
神奈川県環境農政局環境部大気水質課	出澤 晃一	前田 敏哉	
神奈川県環境科学センター	小松 宏昭	武田 麻由子	
山梨県森林環境部大気水質保全課	野中 美香	櫻林 智	和田 政一
山梨県衛生環境研究所	吉澤 一家	大橋 泰浩	土橋 正徳
長野県環境部水大気環境課	町田 哲	橋詰 祐希	上
長野県環境保全研究所	花岡 良信	山﨑 賢	
新聞県くらし・環境局環境部生活環境課 ・環境局環境部生活環境課	中村 孝寛	柳尚仁	八木 聡子
静岡県環境衛生科学研究所	三宅 健司	本間 信行	ノベンド 中心 丁
おいたま市環境局環境共生部環境対策課	一 ^七 陸	米澤 義徳	
さいたま市健康科学研究センター	城 裕樹	个样 我心	
千葉市環境保全部環境規制課	福井 隆弘	浅野 雄紀	
千葉市環境保健研究所	古川博	岡本 誓志	坂元 宏成
横浜市環境創造局環境保全部環境管理課	植松 義博	白砂 裕一郎	级儿 丛风
横浜市環境科学研究所	石原 充也	志村 徹	福﨑 有希子
视铁巾绿兔们 于明 <i>几</i> 历	小森 陽昇	小宇佐 友香	田田町、日刊111
川崎市環境局環境対策部環境対策課	平山 学	7. 丁在 次百	
川崎市環境総合研究所	田中 佑典	鈴木 義浩	
相模原市環境経済局環境共生部環境保全課	秋元 諒	伊達 司	池川 智子
相模原市衛生研究所	望月 有	池川 智子	(四)川 (目 1
1日(条/水川) 南 工 卯 九/月	高木 尊大	高梨 直人	
静岡市環境局環境創造部環境保全課	伊藤 誠	问术 巨八	
静岡市環境保健研究所	原 弘		
所问 []	畑 潤平	松下 佳代	
供松市保健環境研究所 (1)	無州 孝哲	14 1 1土1 1	
1六14 11	邢川 子省		

目 次

I	本	編
	1	はじめに ・・・・・・・・・・・・・・・・・・・・1
	2	調査方法
		2.1 調査時期 ・・・・・・・・・・・・・・・・ 2
		2.2 参加自治体及び調査解析地点 ・・・・・・・・・・ 2
		2.3 試料の採取方法及び測定方法 ・・・・・・・・・・ 4
	3	各季節の概況
		3.1 春季 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		3.2 夏季 ・・・・・・・・・・・・・・・・・・・・・・・・
		3.3 秋季 ・・・・・・・・・・・・・・・・・・・・・・・
		3.4 冬季 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		3.5 四季の比較 ・・・・・・・・・・・・・・・・・・・・・
	4	年間の PM2.5 高濃度発生状況
		4.1 常時監視データによる PM2.5 高濃度日出現状況の把握 ・・・・
		4.2 PM2.5 高濃度事象の詳細解析 (春季)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		4.3 PM2.5 高濃度事象の詳細解析 (夏季)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		4.4 PM2.5 高濃度事象の詳細解析 (秋季)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		4.5 PM2.5 高濃度事象の詳細解析 (冬季)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		4.6 高濃度イベントのまとめ ・・・・・・・・・・・・・・
	5	発生源寄与の推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6	今後の課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Π	資料	斗編
	1	試料採取要領 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2	測定方法及び検出下限・定量下限 ・・・・・・・・・・・・
	3	調査期間の常時監視データ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4	成分分析測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5	調査地点の概況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6	精度管理結果 ・・・・・・・・・・・・・・・・・・・・・・・
	7	本編4章の解析地点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	8	調査結果の発表及び投稿一覧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

I 本編

1 はじめに

本調査会議は、広域的な課題である微小粒子状物質(以下、「PM2.5」という。)の大気汚染に対する取り組みの一環として、その汚染実態や発生源等を把握し、今後の対策に資することを目的に、関東甲信静1都9県7市の自治体が共同して調査を行うこととしている。

これまでの調査結果によると、平成 15 年のディーゼル車運行規制以降の PM2.5 に対する自動車排出ガスの寄与は減少傾向にあるが、二次生成粒子の寄与については顕著な変化が見られていない。特に、夏季における二次生成粒子の高濃度化は関東広域に広がる傾向にあり、その由来等については解析が必要であることが明らかとなった。

一方、平成22年度の環境省の事務処理基準改正により、PM2.5の成分分析は自動測定機による質量濃度測定と同様に常時監視項目に位置づけられ、平成25年度以降全国の各自治体で分析が行われている。

こうした経緯の中で、本会議においては、平成23年度までは調査会が2日間または3日間で試料採取し、分析項目毎に担当自治体が全地点の分析を行っていた。平成24年度以降は原則、各自治体が24時間で試料採取、分析を行い、分析結果を集約し、本調査会議において解析を行うというスタイルへと変更した。

調査解析時期等については、平成26年度までは一般環境における夏季の梅雨明け後を中心としていたが、平成27年度は四季ごとに解析を行った。さらに、調査解析時期以外の期間における高濃度事例について、自動測定機によるPM2.5の質量濃度測定結果に加え、気象データ及び大気常時監視データを用い、時間分解能を高めた高濃度要因の解析を行った。

また、PM2.5 調査に加え、一部自治体においてはフィルターパック法により捕集される、二次生成粒子の主な前駆物質と考えられている SO_2 、 HNO_3 、HCl、 NH_3 (以下、「ガス状成分」という。)、及びエアロゾルと呼ばれる気体中に浮遊する微小な液体又は固体の粒子に含まれる成分の内、 SO_4^{2-} 、 NO_3^{-} 、Cl、 NH_4^{+} 、 Na^+ 、 K^+ 、 Mg^{2+} 、 Ca^{2+} (以下、これらを「エアロゾル成分」という。)についての調査を夏季に実施した。

本報告では、広域的な PM2.5 濃度実態等の把握を中心に、二次生成粒子の成分濃度と その前駆物質成分濃度(ガス状成分濃度)も測定し、年間を通じた広域的な二次生成粒 子汚染のメカニズムの解明に資することを目的とした。

2 調査方法

2.1 調査時期

調査時期は原則として表 2-1-1-1 のとおり環境省が設定した調査時期(試料捕集期間)に従い、季節毎で 2 週間に 24 時間採取を連続して実施した。また、同表で示す各 1 週間をコア期間として解析を行った。

表 2-1-1-1 調査時期(試料採取の開始時刻は原則として 10 時とした)

	試料採集期間	コア期間
春季	平成27年5月7日(木)~5月21日(木)	5月11日(月)~5月18日(月)
夏季	平成27年7月22日(水)~8月5日(水)	7月27日(月)~8月3日(月)
秋季	平成27年10月21日(水)~11月4日(水)	10月26日(月)~11月2日(月)
冬季	平成28年1月20日(水)~2月3日(水)	1月25日(月)~2月1日(月)

2.2 参加自治体及び調査解析地点

(1) 参加自治体

茨城県、栃木県、群馬県、埼玉県、千葉県、東京都、神奈川県、長野県、山梨県、静岡県の各都県及びさいたま市、千葉市、横浜市、川崎市、相模原市、静岡市、浜松市の各市

(2) 調査解析地点

調査解析地点名、場所、沿岸・内陸の区分及び担当自治体を表 2-2-1-1 に、調査解析地 点については図 2-2-1-1 に示した。

これまでの報告書によると、沿岸・内陸で PM2.5 の成分や発生源に違いが見られていることから、本報告書においても、沿岸・内陸による違いを明らかにすることを目的に、区分を分けた比較・解析を行なった。

各調査解析地点の周辺の状況については「Ⅱ資料編」に示した。

表 2-2-1-1 調査解析地点名、場所及び担当自治体について

番号	地点名	場所	沿岸· 内陸	担当 自治体	番号	地点名	場所	沿岸• 内陸	担当 自治体
1	土浦*	土浦保健所	内陸	茨城県	14	大和*	大和市役所	沿岸	神奈川県
2	真岡*	真岡市役所	内陸	栃木県	15	横浜*	磯子区総合庁舎	沿岸	横浜市
3	前橋*	群馬県衛生環境研究所	内陸	张田田	16	川崎*	田島測定局(田島こども文化センター)	沿岸	川崎市
4	館林	館林市民センター	内陸	群馬県	17	相模原*	相模原市役所	内陸	相模原市
5	鴻巣*	鴻巣市役所	内陸	林工但	18	甲府*	山梨県衛生環境研究所	内陸	1.311
6	幸手	幸手測定局	内陸	一一 埼玉県 内陸		吉田	富士吉田合同庁舎	内陸	山梨県
7	さいたま	大宮測定局	内陸	さいたま市	20	長野*	長野県環境保全研究所	内陸	長野県
8	市原*	千葉県環境研究センター	沿岸		21	富士*	富士市救急医療センター	沿岸	
9	勝浦*	勝浦市立北中学校	沿岸	千葉県	22	湖西	湖西市役所	沿岸	静岡県
10	富津	富津市立富津中学校	沿岸		23	静岡*	静岡市立服織小学校	沿岸	静岡市
11	千葉*	千葉市立千城台北小学校	沿岸	千葉市	24	浜松*	浜松市立葵が丘小学校	沿岸	浜松市
12	綾瀬*	東綾瀬公園	沿岸				*	* 固定》	制定地点

東京都

内陸

愛宕測定局

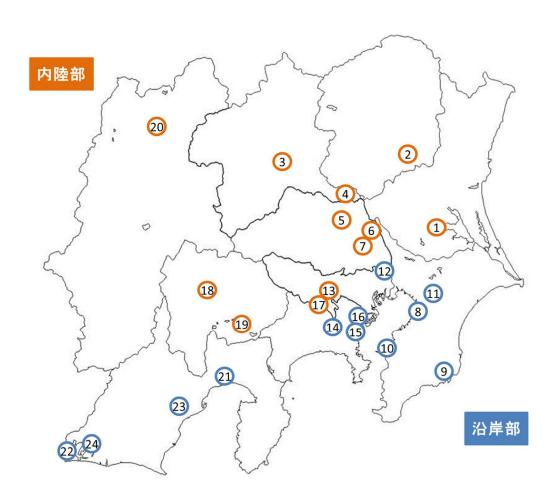


図 2-2-1-1 調査解析地点

2.3 試料の採取方法及び測定方法

- (1) 試料の捕集方法(試料採取方法の詳細は、「Ⅱ資料編」に示した)
 - ・PM2.5 調査:

PTFE ろ紙及び石英繊維ろ紙を装着した PM2.5 サンプラー又はこれと同等なサンプラーを用いて、PM2.5 を捕集した。

・フィルターパック法による調査: ガス状物質についてはフィルターパック法を用いて調査を行った。

(2) 測定項目と測定方法

事務処理基準の改正により、都道府県及び政令市の自治体は平成 25 年度までに PM2.5 の成分分析調査 (PM2.5 濃度、水溶性イオン成分、炭素成分[元素状炭素成分、有機炭素成分]及び無機元素成分を測定する調査) の体制を整備することになっており、平成 27 年度は、原則、各自治体の責任により分析を実施した。また、フィルターパック法による調査は、夏季のコア期間について実施可能な自治体でガス状成分とエアロゾル成分を測定した。測定項目及び分析実施状況を表 2-3-1-1 に示した。

なお、測定方法は基本的には環境省が平成 24 年 4 月 19 日に策定し、平成 25 年 6 月 28 日付けで一部改訂された「大気中微小粒子状物質(PM2.5)成分測定マニュアル」に準拠しているが、詳細については自治体間で多少違いがある。なお、詳細は、「Ⅱ資料編」に示した。

表 2-3-1-1 測定項目及び分析実施状況

番号	地点名	質量濃度	イオン	炭素	水溶性 有機炭素 WSOC	無機元素	ガス状物質
1	土浦	0	0	0	0	0	0
2	真岡	0	0	0	0	0	_
3	前橋	0	0	0	0	0	0
4	館林	0	0	0	0	0	_
5	鴻巣	0	0	0	_	0	0
6	幸手	0	0	0	_	0	
7	さいたま	0	0	0	_	0	_
8	市原	0	0	0	0	0	0
9	勝浦	0	0	0	0	0	_
10	富津	0	0	0	0	0	
11	千葉	0	0	0	0	0	
12	綾瀬	0	0	0	_	0	0
13	多摩	0	0	0	_	0	
14	大和	0	0	0	0	0	_
15	横浜	0	0	0	_	0	_
16	川崎	0	0	0	0	0	_
17	相模原	0	0	0	_	0	_
18	甲府	0	0	0	0	0	0
19	吉田	0	0	0	0	0	
20	長野	0	0	0	_	0	0
21	富士	0	0	0	_	0	0
22	湖西	0	0	0	_	0	_
23	静岡	0	0	0	0	0	_
24	浜松	0	0	0	_	0	_

注)「〇」:各自治体が分析を実施 「一」:未測定

本編3 各季節の概況

3.1 春季(相模原市,東京都)

3 各季節の概況

3.1 春季

3.1.1 気象概況

風速等の観測値について、午前 10 時を起点に集計した。観測値は気象庁ホームページから引用、転載した。観測値は、各気象観測所(つくば、真岡、前橋、熊谷、千葉、東京、横浜、甲府、長野、静岡)の時別値(時間値)を用いた。

春季調査期間中の気象の概要

春季調査期間中の関東甲信地方及び東海地方の平均気温及び日照時間はどちらも平年と 比較して平均気温は高く、日照時間は長かった。

5月12日に東京及び静岡で激しい雨(1時間雨量30mm以上~50mm未満)、5月12日につくば、5月16日に静岡で強い雨(1時間雨量20mm以上~30mm未満)、5月12日に真岡及び横浜、5月16日に長野、5月19日に静岡、5月21日に真岡及び千葉でやや強い雨(1時間雨量10mm以上~20mm未満)が降った。

表 3-1-1-1 に調査期間中の観測値を示す。

表 3-1-1-1 春季調査期間の各気象観測所の観測値

測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (℃)	日照時間 (h)	降水量 (mm)
	茨城県	つくば	東北東	1.8	17.9	6.8	0.0
	栃木県	真岡	北北東	1.1	18.3	9.2	0.0
	群馬県	前橋	北西	2.9	20.1	6.8	0.0
	埼玉県	熊谷	南南東	2.1	20.5	9.2	0.0
5/7 ~	千葉県	千葉	西南西	2.7	20.2	9.9	0.0
5/8	東京都	東京	北北東	1.9	19.6	5.9	0.0
	神奈川県	横浜	南西	2.4	19.8	9.8	0.0
	山梨県	甲府	西北西	2.5	19.5	9.1	0.0
	長野県	長野	北北西	2.8	17.1	8.5	0.5
	静岡県	静岡	南、北北西	1.7	19.2	5.2	0.0
	茨城県	つくば	東	2.0	18.5	7.8	0.0
	栃木県	真岡	北東	1.7	18.4	6.5	0.0
	群馬県	前橋	北西	2.3	21.3	5.3	0.0
	埼玉県	熊谷	南南東	2.2	21.3	7.4	0.0
5/8 ~	千葉県	千葉	南西	3.1	20.2	7.0	0.0
5/9	東京都	東京	南	2.6	20.7	7.9	0.0
	神奈川県	横浜	南西	3.1	19.9	7.9	0.0
	山梨県	甲府	南西、西	2.6	20.3	7.4	0.0
	長野県	長野	北	2.5	17.0	7.8	0.0
	静岡県	静岡	南	1.9	19.1	8.0	0.0

表 3-1-1-1 続き

測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)
	茨城県	つくば	東北東	2.3	16.8	4.9	0.0
	栃木県	真岡	北北東、東北東	1.3	16.6	3.7	0.0
	群馬県	前橋	北西	3.0	17.4	4.7	0.0
	埼玉県	熊谷	東	2.6	17.9	4.8	5.0
5/9	千葉県	千葉	北北西	2.4	18.5	4.6	4.5
~ 5/10	東京都	東京	北西	2.6	18.5	4.6	0.0
	神奈川県	横浜	北	2.5	18.4	4.6	3.0
	山梨県	甲府	西南西	1.6	17.6	4.6	0.0
	長野県	長野	東北東	2.7	13.3	1.4	0.0
	静岡県	静岡	西北西	1.3	18.1	4.5	0.0
	茨城県	つくば	北西	2.9	16.2	10.1	0.0
	栃木県	真岡	北北東	1.5	15.3	12.2	0.0
	群馬県	前橋	北西、北北西	4.9	15.2	13.0	0.0
	埼玉県	熊谷	北西	3.8	17.0	12.9	0.0
5/10	千葉県	千葉	北北東、北東	3.2	18.2	10.8	0.0
5/11	東京都	東京	北北西	3.5	18.7	10.2	0.0
	神奈川県	横浜	北	4.3	18.5	10.6	0.0
	山梨県	甲府	西北西	3.8	18.1	12.9	0.0
	長野県	長野	北東	3.5	10.5	11.1	0.0
	静岡県	静岡	北北東、北東、東北東、南	2.9	19.2	12.8	0.0
	茨城県	つくば	南	3.2	17.7	7.5	0.0
	栃木県	真岡	南南西	2.0	17.1	8.5	0.0
	群馬県	前橋	北西	2.6	17.6	7.5	0.0
	埼玉県	熊谷	南東	2.4	17.7	6.8	0.0
5/11	千葉県	千葉	南	6.2	18.4	8.2	0.0
5/12	東京都	東京	南	5.1	18.7	7.6	0.0
	神奈川県	横浜	南南西	5.1	18.0	8.4	0.0
	山梨県	甲府	南西	2.9	17.5	9.4	0.0
	長野県	長野	西南西	4.8	18.8	7.7	0.0
	静岡県	静岡	南	2.0	17.6	7.1	0.0
	茨城県	つくば	南南西	4.7	20.2	4.6	47.0
	栃木県	真岡	南南西	2.4	19.7	5.5	24.5
	群馬県	前橋	北西	2.8	18.6	5.5	8.0
	埼玉県	熊谷	西	2.5	18.6	4.4	16.5
5/12 ~	千葉県	千葉	南西	10.2	21.7	4.1	11.5
5/13	東京都	東京	南	5.4	20.7	3.6	58.5
	神奈川県	横浜	南南西、南西	7.3	20.4	4.0	31.0
	山梨県	甲府	南東	2.3	18.4	4.7	30.0
	長野県	長野	西南西	3.8	17.2	3.9	17.0
	静岡県	静岡	南西	3.0	19.7	5.1	138.5

表 3-1-1-1 続き

測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)
	茨城県	つくば	南南西	2.5	20.2	12.3	0.0
	栃木県	真岡	東北東	1.7	19.4	11.5	0.0
	群馬県	前橋	北西	4.2	22.3	12.5	0.0
	埼玉県	熊谷	西	2.6	22.3	12.7	0.0
5/13	千葉県	千葉	南西	5.8	22.6	12.9	0.0
~ 5/14	東京都	東京	南	3.0	22.8	13.0	0.0
	神奈川県	横浜	南西	5.2	22.7	13.1	0.0
	山梨県	甲府	北西	3.3	20.1	12.2	0.0
	長野県	長野	西	2.7	19.1	10.2	0.0
	静岡県	静岡	西南西	3.2	22.4	13.0	0.0
	茨城県	つくば	南	2.6	21.5	10.4	0.0
	栃木県	真岡	南南西	1.2	22.2	12.2	0.0
	群馬県	前橋	北西	2.8	24.2	12.1	0.0
	埼玉県	熊谷	南東	2.3	23.9	10.5	0.0
5/14	千葉県	千葉	南西	4.8	22.6	9.1	0.0
~ 5/15	東京都	東京	東北東、南	3.0	23.2	9.8	0.0
	神奈川県	横浜	南南西	3.8	22.9	9.2	0.0
	山梨県	甲府	南南西、西南西、西	2.0	21.3	9.3	0.0
	長野県	長野	東北東	2.3	19.1	11.1	0.0
	静岡県	静岡	北北東	2.2	23.0	7.4	0.0
	茨城県	つくば	東	2.3	20.5	4.5	3.5
	栃木県	真岡	北東	1.8	20.6	4.7	2.5
	群馬県	前橋	北西	2.4	22.7	4.9	3.0
	埼玉県	熊谷	東北東	2.4	22.8	4.4	2.5
5/15 ~	千葉県	千葉	南西	5.1	23.1	4.6	9.5
5/16	東京都	東京	南南東	3.3	22.7	4.3	3.5
	神奈川県	横浜	南西	4.7	22.2	4.7	8.0
	山梨県	甲府	南西、西	2.1	23.2	5.1	2.0
	長野県	長野	南西	2.3	21.4	4.7	15.0
	静岡県	静岡	南	2.0	22.7	5.4	27.5
	茨城県	つくば	東南東	1.6	19.5	3.7	0.0
	栃木県	真岡	東北東	1.3	19.5	3.8	0.0
	群馬県	前橋	北西	2.9	21.4	7.6	0.0
	埼玉県	熊谷	南南東、西北西	2.8	21.5	4.3	0.0
5/16 ~	千葉県	千葉	北北東、北東	3.0	20.2	3.5	2.0
5/17	東京都	東京	南南東	2.3	20.8	3.4	0.0
	神奈川県	横浜	北北東	2.3	20.6	2.8	0.5
	山梨県	甲府	北西	2.3	21.3	5.1	0.0
	長野県	長野	北	1.9	16.3	8.8	0.5
	静岡県	静岡	北北東	1.6	21.0	1.2	0.0

表 3-1-1-1 続き

測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)
	茨城県	つくば	南南東	2.1	20.8	11.4	0.0
	栃木県	真岡	北北東	1.5	20.8	9.5	0.0
	群馬県	前橋	北北西	3.3	21.0	10.2	0.0
	埼玉県	熊谷	北西、北北西	2.5	22.2	12.5	0.0
5/17 ~	千葉県	千葉	南	3.8	22.2	10.5	0.0
5/18	東京都	東京	南	3.2	22.0	9.0	0.0
	神奈川県	横浜	南	2.9	21.5	9.7	0.0
	山梨県	甲府	南西	2.6	21.9	10.8	0.0
	長野県	長野	西	2.4	17.2	11.5	0.0
	静岡県	静岡	南南西	1.8	20.8	8.7	0.0
	茨城県	つくば	南南東	2.9	20.7	2.6	13.5
	栃木県	真岡	東南東	1.9	20.5	3.4	28.0
	群馬県	前橋	東南東	3.8	20.3	1.5	7.5
	埼玉県	熊谷	南東	3.3	21.4	3.0	2.0
5/18	千葉県	千葉	南南東	5.2	21.9	3.2	6.5
5/19	東京都	東京	南南東	3.5	20.7	2.5	8.0
	神奈川県	横浜	南南東	3.6	20.5	2.4	6.0
	山梨県	甲府	南南西	2.5	20.0	1.7	10.0
	長野県	長野	西南西、西	4.0	18.6	2.6	22.5
	静岡県		北西	2.1	20.3	3.3	34.5
	茨城県	つくば	北東	2.1	19.0	2.6	0.0
	栃木県	真岡	東北東	1.3	19.5	3.2	0.0
	群馬県	前橋	北北西	1.7	20.3	3.4	0.0
	埼玉県	熊谷	東北東	1.6	21.0	1.1	0.0
5/19	千葉県	千葉	北東、西南西	4.1	21.2	1.4	0.0
5/20	東京都	東京	北東	2.2	21.2	2.7	0.0
	神奈川県	横浜	南南西	3.2	21.0	2.0	0.0
	山梨県	甲府	西	1.4	20.9	6.4	0.0
	長野県	長野	東	2.5	17.8	8.9	0.0
	静岡県	静岡	北東	2.1	21.9	4.1	0.5
	茨城県	つくば	東南東	2.0	19.0	10.2	24.0
	栃木県	真岡	北北東、東北東、東南東	1.7	19.5	7.7	20.0
	群馬県	前橋	北北西	4.6	20.2	8.0	1.0
	埼玉県	熊谷	西北西、北西	3.8	21.3	9.3	8.0
5/20 ~	千葉県	千葉	東南東	2.9	20.6	8.0	25.5
5/21	東京都	東京	北北西	3.2	21.1	8.3	9.0
	神奈川県	横浜	北	3.8	20.4	9.3	10.0
	山梨県	甲府	南西、西北西	4.0	21.2	11.5	4.5
	長野県	長野	東北東	4.7	16.5	10.2	0.0
	静岡県	静岡	南南東、南	2.4	21.2	10.3	0.5

3.1.2 質量濃度及び組成

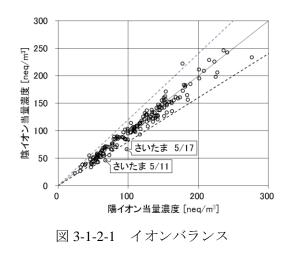
(1) 測定値の妥当性の検証

①イオンバランスの確認

春季調査のコア期間にあたる 5 月 11 日から 5 月 18 日を対象に、各地点の各日のデータから求めた陽イオン $(Na^+, NH_4^+, K^+, Ca^{2+}, Mg^{2+})$ 及び陰イオン $(C\Gamma, NO_3^-, SO_4^{2-})$ それぞれの合計当量濃度の比較を示す(図 3-1-2-1)。なお、検出下限値未満のデータに関しては、検出下限値の 1/2 とした。全体的に、陰イオン当量濃度合計/陽イオン当量濃度合計は概ね $0.8\sim1.2$ に収まっていたが、さいたまの 5 月 11 日と 5 月 17 日は陰イオンに比べて陽イオンが多く 0.7 未満となった。

②マスクロージャーモデルによる検証

図3-1-2-2に、コア期間中の各地点の各日のデータから次式¹⁾により推定した質量濃度と、標準測定法による質量濃度の比較を示す。


質量濃度 M=1.375[SO₄²⁻]+1.29[NO₃⁻]+2.5[Na⁺]+1.6[OC]+[EC]

+9.19[A1]+1.40[Ca]+1.38[Fe]+1.67[Ti]

なお、[OC]の係数は都市域の平均的な値として挙げられている 1.6^{2} とした。また、①と同様、検出下限値未満のデータに関しては、検出下限値の 1/2 とした。土浦の Ca、前橋と館林の Ti が未測定であったため、それぞれ濃度を 0 として適用した。

全体としては、標準測定法による質量濃度に対する推定質量濃度の比は概ね $0.8\sim1.2$ の範囲に収まっていたが、綾瀬の 5 月 16 日、富津の 5 月 12 日で 0.7 未満となった。

※今回は陰イオン当量濃度合計/陽イオン当量濃度合計は 0.8~1.2 の範囲外のものについてもマスクロージャーモデルを適用し、図示した。また、以後の節の解析でもそのまま使用した。

50 [su 40 WM 20 WM 20 WM 20 II (2) 30 WM 20 W

図 3-1-2-2 マスクロージャーモデル

参考文献

1) 環境省:大気中微小粒子状物質 (PM2.5) 測定方法暫定マニュアル 改定版、平成 19 年 7月

2) Turpin & Ho-Jin Lim: Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass, Aerosol Science and Technology, 35, 602-610 (2001)

(2)季節平均濃度と組成の分布

図 3-1-2-3 に、コア期間中の各地点の PM2.5 平均濃度を地図に示す。なお、図は国立環境研究所 曽我稔氏によるデータ解析支援ソフト「見え見えくん」により作成した。また、一部の地点については、PM2.5 主要成分(イオン成分、炭素成分)の組成を円グラフに示す。 PM2.5 平均濃度は、関東平野の北部に位置する前橋とさいたまの 2 地点で $20\mu g/m^3$ 以上となり、全体的に $15\sim20\mu g/m^3$ となっていた。 PM2.5 濃度に占める主要成分の組成は、全体的に SO_4^2 の割合が最も高く、次いで OC、 NH_4^+ 、EC、 NO_3^- の順となり、これら 5 成分で組成の 6 割以上を占める傾向がみられた。一方、PM2.5 濃度が高かった前橋の組成は、OC の割合が最も高く、次いで SO_4^2 、 NH_4^+ 、EC、 NO_3^- の順となった。なお、長野、前橋では主要成分の占める割合が他の地点と比較して低く、5 割程度となっていた。

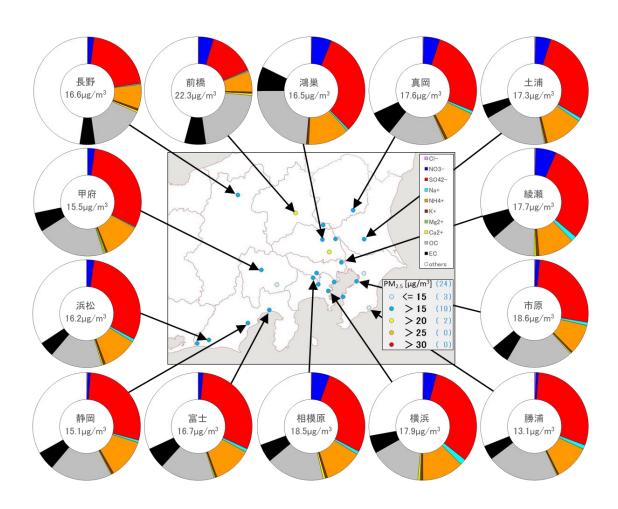
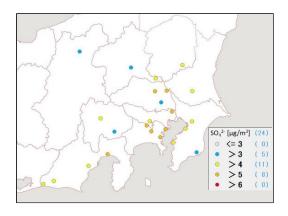



図 3-1-2-3 PM2.5 平均濃度(地図)と PM2.5 主要成分組成(円グラフ)

3.1.3 水溶性イオン成分濃度

図 3-1-3-1 に、コア期間中の SO_4^2 -および SO_2 の平均濃度分布を示す。 SO_2 は関東甲信静地域の南部で高い傾向がみられ、内陸部の相模原では 5.6ppb となり特に高かった。 SO_4^2 -の傾向は SO_2 と同じとは限らず、関東平野北部から南部の静岡県の沿岸部にかけて全体的に $4\sim6\mu g/m^3$ となった。バックグラウンドとされる沿岸の勝浦や、内陸部の前橋、さいたま、長野、吉田で $4\mu g/m^3$ 未満となった。

図 3-1-3-2 に、コア期間中の NO_3 および NOx の平均濃度分布を示す。NOx は東京・神奈川・埼玉と、千葉の東京湾周辺を中心に高い傾向だが、静岡県沿岸部の富士でも高かった。 NOx が特に高かったのは綾瀬 (22.6ppb)、大和 (20.9 ppb)、川崎 (20.7 ppb)、富士 (23.8 ppb) であった。 NO_3 は東京の綾瀬で $1.1\mu g/m^3$ 、多摩で $1.4\mu g/m^3$ となった以外は、すべて $1\mu g/m^3$ 以下と低かった。図 3-1-3-3 に、コア期間中の $C\Gamma$ の平均濃度分布を示す。 $C\Gamma$ も NO_3 と同様に、すべて $0.1\mu g/m^3$ 以下と低かった。図 3-1-3-4 に、コア期間中の K^+ の平均濃度分布を示す。 K^+ は大和で $0.2\mu g/m^3$ 以上と最も高くなったが、その分布に明確な傾向はみられなかった。

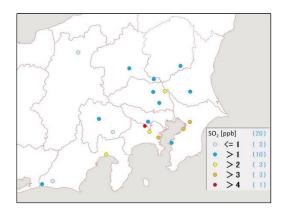
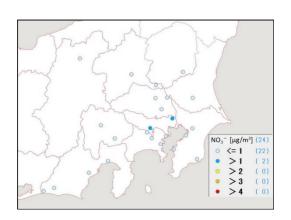



図 3-1-3-1 SO₄²⁻ (左) および SO₂ (右) の平均濃度分布

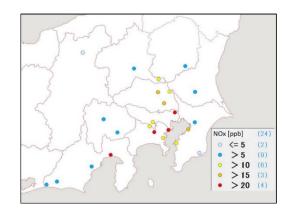


図 3-1-3-2 NO₃ (左) および NOx (右) の平均濃度分布

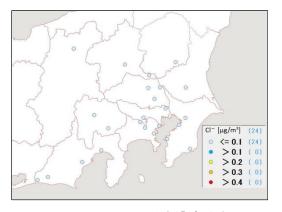


図 3-1-3-3 Cl の平均濃度分布

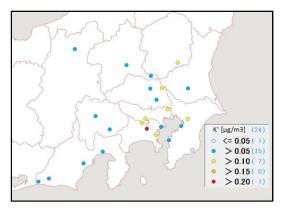



図 3-1-3-4 K⁺の平均濃度分布

3.1.4 炭素成分濃度

図 3-1-4-1 に、コア期間中の EC および OC の平均濃度分布を示す。EC はすべての地点 で 2μg/m³以下となり、地域的な濃度差は小さかった。OC は長野県を除いた関東甲信静地 域の北部で高い傾向がみられた。図 3-1-4-2 に、コア期間中の WSOC および Ox の平均濃 度分布、図 3-1-4-3 に OC に占める WSOC の割合 (WSOC/OC) および TC に占める OC の 割合(OC/TC)の分布を示す。WSOC については、千葉県で 1~2ug/m³、それ以外の地域 では比較的高く $2\sim3\mu g/m^3$ の範囲となった。WSOC/OC が特に高かったのは、値が 80%を 超えた真岡 (89%)、大和 (87%)、川崎 (82%)、静岡 (82%) であった。OC/TC は土浦、 さいたま、勝浦、富津で比較的高く80%以上であったが、全体的にも60%以上となり顕著 な傾向はみられなかった。また、EC や OC、WSOC、WSOC/OC、OC/TC、Ox の分布に関 して互いに傾向が類似する点はみられなかった。図 3-1-4-4 に、コア期間中の NMHC の平 均濃度分布を示す。NMHC の分布に特徴的な傾向はみられなかったが、比較的高かったの は大和と幸手であった。なお、大和と幸手の OC 濃度は中程度であった。図 3-1-4-5 に OC と Ox および OC と NMHC の関係を示す。 OC と Ox に明確な相関関係は見出せず、光化学 二次生成による大きな寄与は認められなかった。OCと NMHC に関しても明確な関係はみ られなかった。図 3-1-4-6 に、OC と K+および WSOC と K+の関係を示す。OC と K+、 WSOC と K+、ともに明確な関係はみられなかった。

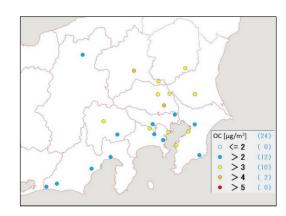


図 3-1-4-1 EC(左) および OC(右) の平均濃度分布

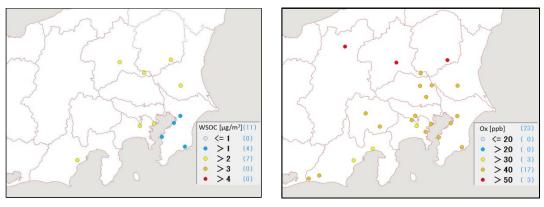


図 3-1-4-2 WSOC (左) および Ox (右) の平均濃度分布

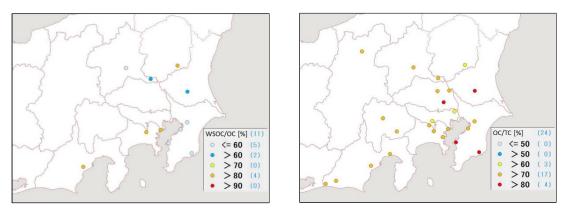


図 3-1-4-3 WSOC/OC (左) および OC/TC (右) の平均分布

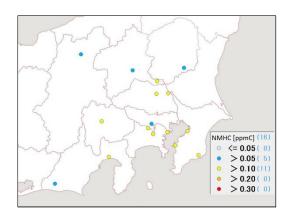


図 3-1-4-4 NMHC の平均濃度分布

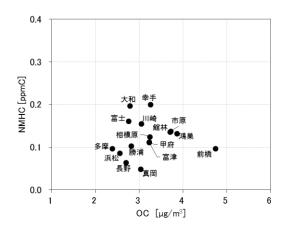
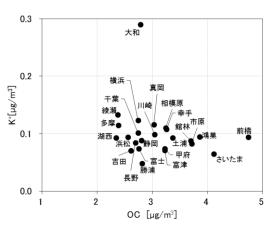



図 3-1-4-5 OC と Ox (左) および OC と NMHC (右) の関係

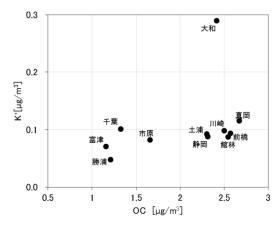
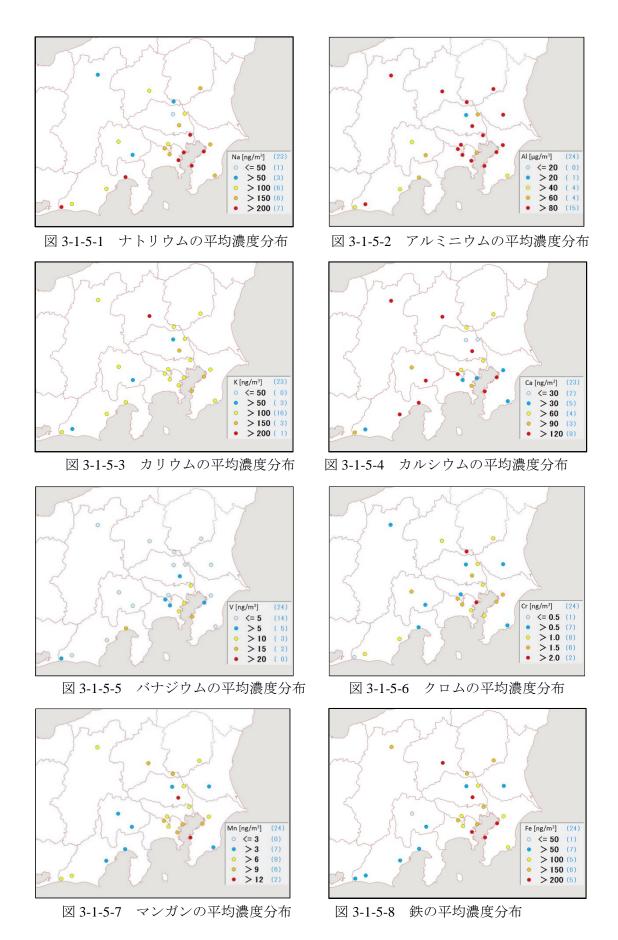
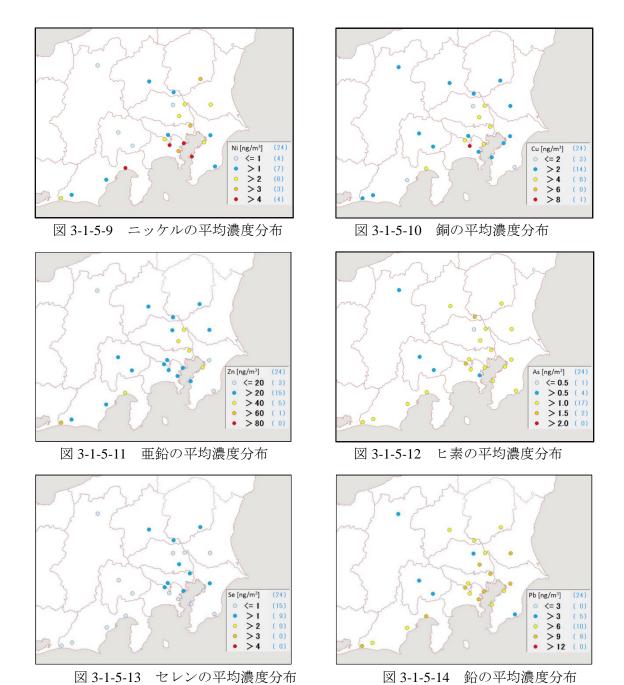




図 3-1-4-6 OC と K⁺ (左) および WSOC と K⁺ (右) の関係

3.1.5 無機元素濃度

図 3-1-5-1~14 に、コア期間中のナトリウム (Na)、アルミニウム (Al)、カリウム (K)、カルシウム (Ca)、バナジウム (V)、クロム (Cr)、マンガン (Mn)、鉄 (Fe)、ニッケル (Ni)、銅 (Cu)、亜鉛 (Zn)、ヒ素 (As)、セレン (Se)、鉛 (Pb) の平均濃度分布をそれ ぞれ示す。Na については沿岸部で高い傾向がみられ、海塩粒子の影響であると考えられる。 V についても沿岸部で高い傾向がみられ、船舶や臨海部の石油燃焼施設等の影響であることが推測される。また、Cr、Mn、Fe、Pb は沿岸部や都市部などで相対的に高い傾向がみられ、工業活動や都市活動との関連が示唆される。なお、Cu の平均濃度は大和で 13ng/m^3 と特異的に高かった。これは 5 月 11 日に大和で Cu が 80ng/m^3 と突出して高くなったためであり、コア期間中のそれ以外の日は検出下限値の 3.6ng/m^3 未満であった。5 月 11 日に突出して高濃度となった金属成分は Cu のみであった。

3.2 夏季(相模原市,埼玉県)

3.2 夏季

3.2.1 気象概況

梅雨入りは、関東甲信地方は6月3日ごろ(平年より5日早い)、東海地方は6月3日(平年より5日早い)、梅雨明けは関東甲信地方は7月10日ごろ(平年より11日早い)、東海地方は7月24日(平年より3日遅い)であった。

夏季調査期間中の関東甲信地方及び東海地方の平均気温及び日照時間はどちらも平年と 比較して平均気温は高く、日照時間は長かった。

7月24日につくば、7月28日に甲府で激しい雨(1時間雨量30mm以上~50mm未満)、7月23日に真岡、7月28日に前橋でやや強い雨(1時間雨量10mm以上~20mm未満)が降った。

表 3-2-1-1 に調査期間中の観測値を示す。

光化学スモッグ注意報発令状況

夏季調査期間中の気象観測所周辺における光化学スモッグ注意報発令状況については、 以下のとおりである。

7月25日:茨城県(南部地域)

7月26日:埼玉県(県北中部地域)、千葉県(千葉地域)、東京都(多摩南部地域)、

神奈川県 (横浜地域)

7月27日:埼玉県(県北中部地域)、千葉県(千葉地域)、神奈川県(横浜地域)、

7月31日:茨城県(南部地域)、埼玉県(県北中部地域)、千葉県(千葉地域)、

8月1日:埼玉県(県北中部地域)、千葉県(千葉地域)

8月4日:埼玉県(県北中部地域)

表 3-2-1-1 気象観測所の観測値及び光化学スモッグ注意報の発令状況

測定日	都県	気 象観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)	光化学スモッグ注意報 発令の有無
	茨城県	つくば	南南西	4.8	28.1	8.4	2.0	-
	栃木県	真岡	南南西	2.3	28.4	7.7	0.5	-
	群馬県	前橋	北西	2.1	30.0	7.8	1.5	-
	埼玉県	熊谷	南	2.7	30.1	8.7	3.5	-
7/22 ~	千葉県	千葉	南西	9.4	27.9	8.5	2.5	-
7/23	東京都	東京	南南西	6.6	28.3	8.7	4.5	-
	神奈川県	横浜	南南西	6.8	27.4	8.4	5.0	-
	山梨県	甲府	南南西、南西	2.8	27.2	4.1	7.0	-
	長野県	長野	西	2.8	27.0	2.8	17.5	-
	静岡県	静岡	南西	2.8	26.6	0.3	5.0	-

表 3-2-1-1 続き

		1					ı	T T
測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)	光化学スモッグ注意報 発令の有無
	茨城県	つくば	南南西	2.0	26.8	5.9	2.5	-
	栃木県	真岡	北東、東北東、南西	1.1	26.7	2.7	20.0	-
	群馬県	前橋	北西	2.4	28.1	4.0	8.0	-
	埼玉県	熊谷	北西	1.6	28.8	4.6	0.0	-
7/23	千葉県	千葉	南西	5.2	27.2	6.4	0.0	-
~ 7/24	東京都	東京	南南西	2.8	27.6	5.6	0.0	-
	神奈川県	横浜	南西	3.3	26.7	3.1	0.5	-
	山梨県	甲府	西南西	1.7	26.6	4.5	0.0	-
	長野県	長野	東	1.3	24.2	0.2	9.0	-
	静岡県	静岡	南西	2.3	26.8	5.7	0.0	-
	茨城県	つくば	北東、南東、南南東	1.3	26.4	6.1	42.0	-
	栃木県	真岡	東北東	0.9	26.4	1.2	0.0	-
	群馬県	前橋	北西、北北西	2.1	28.9	5.4	2.5	-
	埼玉県	熊谷	東	2.1	29.5	7.1	0.0	-
7/24	千葉県	千葉	西南西	2.5	28.3	6.3	0.0	-
~ 7/25	東京都	東京	南南東	2.0	27.9	3.2	7.0	-
·	神奈川県	横浜	南東	2.0	28.2	6.5	0.0	-
	山梨県	甲府	南西	2.1	28.4	6.8	0.0	-
	長野県	長野	北	1.7	25.8	5.0	0.0	-
	静岡県	静岡	東北東	1.7	28.2	8.6	0.0	-
	茨城県	つくば	東南東、南南東、南、南南西	1.4	29.1	10.7	0.0	〇(南部地域)
	栃木県	真岡	北北東	1.0	28.9	9.5	0.0	-
	群馬県	前橋	北西	2.7	31.0	11.7	0.0	-
	埼玉県	熊谷	北北西	2.0	31.5	11.7	0.0	-
7/25	千葉県	千葉	西南西	2.7	29.3	12.7	0.0	-
~ 7/26	東京都	東京	南東、南南東	2.2	29.4	11.9	0.0	-
	神奈川県	横浜	南南東	2.4	29.3	12.3	0.0	-
	山梨県	甲府	西、西北西	2.1	28.9	11.7	0.0	-
	長野県	長野	北北西	2.1	26.8	12.4	0.0	-
	静岡県	静岡	北東	2.0	28.9	8.2	0.0	-
	茨城県	つくば	南南東	2.1	29.1	12.8	0.0	-
	栃木県	真岡	北東	1.3	29.4	12.6	0.0	-
	群馬県	前橋	東	2.3	32.1	12.6	0.0	-
	埼玉県	熊谷	東北東	2.4	31.6	12.7	0.0	〇(県北中部地域)
7/26	千葉県	千葉	南東	2.8	30.0	13.0	0.0	〇(千葉地域)
~ 7/27	東京都	東京	南南東	2.6	30.5	12.6	0.0	〇(多摩南部地域)
	神奈川県	横浜	南	2.4	30.2	12.4	0.0	〇(横浜地域)
	山梨県	甲府	南西	2.3	30.0	12.5	0.0	-
	長野県	長野	北北西、北	2.2	27.7	12.7	0.0	-
	静岡県	静岡	北東	2.1	28.6	9.1	0.0	-

表 3-2-1-1 続き

測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)	光化学スモッグ注意報 発令の有無
	茨城県	つくば	東	2.1	28.0	8.3	0.0	-
	栃木県	真岡	北東	1.7	28.3	8.6	0.0	-
	群馬県	前橋	北西	2.4	30.6	8.4	15.5	-
	埼玉県	熊谷	東	2.5	30.6	7.1	0.0	〇(県北中部地域)
7/27	千葉県	千葉	南南東、西南西	3.6	29.6	8.3	0.0	〇(千葉地域)
~ 7/28	東京都	東京	南南東	2.7	30.3	9.3	0.0	-
	神奈川県	横浜	南南西、南西	3.3	29.7	9.4	0.0	〇(横浜地域)
	山梨県	甲府	南西	2.7	29.9	7.3	0.0	-
	長野県	長野	北	2.4	26.9	6.9	10.5	-
	静岡県	静岡	南	2.0	29.4	7.4	0.0	-
	茨城県	つくば	東北東	1.6	27.4	6.1	0.0	-
	栃木県	真岡	北東	1.1	27.4	5.8	2.5	-
	群馬県	前橋	北西	1.8	29.1	5.6	2.0	-
	埼玉県	熊谷	北西	2.1	29.5	4.7	1.5	-
7/28	千葉県	千葉	北北東	2.6	28.9	7.8	0.0	-
~ 7/29	東京都	東京	北東	2.5	29.8	6.1	0.0	-
	神奈川県	横浜	東	2.5	29.6	7.2	0.0	-
	山梨県	甲府	南西	2.3	28.9	5.6	34.0	-
	長野県	長野	北西	1.9	25.9	3.8	0.0	-
	静岡県	静岡	南南東、北西	1.8	29.4	5.8	0.0	-
	茨城県	つくば	東南東	1.5	27.1	6.3	0.5	-
	栃木県	真岡	北東	1.0	27.6	5.0	0.0	-
	群馬県	前橋	東南東	2.6	29.1	6.2	2.0	-
	埼玉県	熊谷	東	2.8	29.3	5.7	0.0	-
7/29	千葉県	千葉	東南東	2.4	29.0	4.9	0.0	-
~ 7/30	東京都	東京	南南東	2.3	29.2	4.0	0.0	-
	神奈川県	横浜	南西	2.2	29.0	7.0	0.0	-
	山梨県	甲府	南西	2.4	29.4	9.2	0.0	-
	長野県	長野	北	2.4	26.6	5.5	8.5	-
	静岡県	静岡	南	1.8	29.3	6.1	0.0	-
	茨城県	つくば	東、東南東	1.5	27.7	7.5	0.0	-
	栃木県	真岡	東	0.9	26.9	4.6	0.5	-
	群馬県	前橋	東南東	2.0	29.3	6.2	0.0	-
	埼玉県	熊谷	東	2.2	29.2	6.2	0.0	-
7/30	千葉県	千葉	南東	2.5	29.7	8.3	0.0	-
~ 7/31	東京都	東京	南	2.3	29.1	3.9	0.0	-
	神奈川県	横浜	南西	2.3	29.1	8.4	0.0	-
	山梨県	甲府	北北東、南西	1.9	28.8	8.0	10.0	-
	長野県	長野	北東、北北西	1.8	27.4	8.1	0.0	-
	静岡県	静岡	南	1.5	28.9	5.2	0.0	

表 3-2-1-1 続き

測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (℃)	日照時間 (h)	降水量 (mm)	光化学スモッグ注意報 発令の有無
	茨城県	つくば	南	1.7	29.6	9.1	0.0	〇(南部地域)
	栃木県	真岡	南	1.0	29.7	11.0	0.0	-
	群馬県	前橋	東南東	2.3	31.2	11.5	0.0	-
	埼玉県	熊谷	南南東	2.0	31.2	11.0	0.0	〇(県北中部地域)
7/31	千葉県	千葉	西南西	3.6	29.9	10.2	0.0	〇(千葉地域)
~ 8/1	東京都	東京	南	2.6	30.4	11.1	0.0	-
	神奈川県	横浜	南西	2.9	29.8	11.4	0.0	-
	山梨県	甲府	南西	2.2	30.3	10.2	0.0	-
	長野県	長野	東南東	1.9	28.4	10.9	0.0	-
	静岡県	静岡	南南東、南	2.0	29.8	8.3	0.0	-
	茨城県	つくば	南	1.9	30.1	7.9	0.0	-
	栃木県	真岡	南南西	1.2	30.6	9.7	0.0	-
	群馬県	前橋	北西	2.6	30.5	10.1	0.5	-
	埼玉県	熊谷	西南西	2.0	31.1	10.0	0.0	〇(県北中部地域)
8/1	千葉県	千葉	西南西	4.0	30.4	10.7	0.0	〇(千葉地域)
~ 8/2	東京都	東京	南	2.6	30.5	7.9	0.0	-
	神奈川県	横浜	南西	3.1	30.0	10.9	0.0	-
	山梨県	甲府	西	2.3	29.4	11.6	0.0	-
	長野県	長野	北	2.2	28.2	11.8	0.0	-
	静岡県	静岡	南	1.9	29.6	8.4	0.0	-
	茨城県	つくば	南	2.0	28.7	9.3	0.0	-
	栃木県	真岡	南	1.0	27.1	8.3	0.0	-
	群馬県	前橋	北西	3.4	28.0	10.0	7.5	-
	埼玉県	熊谷	北西	2.8	28.7	9.7	0.0	-
8/2	千葉県	千葉	西南西	4.3	30.2	11.4	0.0	-
~ 8/3	東京都	東京	南南東	2.6	30.1	11.4	0.0	-
	神奈川県	横浜	南西	3.3	29.8	11.3	0.0	-
	山梨県	甲府	南西	2.4	29.9	9.4	0.0	-
	長野県	長野	北東	2.2	27.2	12.0	0.0	-
	静岡県	静岡	南	2.0	29.7	8.2	0.0	-
	茨城県	つくば	南南西	2.1	29.3	11.5	0.0	-
	栃木県	真岡	南南西	1.3	29.2	11.3	0.0	-
	群馬県	前橋	北西	2.2	30.5	10.2	0.0	-
	埼玉県	熊谷	南東、南南東	1.8	30.7	11.3	0.0	-
8/3	千葉県	千葉	西南西	4.5	30.1	12.9	0.0	-
~ 8/4	東京都	東京	南南西	3.3	30.1	12.2	0.0	-
	神奈川県	横浜	南南西	3.7	29.9	12.4	0.0	-
	山梨県	甲府	南西	2.5	29.8	7.4	0.0	-
	長野県	長野	東	1.9	26.0	8.3	0.5	-
	静岡県	静岡	南	2.1	29.4	9.0	0.0	-

表 3-2-1-1 続き

測定日	都県	気 象観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)	光化学スモッグ注意報 発令の有無
	茨城県	つくば	南南西	2.1	29.6	10.2	0.0	-
	栃木県	真岡	南南西	1.1	29.4	7.6	0.0	-
	群馬県	前橋	北西	2.0	29.8	9.5	1.5	-
	埼玉県	熊谷	南南東	2.1	30.8	9.4	0.0	〇(県北中部地域)
8/4	千葉県	千葉	西南西	5.1	30.0	12.4	0.0	-
8/5	東京都	東京	南	3.9	30.2	11.8	0.0	-
	神奈川県	横浜	南南西、南西	4.2	29.7	11.9	0.0	-
	山梨県	甲府	西	2.1	29.4	7.2	0.0	-
	長野県	長野	南西、西南西、西	2.0	28.2	11.2	0.0	-
	静岡県	静岡	南	2.0	29.2	10.5	0.0	-

3.2.2 質量濃度及び組成

- (1) 測定値の妥当性の検証
- ①イオンバランスの確認

図 3-2-2-1 に、コア期間中の各地点の各日のデータから求めた陽イオン (Na^+ 、 NH_4^+ 、 K^+ 、 Ca^{2+} 、 Mg^{2+}) 及び陰イオン (Cl^- 、 NO_3^- 、 SO_4^{2-}) それぞれの合計当量濃度の比較を示す。データの取り扱いは春季 (3.1.2 (1))と同様である。全体的に、陰イオン当量濃度合計/陽イオン当量濃度合計は $0.8\sim1.2$ に収まっていたが、富士の 8/2、湖西の 7/31 と 8/1 はこの範囲の外側に分布し、陰イオンに比べて陽イオンが多かった。

②マスクロージャーモデルによる検証

図 3-2-2-2 に、コア期間中の各地点の各日のデータから推定した質量濃度と、標準測定法による質量濃度の比較を示す。推定式とデータの取り扱いは春季 (3.1.2(1)) と同様である。全体としては、標準測定法による質量濃度に対する推定質量濃度の比は概ね $0.8\sim1.2$ となっていたが、前橋の 7/28、綾瀬の 7/28、7/29、7/30、8/1、8/2、多摩の 7/28 は 0.7 未満となっていた。

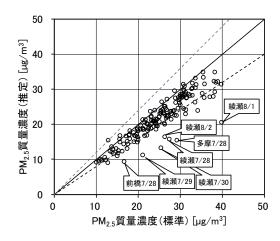


図 3-2-2-1 イオンバランス

図 3-2-2-2 マスクロージャーモデル

(2)季節平均濃度と組成の分布

図 3-2-2-3 に、コア期間中の各地点の PM2.5 平均濃度を地図に示す。また、一部の地点については、 $PM_{2.5}$ 主要成分(イオン成分、炭素成分)の組成を円グラフに示す。PM2.5 平均濃度は、関東甲信静地域の北部に位置する前橋と長野、および南部の房総半島(外房)に位置しバックグラウンド地点とされる勝浦を除き、 $20\mu g/m^3$ 以上となっており、全体的に濃度が高めとなっていたが、中でも関東平野南部から静岡県にかけての沿岸部で相対的に高くなっていた。主要成分組成は、全体的に SO_4^2 -が高くなっており、PM2.5 濃度が高い関東平野南部から静岡県の地点では SO_4^2 -の割合が若干高めの傾向がみられた。一方、土浦、真岡、鴻巣、甲府などの内陸部では、OC の割合が高い傾向がみられた。 NO_3 -と CI-については、夏季で気温が高いため、濃度は非常に低かった。なお、綾瀬については、前項で示したマスクロージャーモデルによる検証結果でも表れているように、PM2.5 濃度に占める主要成分の割合がコア期間の平均で S-1 割程度となっていた。

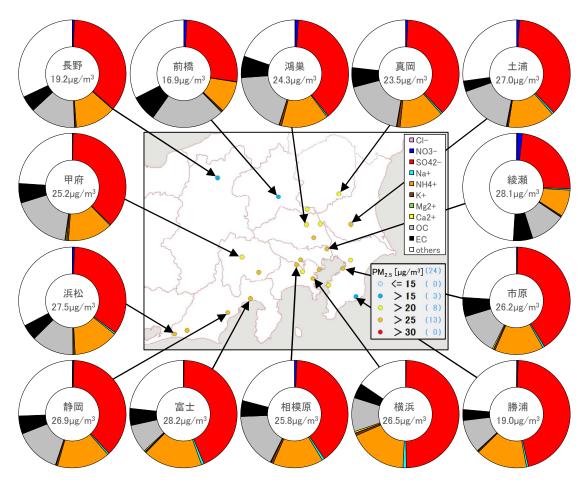


図 3-2-2-3 PM2.5 平均濃度(地図)と PM2.5 主要成分組成(円グラフ)

3.2.3 水溶性イオン成分濃度

図 3-2-3-1 に、コア期間中の SO_4^2 -および SO_2 の平均濃度分布を示す。 SO_2 は東京湾周辺で高い傾向がみられるが、 SO_4^2 -が高い地点はそれと同じとは限らず、関東平野南部から静岡県にかけての沿岸部で高く、また、群馬県や長野県を除く内陸部でも比較的高かった。特に高かったのは横浜($13.1\mu g/m^3$)、湖西($12.6\mu g/m^3$)、川崎($12.5\mu g/m^3$)、富士($12.3\mu g/m^3$)であった。

図 3-2-3-2 に、コア期間中の NO_3 :および NOx の平均濃度分布を示す。NOx は東京・神奈川・千葉・埼玉の 1 都 3 県を中心に高い傾向だが、 NO_3 :は、夏季で高温のためガスー粒子平衡がガスへ偏って粒子になりにくいため、すべて $1\mu g/m^3$ 以下と低かった。図 3-2-3-3 に、コア期間中の Cl:の平均濃度分布を示す。Cl:も NO_3 :と同様に、夏季で高温のためガスー粒子平衡がガスへ偏って粒子になりにくいため、すべて $0.1\mu g/m^3$ 以下と低かった。

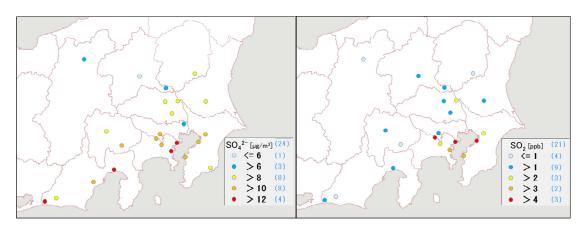


図 3-2-3-1 SO₄²⁻ (左) および SO₂ (右) の平均濃度分布

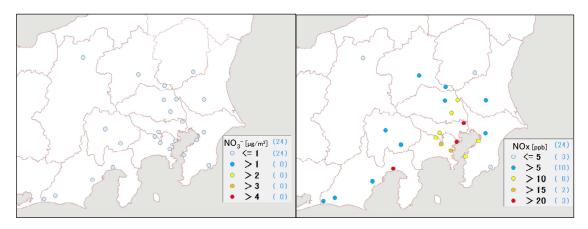


図 3-2-3-2 NO₃ (左) および NOx (右) の平均濃度分布

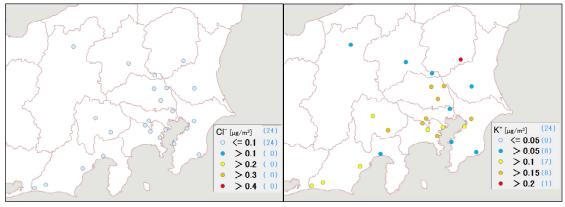


図 3-2-3-3 Cl-の平均濃度分布

図 3-2-3-4 K⁺の平均濃度分布

3.2.4 炭素成分濃度

図 3-2-4-1 に、コア期間中の EC および OC の平均濃度分布を示す。EC はすべての地点で $2\mu g/m^3$ 以下であり、地域的な濃度差はみられなかった。OC は内陸部で高い傾向がみられ、館林で $5.2\mu g/m^3$ であったほか、 $4\sim 5\mu g/m^3$ の地点も 8 地点と多かった。図 3-2-4-2 に、コア期間中の WSOC および Ox の平均濃度分布、図 3-2-4-3 に TC に占める OC の割合 (OC/TC) および OC に占める WSOC の割合 (WSOC/OC) の分布を示す。WSOC については、内陸部で相対的に高い傾向がみられるが、WSOC/OC が 80%を超える地点が半数を

占めており、特に大和 (101%)、吉田 (112%)では 100%を超え、真岡 (91%)、甲府 (94%)、静岡 (96%)でも 100%近くとなった。OC/TC は内陸部を中心に 70%以上となっていたが、全体的には顕著な傾向はみられなかった。また、OC や WSOC、OC/TC を Ox の分布と比較すると、OC が高い地点では Ox が高い傾向がみられたが、WSOC と OC/TC については必ずしも傾向が類似してはいなかった。図 3-2-4-4 に、コア期間中の NMHC の平均濃度分布を示す。NMHC は市原、大和、幸手で高かったが、いずれも OC の濃度は中程度であった。図 3-2-4-5 に OC と Ox および OC と NMHC の関係を示す。OC と Ox は正の相関がみられ、光化学二次生成の寄与が示唆される。ただし、湖西をはじめ、前橋、浜松、多摩、富士、横浜、長野については、Ox が高くても OC は相対的に低いため、これらの地点ではOC の光化学二次生成が少なかったことが示唆される。一方、OC と NMHC には明確な関係はみられなかった。図 3-2-4-6 に OC と K^+ および WSOC と K^+ の関係を示す。OC と K^+ は、土浦・前橋・館林および多摩・横浜は全体の傾向からやや外れているが、正の相関がみられる。また、WSOC と K^+ も、ばらつきはあるが概ね正の相関がみられる。

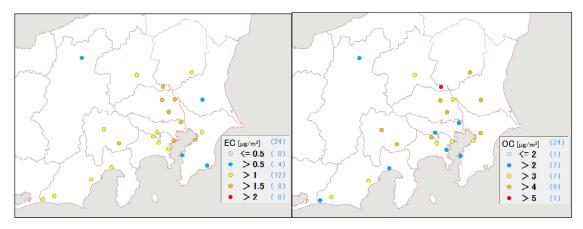


図 3-2-4-1 EC (左) および OC (右) の平均濃度分布

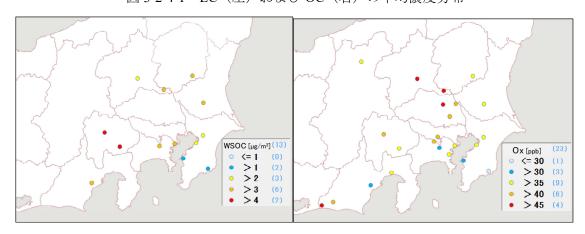


図 3-2-4-2 WSOC (左) および Ox (右) の平均濃度分布

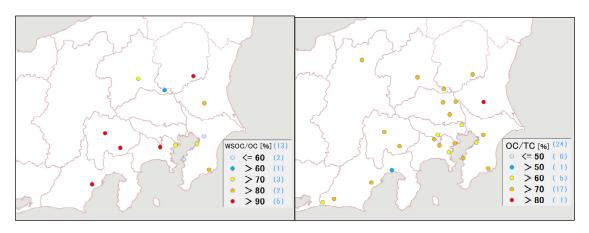


図 3-2-4-3 WSOC/OC (左) および OC/TC (右) の平均分布

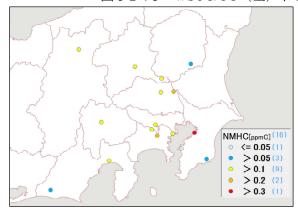


図 3-2-4-4 NMHC の平均濃度分布



図 3-2-4-5 OC と Ox (左) および OC と NMHC (右) の関係

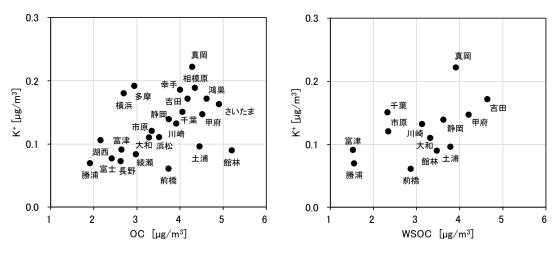


図 3-2-4-6 OC と K+ (左) および WSOC と K+ (右) の関係

3.2.5 無機元素濃度

図 3-2-5-1~14 に、コア期間中のナトリウム (Na)、アルミニウム (Al)、カリウム (K)、カルシウム (Ca)、バナジウム (V)、クロム (Cr)、マンガン (Mn)、鉄 (Fe)、ニッケル (Ni)、銅 (Cu)、亜鉛 (Zn)、ヒ素 (As)、セレン (Se)、鉛 (Pb) の平均濃度分布をそれ ぞれ示す。Na については沿岸部で高い傾向がみられ、海塩粒子の影響であると考えられる。 V についても沿岸部で高い傾向がみられ、船舶等の影響であることが推測される。また、 Cr、Mn、Fe、Pb は沿岸部や都市部などで相対的に高い傾向がみられ、工業活動や都市活動との関連が示唆される。なお、大和の Cu は平均濃度が 68ng/m³ と特異的に高かった。8/1 の 290ng/m³ が突出して高かったが、それを除いても平均値は 31 ng/m³ とほかの地点に比べ て高かった。

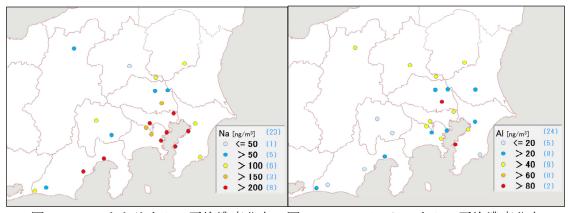


図 3-2-5-1 ナトリウムの平均濃度分布 図 3-2-5-2 アルミニウムの平均濃度分布

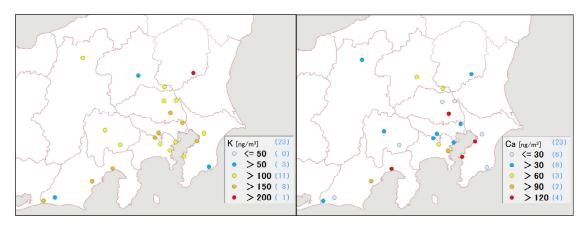


図 3-2-5-3 カリウムの平均濃度分布

図 3-2-5-4 カルシウムの平均濃度分布

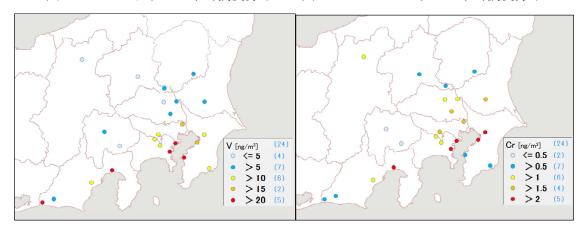


図 3-2-5-5 バナジウムの平均濃度分布

図 3-2-5-6 クロムの平均濃度分布

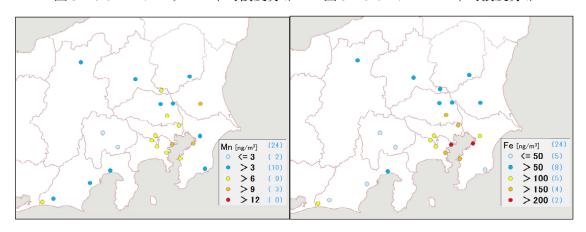


図 3-2-5-7 マンガンの平均濃度分布

図 3-2-5-8 鉄の平均濃度分布

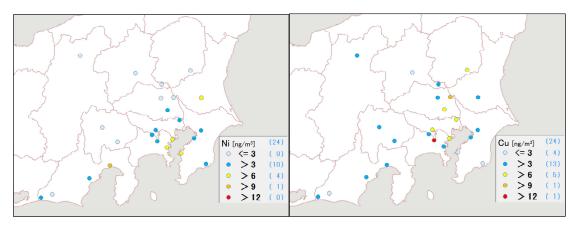


図 3-2-5-9 ニッケルの平均濃度分布

図 3-2-5-10 銅の平均濃度分布

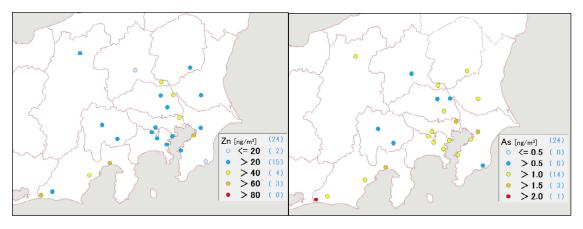


図 3-2-5-11 亜鉛の平均濃度分布

図 3-2-5-12 ヒ素の平均濃度分布

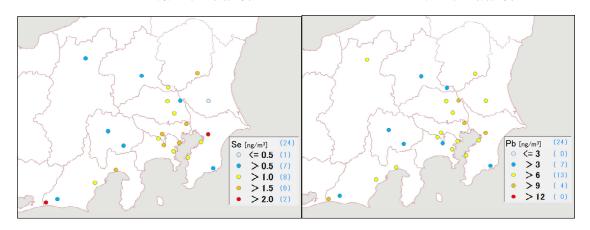


図 3-2-5-13 セレンの平均濃度分布

図 3-2-5-14 鉛の平均濃度分布

3.2.6 ガス成分濃度

フィルターパック法 (以下「FP 法」) により二次生成粒子のガス状前駆物質である SO_2 、 HNO_3 、HCl、 NH_3 およびエアロゾル成分である SO_4 ²、 NO_3 ⁻、Cl-、 NH_4 ⁺の測定を行った。調査は 1 都 7 県の計 8 自治体が参加した。FP 法の詳細については資料編を参照。

解析にあたっては、海塩の影響を受けやすく、SO₂ などの発生源も多い沿岸部(市原、 綾瀬、富士)と、首都圏等からの移流が懸念される内陸部(土浦、前橋、鴻巣、甲府、長 野)に分けて比較を行った。なお、本文中のガス状成分濃度はフィルターパックの F1-F3 に捕集された成分の合計濃度を、エアロゾル成分は F0 に捕集された成分の濃度を用いた。ただし、FP 法では分級を行っていないため、F0 は粗大粒子も含めた全粒子となる。また、粒子化率は、F0-F3 に捕集された各成分の合計濃度中の F0 における濃度の割合として求めた。図 3-2-6-1 から図 3-2-6-4 に、各地点のガス状成分の濃度、エアロゾル成分の濃度、粒子化率の平均値を示す。

 SO_2 は沿岸部の市原と綾瀬で高い傾向が見られた。沿岸部に位置する SO_2 発生源(工業地帯や船舶等)の影響を受けているものと考えられる。 SO_4 2 は市原で高いが、そのほかの地点ではあまり濃度差がなかった。粒子化率は、沿岸部に比べて内陸部で高い傾向にあった。

HNO3 は市原と鴻巣で高く、NO3 も同様であった。粒子化率については富士など沿岸部でやや高い傾向にあった。例年、粒子化率は沿岸部で高い傾向が見られるが、本年度はその傾向が明確ではなかった。一般に、沿岸部で粒子化率が高くなるのは、海塩粒子と HNO3 との反応によって粒子態である NaNO3 が増加し、逆に内陸部で粒子化率が低下するのは、HNO3 と反応する海塩粒子が少なく、NH3 と反応して NH4NO3 を形成したとしても、平衡反応により大部分がガス態に解離してしまうためと考えられる。図 3-2-6-5 に各地点の全硝酸(HNO3+NO3)濃度、NO2 濃度(常時監視データ)、および粗大粒子領域の Na+濃度を示す。粗大粒子領域の Na+濃度は F0 における Na+濃度から PM2.5 の Na+濃度を差し引いて求めた。全硝酸は市原と鴻巣で高かったが、NO2 はさほど高くなかった。また、NO2 濃度が高かった綾瀬の全硝酸は市原の半分以下だった。一方、粗大粒子領域の Na+は市原、富士、鴻巣で高かった。このため、市原や鴻巣では NO3 が高く、また、富士では全硝酸は低いものの粒子化率は比較的高かったと考えられる。

HCI は市原で顕著に高かった。CI は沿岸部の市原、富士で相対的に高かった。CI は海塩中に多く含まれ、海塩のクローリンロスから HCI が発生するほか、廃棄物焼却など人為起源の発生源からも HCI や CI が発生する。沿岸部で CI が高くなった要因の一つとして、海塩の影響が大きいことが考えられる。粒子化率については沿岸部の富士で高かった(長野も高いが、HCI が 0 であり、CI も非常に低い)。市原では海塩は多いものの HNO $_3$ や SO_2 が高かったため、クローリンロスが卓越したものと考えられる。内陸部では海塩粒子が少ないこと、また、鴻巣では HNO $_3$ が高くクローリンロスが進行したことで粒子化率が低かったと考えられる。

 NH_3 は前橋、市原、綾瀬で高い傾向にあった。 NH_3 の主な排出源は畜産や肥料、自動車等が考えられるが、前橋は前者が主である可能性が考えられる。粒子化率については、主要な対イオンである SO_4 2-の粒子化率と類似した傾向だが、前橋については過剰に NH_3 が存在するため、それよりも低かった。

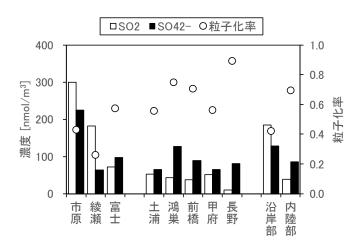


図 3-2-6-1 SO₂、SO₄²⁻の濃度および粒子化率の平均値

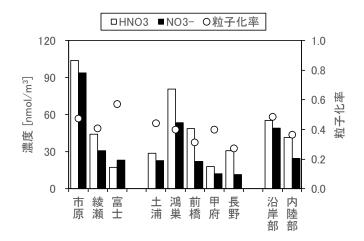


図 3-2-6-2 HNO₃、NO₃-の濃度および粒子化率の平均値

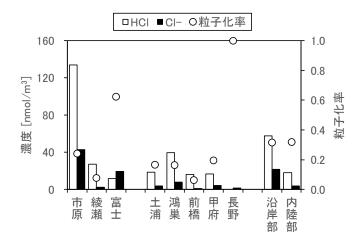


図 3-2-6-3 HCl、Cl-の濃度および粒子化率の平均値

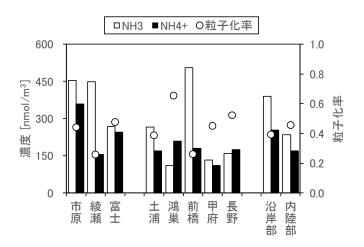


図 3-2-6-4 NH₃、NH₄+の濃度および粒子化率の平均値

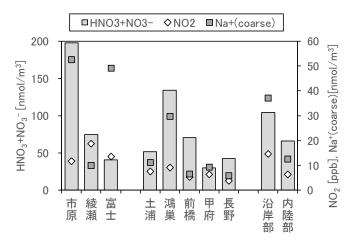


図 3-2-6-5 全硝酸、NO2、粗大粒子領域の Na+の濃度の平均値

3.3 秋季(相模原市,長野県)

3.3 秋季

3.3.1 気象概況

秋季調査期間中の関東甲信地方及び東海地方の平均気温及び日照時間はどちらも平年と 比較して平均気温は高い日が多く、日照時間は長かった。

11月2日に真岡及び東京でやや強い雨 (1時間雨量 10mm 以上~20mm 未満)が降った。表 3-3-1-1に調査期間中の観測値を示す。

表 3-3-1-1 秋季調査期間の各気象観測所の観測値

	1	Ţ		1	1		
測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)
	茨城県	つくば	東北東、北西	2.0	14.3	6.7	0.0
	栃木県	真岡	北東、東北東、東南東	0.9	13.6	3.5	0.0
	群馬県	前橋	東南東	2.2	15.8	4.7	0.0
	埼玉県	熊谷	東南東、南	1.6	15.6	3.6	0.0
10/21	千葉県	千葉	北北東	2.6	17.5	8.6	0.0
10/22	東京都	東京	北東	1.9	16.7	5.3	0.0
	神奈川県	横浜	北	2.1	17.5	8.1	0.0
	山梨県	甲府	南西	1.7	17.3	8.9	0.0
	長野県	長野	西南西	2.3	15.7	7.9	0.0
	静岡県	静岡	西北西	2.1	18.9	9.7	0.0
	茨城県	つくば	東北東	2.5	16.5	3.4	0.0
	栃木県	真岡	北北東	1.2	15.9	2.6	0.0
	群馬県	前橋	東南東	2.4	17.2	4.7	0.0
	埼玉県	熊谷	東南東	2.2	17.6	4.9	0.0
10/22	千葉県	千葉	北東	3.9	18.0	5.1	0.0
10/23	東京都	東京	北北東、東北東	2.6	17.9	4.0	0.0
	神奈川県	横浜	北	3.2	18.4	5.8	0.0
	山梨県	甲府	南西	1.9	19.4	6.6	0.0
	長野県	長野	東	2.3	13.9	5.3	0.0
	静岡県	静岡	北北東	2.2	20.3	7.8	0.0
	茨城県	つくば	東、北西	1.6	16.3	3.9	0.0
	栃木県	真岡	東南東	0.8	16.1	4.8	0.0
	群馬県	前橋	北西	1.7	16.4	5.7	0.0
	埼玉県	熊谷	北西	1.3	17.5	3.5	0.0
10/23	千葉県	千葉	北東	2.0	17.9	3.4	0.0
10/24	東京都	東京	南東	1.7	18.0	2.4	0.0
	神奈川県	横浜	北	1.8	18.5	4.4	0.0
	山梨県	甲府	西南西	1.6	18.0	2.7	0.0
	長野県	長野	南東	1.4	14.4	8.9	0.0
	静岡県	静岡	西北西	1.7	19.3	8.4	0.0

表 3-3-1-1 続き

測定日	都県	気 象観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)
	茨城県	つくば	北西	2.5	17.1	9.5	0.0
	栃木県	真岡	北北東	1.1	16.5	9.0	0.0
	群馬県	前橋	北西、北北西	3.9	17.3	9.7	0.0
	埼玉県	熊谷	北西	3.5	18.1	10.0	0.0
10/24	千葉県	千葉	南西、北西	6.2	19.4	9.8	0.0
10/25	東京都	東京	北北西	4.3	18.6	9.2	0.0
	神奈川県	横浜	北	5.9	19.3	10.2	0.0
	山梨県	甲府	西北西	2.8	17.9	10.1	0.0
	長野県	長野	東北東、北	3.9	14.6	9.4	1.5
	静岡県	静岡	南西	2.0	19.3	9.1	0.0
	茨城県	つくば	西北西	2.5	11.3	10.6	0.0
	栃木県	真岡	東北東、東南東	0.7	10.4	10.3	0.0
	群馬県	前橋	西北西、北北西	4.7	13.2	10.2	0.0
	埼玉県	熊谷	西北西	5.6	14.3	10.6	0.0
10/25	千葉県	千葉	北西	5.6	15.6	10.3	0.0
10/26	東京都	東京	北西	4.7	15.2	10.0	0.0
	神奈川県	横浜	北	5.0	15.4	8.6	0.0
	山梨県	甲府	北西	3.1	12.7	10.2	0.0
	長野県	長野	北北東	2.7	9.1	9.8	0.0
	静岡県	静岡	北西	1.6	17.3	8.3	0.0
	茨城県	つくば	東北東	1.4	12.2	10.0	0.0
	栃木県	真岡	北東	0.8	11.9	9.8	0.0
	群馬県	前橋	北西	2.6	14.4	9.4	0.0
	埼玉県	熊谷	西	1.9	14.8	9.8	0.0
10/26	千葉県	千葉	南南東	2.3	16.9	9.8	0.0
10/27	東京都	東京	南	2.1	15.6	9.5	0.0
	神奈川県	横浜	南南西、北	2.3	16.5	9.7	0.0
	山梨県	甲府	南西	1.1	13.6	9.5	0.0
	長野県	長野	東	2.0	11.4	9.6	0.0
	静岡県	静岡	北西	2.0	17.6	6.0	0.0
	茨城県	つくば	北東	2.7	18.1	5.7	0.5
	栃木県	真岡	北東、東北東	2.1	17.6	5.1	0.5
	群馬県	前橋	北北西	3.7	18.3	4.4	0.0
	埼玉県	熊谷	西北西	2.1	18.9	3.4	3.0
10/28	千葉県	千葉	北北東	3.9	19.9	7.1	0.0
10/29	東京都	東京	北北東	2.8	19.8	5.3	0.0
	神奈川県	横浜	北北東、北	2.9	19.9	6.3	3.5
	山梨県	甲府	西北西	2.5	19.1	6.6	0.0
	長野県	長野	東北東	2.7	12.6	3.5	0.0
	静岡県	静岡	北東、東北東	1.7	21.0	8.0	0.0

表 3-3-1-1 続き

測定日	都県	気 象	最多風向	平均風速	平均気温	日照時間	降水量
別足口	和朱	観測所	取多風凹	(m/s)	(°C)	(h)	(mm)
	茨城県	つくば	東南東	1.3	14.7	2.5	0.0
	栃木県	真岡	北東	0.6	14.7	3.2	0.0
	群馬県	前橋	北西	2.8	15.7	6.9	0.0
	埼玉県	熊谷	西北西	2.1	16.1	2.9	0.0
10/29	千葉県	千葉	北東	1.9	17.3	2.0	0.0
10/30	東京都	東京	南南東、北西	2.0	17.0	1.3	0.0
	神奈川県	横浜	北	2.3	17.4	3.2	0.0
	山梨県	甲府	南西	1.6	15.6	5.3	0.0
	長野県	長野	北北東、北	1.9	11.2	6.7	0.0
	静岡県	静岡	南南東	1.8	17.7	6.2	0.0
	茨城県	つくば	北東	2.1	15.0	5.8	0.0
	栃木県	真岡	北東	1.8	13.6	4.9	0.0
	群馬県	前橋	北西	3.6	14.6	5.9	0.0
	埼玉県	熊谷	北西	2.2	15.8	6.9	0.0
10/30 ~	千葉県	千葉	北東	2.9	17.2	4.6	0.0
10/31	東京都	東京	北東	2.3	16.4	5.4	0.0
	神奈川県	横浜	北	2.4	17.2	5.4	0.0
	山梨県	甲府	北北西	2.0	14.3	8.2	0.0
	長野県	長野	東南東	2.3	10.1	7.0	0.0
	静岡県	静岡	西南西	2.8	17.5	5.7	0.0
	茨城県	つくば	北東	1.9	10.5	5.0	0.0
	栃木県	真岡	北北東	1.0	9.4	3.8	0.0
	群馬県	前橋	西北西	2.2	11.2	6.7	0.0
	埼玉県	熊谷	北西	1.7	11.4	3.9	0.0
10/31 ~	千葉県	千葉	北北東	3.2	13.4	3.9	0.0
11/1	東京都	東京	北北東	2.3	13.2	4.4	0.0
	神奈川県	横浜	北北東	2.6	13.9	3.5	0.0
	山梨県	甲府	西北西	1.7	11.9	7.2	0.0
	長野県	長野	北北東	2.1	6.9	8.0	0.0
	静岡県	静岡	北北東	2.0	14.5	5.0	0.0
	茨城県	つくば	北北西	1.7	11.9	5.5	20.5
	栃木県	真岡	北東	0.9	10.8	6.0	20.5
	群馬県	前橋	北西	2.3	12.5	5.7	7.0
	埼玉県	熊谷	北西	1.7	12.6	5.2	17.5
11/1	千葉県	千葉	東、北	2.7	14.5	4.7	19.0
11/2	東京都	東京	北西、北北西	2.1	13.3	5.3	28.5
	神奈川県	横浜	北	3.0	14.0	4.3	25.0
	山梨県	甲府	南	1.3	12.5	4.5	15.0
	長野県	長野	南西	2.4	10.5	5.3	9.5
	静岡県	静岡	北北西	2.0	15.3	5.3	17.5

表 3-3-1-1 続き

測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (℃)	日照時間 (h)	降水量 (mm)
	茨城県	つくば	北西	1.8	12.8	0.2	23.5
	栃木県	真岡	北北東	0.5	11.5	0.0	19.0
	群馬県	前橋	西北西、北西	2.7	12.3	3.5	6.5
	埼玉県	熊谷	北西	1.9	12.5	3.3	12.0
11/2	千葉県	千葉	北西	3.4	14.3	2.7	5.5
11/3	東京都	東京	北北西	2.2	13.6	2.2	9.5
	神奈川県	横浜	北	3.1	14.3	2.6	5.0
	山梨県	甲府	南東、西南西	1.4	11.4	1.1	5.0
	長野県	長野	北東、東、東南東、北	1.1	9.5	1.6	6.5
	静岡県	静岡	西北西	1.2	15.0	3.3	1.0
	茨城県	つくば	北西	1.3	12.3	9.0	0.0
	栃木県	真岡	北東	1.0	11.3	8.2	0.0
	群馬県	前橋	北北西	3.8	13.2	9.9	0.0
	埼玉県	熊谷	北西	3.0	14.2	10.2	0.0
11/3	千葉県	千葉	北	2.2	15.9	9.5	0.0
11/4	東京都	東京	北北西	2.6	15.4	9.8	0.0
	神奈川県	横浜	北	3.6	16.3	9.9	0.0
	山梨県	甲府	西北西	1.9	12.6	9.8	0.0
	長野県	長野	北東	2.4	9.5	6.1	0.0
	静岡県	静岡	北北西	1.6	16.2	10.1	0.0

3.3 秋季

3.3.1 気象概況

(相模原市の担当)

3.3.2 質量濃度及び組成

(1) 測定値の妥当性の検証

①イオンバランスの確認

図 3-3-2-1 に、コア期間中の各地点の各日のデータから求めた陽イオン (Na^+ 、 NH_4^+ 、 K^+ 、 Ca^{2+} 、 Mg^{2+}) 及び陰イオン ($C\Gamma$ 、 NO_3^- 、 SO_4^{2-}) それぞれの合計当量濃度の比較を示す。データの取り扱いは春季 (3.1.2 (1))と同様である。陰イオン当量濃度合計/陽イオン当量濃度合計は、概ね $0.8\sim1.2$ に収まっていたが、吉田の 10/27、湖西の 10/31、浜松の 10/27、10/28、10/30、10/31 は 0.7 未満で、陰イオンに比べて陽イオンが多かった。また、勝浦の 10/26 は 1.3 を超えていて、陽イオンに比べて陰イオンが多かった。

②マスクロージャーモデルによる検証

図 3-3-2-2 に、コア期間中の各地点の各日のデータから推定した質量濃度と、標準測定法による質量濃度の比較を示す。推定式とデータの取り扱いは春季(3.1.2(1))と同様である。

全体としては、標準測定法による質量濃度に対する推定質量濃度の比は概ね $0.8\sim1.2$ となっていたが、勝浦の 10/27、幸手の 10/28、富津の 10/30 は 0.7 未満となっていた。また、幸手の 10/29 は 1.3 を超えていた。

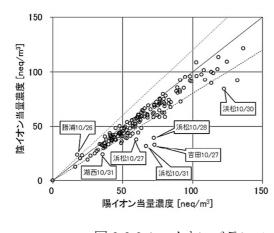


図 3-3-2-1 イオンバランス

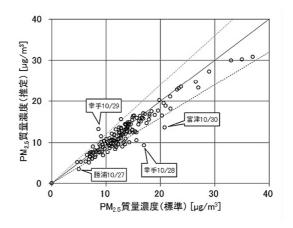


図 3-3-2-2 マスクロージャーモデル

(2)季節平均濃度と組成の分布

図 3-3-2-3 に、コア期間中の各地点の PM2.5 平均濃度を地図に示す。また、一部の地点については、PM2.5 主要成分(イオン成分、炭素成分)の組成を円グラフに示す。PM2.5 平均濃度は、関東平野の北部に位置する館林、鴻巣、幸手、さいたま、および関東甲信静地域の南西部に位置する浜松の 5 地点は 15µg/m³以上であったが、それ以外の 19 地点は

15μg/m³ 未満となっており、全体的に濃度が低めとなっていた。主要成分組成は、全体的 に OC の割合が高い傾向がみられ、1 地点を除き OC の割合が最も高かった。なお、浜松 については、主要成分の占める割合が他の地点と比較して低く、5 割程度となっていた。

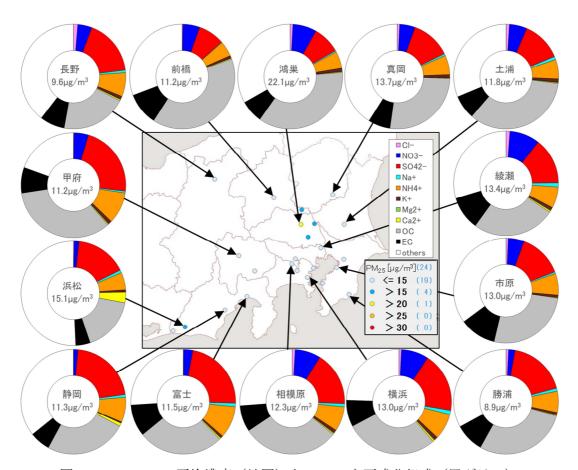


図 3-3-2-3 PM2.5 平均濃度(地図)と PM2.5 主要成分組成(円グラフ)

3.3.3 水溶性イオン成分濃度

図 3-3-3-1 に、コア期間中の SO_4^2 -および SO_2 の平均濃度分布を示す。 SO_4^2 -は神奈川県、山梨県、静岡県で高めであったが、 SO_2 は東京湾周辺で高い傾向がみられ、 SO_4^2 と SO_2 で傾向が異なっていた。

図 3-3-3-2 に、コア期間中の NO_3 および NOx の平均濃度分布を示す。 NO_3 と NOx のいずれも東京・神奈川・千葉・埼玉の 1 都 3 県を中心に高い傾向であった。図 3-3-3-3 に、コア期間中の CI の平均濃度分布を示す。CI はすべて $0.2\mu g/m^3$ 未満と低かった。図 3-3-3-4 に、コア期間中の K^+ の平均濃度分布を示す。 K^+ は埼玉県で高く、埼玉県の周辺の都県と神奈川県、山梨県でやや高かった。

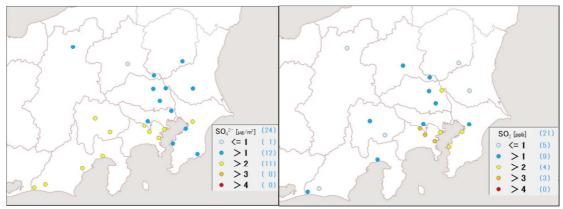


図 3-3-3-1 SO₄²⁻ (左) および SO₂ (右) の平均濃度分布

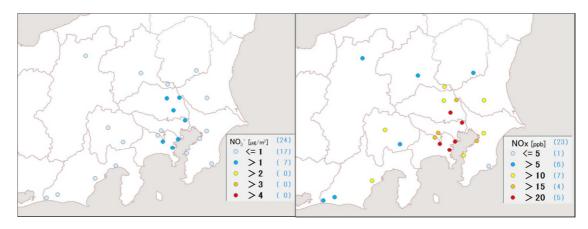


図 3-3-3-2 NO₃ (左) および NOx (右) の平均濃度分布

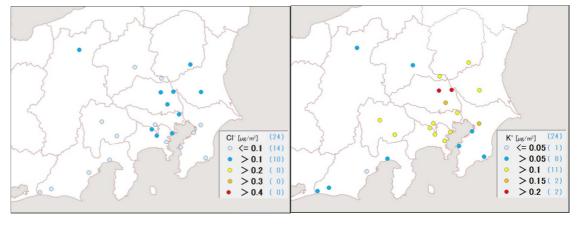


図 3-3-3-3 CI の平均濃度分布

図 3-3-3-4 K⁺の平均濃度分布

3.3.4 炭素成分濃度

図 3-3-4-1 に、コア期間中の EC および OC の平均濃度分布を示す。EC はすべての地点で $2\mu g/m^3$ 以下と低かったが、東京・神奈川・千葉・埼玉・群馬の 1 都 4 県でやや高かった。 OC は東京湾岸から関東の内陸部で高い傾向がみられ、 $4\mu g/m^3$ を超えた地点も 8 地点と多かった。特に高かったのは鴻巣($8.0\mu g/m^3$)、館林($7.3\mu g/m^3$)、幸手($6.5\mu g/m^3$)、さいたま($5.8\mu g/m^3$)の 4 地点であり、この 4 地点は、PM2.5 濃度も $15\mu g/m^3$ 以上と他の地点と比べて高かった。図 3-3-4-2 に、コア期間中の WSOC および Ox の平均濃度分布、図 3-3-4-3

に TC に占める OC の割合(OC/TC)および OC に占める WSOC の割合(WSOC/OC)の分布を示す。WSOC については、地域的な濃度差はみられず、WSOC/OC も地域的な傾向はみられなかった。OC/TC は概ね 70%以上となっていたが、全体的には顕著な傾向はみられなかった。また、OC や WSOC、OC/TC を Ox の分布と比較したが、Ox と OC、WSOC、OC/TC の間に相関はみられなかった。図 3-3-4-4 に、コア期間中の NMHC の平均濃度分布を示す。東京湾岸から神奈川県、山梨県、静岡県東部、埼玉県、群馬県東部で若干高い傾向がみられた。図 3-3-4-5 に、OC と Ox および OC と NMHC の関係を示す。OC と Ox には明確な関係はみられず、光化学二次生成による大きな寄与は認められなかった。また、OC と NMHC に関しても明確な関係はみられなかった。図 3-3-4-6 に、OC と K⁺および WSOC と K⁺の関係を示す。OC と K⁺には正の相関がみられ、また、千葉を除くと WSOC と K⁺には正の相関がみられ、植物質燃焼との関連が示唆される。(以下、入れるか要検討)図 3-3-4-7 に、char-EC と K⁺の関係を示す。char-EC と K⁺には正の相関がみられ、植物質燃焼との関連が示唆される。

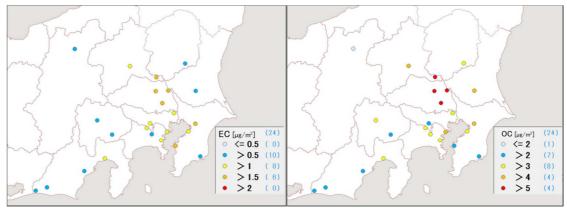


図 3-3-4-1 EC(左) および OC(右) の平均濃度分布

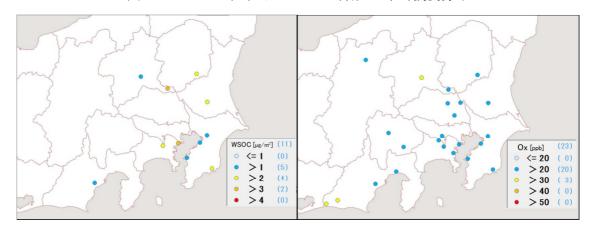


図 3-3-4-2 WSOC (左) および Ox (右) の平均濃度分布

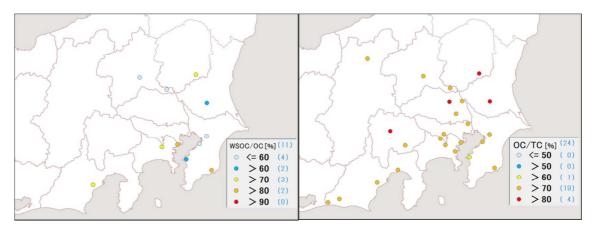


図 3-3-4-3 WSOC/OC (左) および OC/TC (右) の平均分布

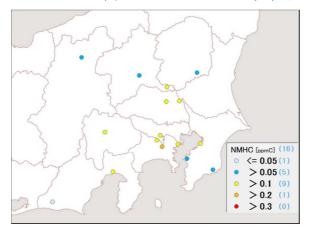


図 3-3-4-4 NMHC の平均濃度分布

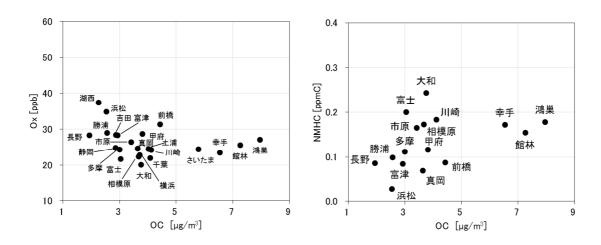


図 3-3-4-5 OC と Ox (左) および OC と NMHC (右) の関係

図 3-3-4-6 OC と K⁺ (左) および WSOC と K⁺ (右) の関係

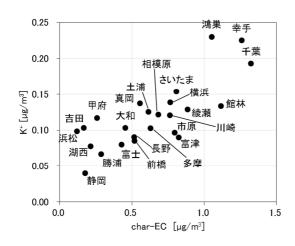


図 3-3-4-7 char-EC と K⁺の関係 (入れるか要検討)

3.3.5 無機元素濃度

図 3-3-5-1~14 に、コア期間中のナトリウム (Na)、アルミニウム (Al)、カリウム (K)、カルシウム (Ca)、バナジウム (V)、クロム (Cr)、マンガン (Mn)、鉄 (Fe)、ニッケル (Ni)、銅 (Cu)、亜鉛 (Zn)、ヒ素 (As)、セレン (Se)、鉛 (Pb) の平均濃度分布をそれ ぞれ示す。Na については沿岸部で高い傾向がみられ、海塩粒子の影響であると考えられる。 V についても沿岸部で高い傾向がみられ、石油燃焼起源 (船舶等) であることが推測される。また、Cr、Mn、Fe、Pb は沿岸部や都市部などで相対的に高い傾向がみられ、工業活動や都市活動との関連が示唆される。

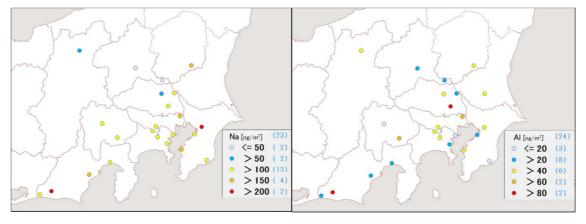


図 3-3-5-1 ナトリウムの平均濃度分布

図 3-3-5-2 アルミニウムの平均濃度分布

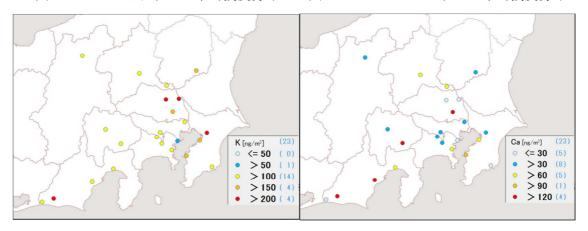


図 3-3-5-3 カリウムの平均濃度分布

図 3-3-5-4 カルシウムの平均濃度分布

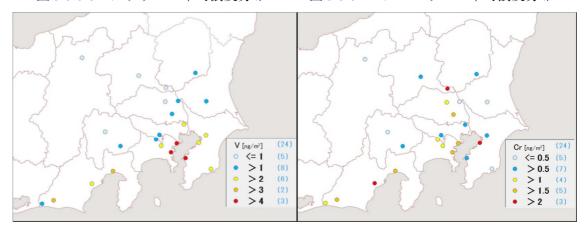


図 3-3-5-5 バナジウムの平均濃度分布

図 3-3-5-6 クロムの平均濃度分布

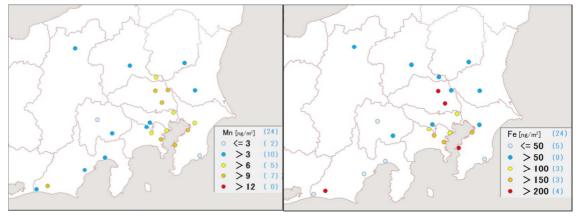


図 3-3-5-7 マンガンの平均濃度分布

図 3-3-5-8 鉄の平均濃度分布

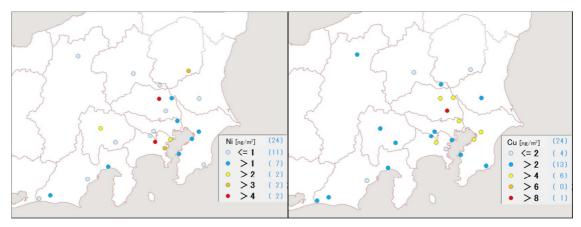


図 3-3-5-9 ニッケルの平均濃度分布

図 3-3-5-10 銅の平均濃度分布

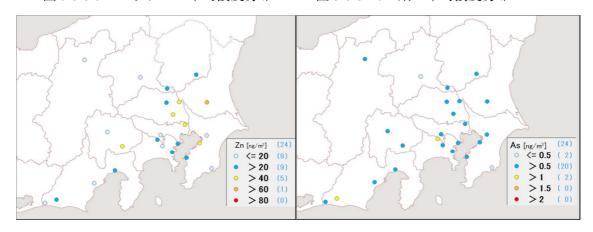


図 3-3-5-11 亜鉛の平均濃度分布

図 3-3-5-12 ヒ素の平均濃度分布

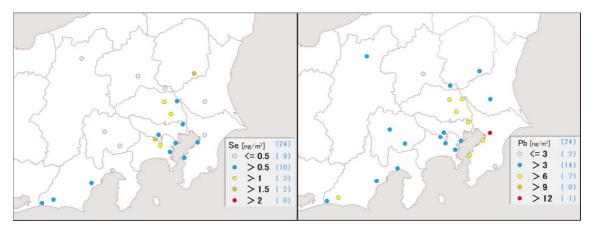


図 3-3-5-13 セレンの平均濃度分布

図 3-3-5-14 鉛の平均濃度分布

3.4 冬季

3.4.1 気象概況

冬季調査期間中の関東甲信地方及び東海地方の平均気温及び日照時間について、前半は どちらも平年と比較して平均気温は低く、日照時間は長い日が多かった。後半はどちらも 平年と比較して平均気温は高く、日照時間は短い日が多かった。

1月29日に静岡でやや強い雨(1時間雨量10mm以上~20mm未満)が降った。 表 3-4-1-1に調査期間中の観測値を示す。

表 3-4-1-1 冬季調査期間の各気象観測所の観測値

衣 3-4-1-1 冬学調宜期间の台気系観測所の観測値									
測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (℃)	日照時間 (h)	降水量 (mm)		
	茨城県	つくば	西北西	2.5	1.5	9.7	0.0		
	栃木県	真岡	北東	1.3	0.8	7.0	0.0		
	群馬県	前橋	北西	3.3	0.6	6.0	3.5		
	埼玉県	熊谷	西北西	4.3	2.6	9.4	0.0		
1/20	千葉県	千葉	北西	7.1	5.9	9.6	0.0		
1/21	東京都	東京	北西	3.7	4.8	9.3	0.0		
	神奈川県	横浜	北	3.6	5.7	7.5	0.0		
	山梨県	甲府	北北西	3.3	1.0	8.8	0.0		
	長野県	長野	東、西南西	1.5	-2.1	1.1	9.5		
	静岡県	静岡	北西	2.3	5.4	9.6	0.0		
	茨城県	つくば	西北西	2.4	3.4	8.3	0.0		
	栃木県	真岡	北東	0.8	1.2	7.0	0.0		
	群馬県	前橋	北北西	3.2	2.5	6.4	0.0		
	埼玉県	熊谷	西北西	3.9	4.1	8.0	0.0		
1/21	千葉県	千葉	北北西	3.5	6.5	6.3	0.0		
1/22	東京都	東京	北西	3.1	5.9	7.0	0.0		
	神奈川県	横浜	北	3.8	6.4	6.9	0.0		
	山梨県	甲府	北西	1.1	1.9	8.2	0.0		
	長野県	長野	北北東、東北東	1.4	-1.9	5.5	0.0		
	静岡県	静岡	北西	1.1	6.4	7.4	0.0		
	茨城県	つくば	北西	2.5	3.0	6.6	0.0		
	栃木県	真岡	北	0.8	0.4	5.3	0.0		
	群馬県	前橋	北北西	3.4	2.2	7.7	0.0		
	埼玉県	熊谷	西北西	4.1	3.6	7.0	0.0		
1/22	千葉県	千葉	北北西	3.2	5.6	6.4	0.0		
1/23	東京都	東京	北北西	3.1	5.3	5.8	0.0		
	神奈川県	横浜	北	3.8	5.8	6.4	0.0		
	山梨県	甲府	北西	2.2	2.3	6.5	0.0		
	長野県	長野	東北東	1.9	-2.6	3.6	0.0		
	静岡県	静岡	北北西	1.8	6.9	6.4	0.0		

表 3-4-1-1 続き

			双0111	· ·			
測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)
	茨城県	つくば	西北西	2.1	2.1	2.3	0.0
	栃木県	真岡	北北東、東	1.0	0.6	1.7	1.5
	群馬県	前橋	北西	3.2	1.5	6.7	0.0
	埼玉県	熊谷	西北西	2.5	2.7	6.6	0.0
1/23	千葉県	千葉	北北西	2.6	3.7	1.1	0.0
1/24	東京都	東京	北西	2.1	3.6	2.4	0.0
	神奈川県	横浜	北	2.6	4.5	2.9	0.0
	山梨県	甲府	西北西	1.6	1.2	2.3	0.0
	長野県	長野	西南西	1.8	-1.6	3.3	0.0
	静岡県	静岡	北西	2.4	5.0	2.8	0.5
	茨城県	つくば	西北西	4.6	1.4	9.9	0.0
	栃木県	真岡	西南西、西	2.0	-1.1	9.7	0.0
	群馬県	前橋	北西	4.0	-0.4	8.8	0.0
	埼玉県	熊谷	西北西	5.1	1.7	9.8	0.0
1/24	千葉県	千葉	北西	6.1	3.5	9.5	0.0
1/25	東京都	東京	北西	3.7	2.4	9.6	0.0
	神奈川県	横浜	西北西	3.9	2.8	8.8	0.0
	山梨県	甲府	北北西	4.3	-1.7	8.1	0.0
	長野県	長野	西南西	2.7	-5.1	3.9	0.5
	静岡県	静岡	西	4.0	0.9	9.6	0.0
	茨城県	つくば	西	2.7	0.3	9.9	0.0
	栃木県	真岡	東北東、西南西	1.0	-1.3	8.1	0.0
	群馬県	前橋	北西	3.7	0.7	9.4	0.0
	埼玉県	熊谷	西北西	3.7	2.0	9.8	0.0
1/25	千葉県	千葉	北北西	2.9	4.0	9.6	0.0
1/26	東京都	東京	北西	2.6	3.4	9.6	0.0
	神奈川県	横浜	北	2.4	4.0	9.6	0.0
	山梨県	甲府	北北西	2.1	-1.1	9.4	0.0
	長野県	長野	西	1.6	-4.6	8.5	0.0
	静岡県	静岡	西北西	1.5	2.8	9.7	0.0
	茨城県	つくば	西北西	2.0	1.4	9.3	0.0
	栃木県	真岡	北東	0.9	0.3	9.9	0.0
	群馬県	前橋	北西	2.9	2.7	10.0	0.0
	埼玉県	熊谷	西北西	1.9	3.1	9.8	0.0
1/26 ~	千葉県	千葉	北北西	2.4	5.3	6.7	0.0
1/27	東京都	東京	北西	1.8	4.5	8.5	0.0
	神奈川県	横浜	西	2.3	5.4	9.2	0.0
	山梨県	甲府	南、南西	1.0	-0.1	9.5	0.0
	長野県	長野	西南西	1.3	-2.5	9.2	0.0
	静岡県	静岡	北西	1.6	4.2	9.8	0.0

表 3-4-1-1 続き

衣 3-4-1-1 続き									
測定日	都県	気 象 観測所	最多風向	平均風速 (m/s)	平均気温 (°C)	日照時間 (h)	降水量 (mm)		
	茨城県	つくば	西、西北西	2.1	4.3	9.9	0.0		
	栃木県	真岡	東	0.9	2.3	9.7	0.0		
	群馬県	前橋	西北西	3.1	5.3	8.7	0.0		
	埼玉県	熊谷	西北西	2.5	6.4	9.7	0.0		
1/27	千葉県	千葉	西南西、北北西	2.1	7.4	9.8	0.0		
~ 1/28	東京都	東京	北西	2.3	7.4	9.4	0.0		
	神奈川県	横浜	北	2.2	8.3	9.7	0.0		
	山梨県	甲府	南南東	1.0	1.8	9.5	0.0		
	長野県	長野	北北東、東	1.3	-0.3	9.3	0.0		
	静岡県	静岡	北西	1.5	6.1	9.4	0.0		
	茨城県	つくば	北東、東北東、南東	1.9	6.7	6.7	0.0		
	栃木県	真岡	北東	1.1	5.5	6.6	0.0		
	群馬県	前橋	北北西、北	2.4	7.4	0.1	0.0		
	埼玉県	熊谷	西	2.2	8.2	6.7	0.0		
1/28	千葉県	千葉	北北東	1.9	9.0	6.6	0.0		
~ 1/29	東京都	東京	西、北	1.8	8.5	6.7	0.0		
	神奈川県	横浜	北	2.4	9.0	6.8	0.0		
	山梨県	甲府	南	0.9	5.1	6.4	1.0		
	長野県	長野	東南東	1.4	2.2	6.4	1.5		
	静岡県	静岡	西北西	1.4	8.7	6.7	9.0		
	茨城県	つくば	北東	3.0	2.6	0.0	17.5		
	栃木県	真岡	東北東	2.3	1.5	0.0	19.0		
	群馬県	前橋	北北西	1.1	2.5	0.0	19.5		
	埼玉県	熊谷	北西	1.7	2.9	0.0	12.0		
1/29	千葉県	千葉	北北東、北北西	3.8	4.0	0.0	18.5		
1/30	東京都	東京	北北東	3.3	3.6	0.0	15.0		
	神奈川県	横浜	北北東	4.5	4.1	0.0	24.5		
	山梨県	甲府	南南東	0.8	4.4	0.0	19.5		
	長野県	長野	東	1.5	-0.1	0.0	19.5		
	静岡県	静岡	北東	3.6	7.2	0.0	69.0		
	茨城県	つくば	北北東	1.4	2.8	3.1	0.0		
	栃木県	真岡	北北東、東北東	0.6	0.6	0.0	0.0		
	群馬県	前橋	西南西、西、西北西	1.3	3.1	2.8	0.0		
	埼玉県	熊谷	北東	1.2	3.6	3.1	0.0		
1/30	千葉県	千葉	北	2.2	4.5	2.0	0.0		
1/31	東京都	東京	北北東	1.6	4.1	1.7	0.0		
	神奈川県	横浜	北	2.5	4.8	0.0	0.0		
	山梨県	甲府	南東	1.4	4.9	2.3	0.0		
	長野県	長野	北	1.4	-0.7	0.5	0.0		
	静岡県	静岡	北北東	2.4	7.1	0.1	0.0		

表 3-4-1-1 続き

別定日 都県 気線測所 最多風向 平均風速 平均気温 日照時間 降水量 (mm) (mm)								
横赤県県 真岡 北北東 1.2 2.6 6.6 0.0 0.0 2.7 5.6 6.8 0.0 0.0 5.5 6.7 0.0 0.	測定日	都県		最多風向				
群馬県 前橋 北北東 2.7 5.6 6.8 0.0		茨城県	つくば	北北東、北東	1.6	4.7	6.7	0.0
特玉県 熊谷 西北西 2.1 5.9 6.7 0.0		栃木県	真岡	北北東	1.2	2.6	6.6	0.0
1/31		群馬県	前橋	北北西	2.7	5.6	6.8	0.0
大東京都 東京 北北東、北 2.0 6.2 3.4 0.0 1.5 1.		埼玉県	熊谷	西北西	2.1	5.9	6.7	0.0
神奈川県 横浜 北北東、北 2.9 6.8 1.1 0.0 山梨県 甲府	1/31	千葉県	千葉	北北東	2.3	6.6	1.9	0.0
山梨県 長野県 長野 神岡県 神岡県 神岡県 神岡県 神岡県 神岡県 神岡県 神田県 神田県 神田県 神田県 神田県 神田県 神田県 神田県 神田県 神田	2/1	東京都	東京	北	2.0	6.2	3.4	0.0
長野県 長野 東 2.2 1.0 5.9 0.0		神奈川県	横浜	北北東、北	2.9	6.8	1.1	0.0
静岡県 静岡 南 1.7 7.4 4.3 0.0		山梨県	甲府	南南西	1.5	4.5	6.7	1.5
茨城県 つくば ※		長野県	長野	東	2.2	1.0	5.9	0.0
横木県 真岡 東北東 0.8 1.7 3.8 0.0 2.9 3.7 5.8 0.0 6.5 5.8 0.0 6.5 7.6 0.0 7.5 7.3 0.0 7.5 7.6 0.0 7.5 7.5 7.6 0.0 7.5 7.5 7.5 7.5 0.0 7.5		静岡県	静岡	南	1.7	7.4	4.3	0.0
2/1 計無県 前橋 西北西 2.9 3.7 5.8 0.0 2/1 千葉県 千葉 北北西 2.9 4.5 4.6 0.0 2/2 千葉県 千葉 北北西 2.5 4.7 1.6 0.5 東京都 東京 北北西 2.2 4.7 2.2 0.0 神奈川県 横浜 北 3.3 5.0 1.7 0.0 山梨県 甲府 東、南南東 1.3 2.7 1.8 0.5 長野県 長野 北北東 2.4 -1.4 1.5 0.0 大地東 2.2 7.0 1.8 0.0 大城県 つくば 北西 2.2 2.9 9.9 0.0 大城県 東京県 東北東 1.0 0.6 9.7 0.0 大田県県 前橋 北 3.2 3.2 8.9 0.0 大田県県 東京県 西北西 4.3 4.4 9.8 0.0 2/2 千葉県 千葉県 千葉 北北西 2.9 5.7 7.3 0.0 本会川県 東京都 東京都 北北西 3.3 5.7 7.6 0.0 大田県 東京都 東京都 北北西 3.2 7.6 </td <td></td> <td>茨城県</td> <td>つくば</td> <td>*</td> <td>1.4</td> <td>2.6</td> <td>2.4</td> <td>0.0</td>		茨城県	つくば	*	1.4	2.6	2.4	0.0
15 15 15 15 15 15 15 15		栃木県	真岡	東北東	0.8	1.7	3.8	0.0
2/1 千葉県 千葉県 北北西 2.5 4.7 1.6 0.5 2/2 東京都 東京 北北西 2.2 4.7 2.2 0.0 神奈川県 横浜 山梨県 甲府 長野県 長野 北北東 1.3 北北東 2.7 1.8 0.5 長野県 長野 北北東 2.4 -1.4 1.5 0.0 藤岡県 静岡 北東 2.2 7.0 1.8 0.0 茨城県 つくば 北西 真岡 東北東 1.0 0.6 9.7 0.0 横浜 東島県 前橋 北 3.2 3.2 8.9 0.0 埼玉県 熊谷 西北西 4.3 4.4 9.8 0.0 2/2 〒葉県 千葉 北北西 2.9 5.7 7.3 0.0 東京都 東京 北北西 3.3 5.7 7.6 0.0 神奈川県 横浜 北 4.0 6.0 6.7 0.0 山梨県 甲府 西北西 東、東南東 2.1 -2.4 4.5 0.0		群馬県	前橋	西	2.9	3.7	5.8	0.0
2/2 東京都 東京 北北西 2.2 4.7 2.2 0.0 神奈川県 横浜 山梨県 甲府 東、南南東 1.3 九 1.7 0.0		埼玉県	熊谷	西北西	2.9	4.5	4.6	0.0
神奈川県 横浜 北 3.3 5.0 1.7 0.0 山梨県 甲府 東、南南東 1.3 2.7 1.8 0.5 長野県 長野 北北東 2.4 -1.4 1.5 0.0 静岡県 静岡 北東 2.2 7.0 1.8 0.0 茨城県 つくば 北西 2.2 2.9 9.9 0.0 栃木県 真岡 東北東 1.0 0.6 9.7 0.0 群馬県 前橋 北 3.2 3.2 8.9 0.0 埼玉県 熊谷 西北西 4.3 4.4 9.8 0.0 千葉県 千葉 北北西 2.9 5.7 7.3 0.0 東京都 東京 北北西 3.3 5.7 7.6 0.0 神奈川県 横浜 北 4.0 6.0 6.7 0.0 山梨県 甲府 西北西 2.6 3.2 7.6 0.0 長野県 長野 東、東南東 2.1 -2.4 4.5 0.0	2/1	千葉県	千葉	北北西	2.5	4.7	1.6	0.5
山梨県 甲府 東、南南東 1.3 2.7 1.8 0.5 長野県 長野 北北東 2.4 -1.4 1.5 0.0 静岡県 静岡 北東 2.2 7.0 1.8 0.0 茨城県 つくば 北西 2.2 2.9 9.9 0.0 栃木県 真岡 東北東 1.0 0.6 9.7 0.0 群馬県 前橋 北 3.2 3.2 8.9 0.0 埼玉県 熊谷 西北西 4.3 4.4 9.8 0.0 「千葉県 千葉 北北西 2.9 5.7 7.3 0.0 東京都 東京 北北西 3.3 5.7 7.6 0.0 神奈川県 横浜 北 4.0 6.0 6.7 0.0 山梨県 甲府 西北西 2.6 3.2 7.6 0.0 長野県 長野 東、東南東 2.1 -2.4 4.5 0.0	2/2	東京都	東京	北北西	2.2	4.7	2.2	0.0
長野県 長野 北北東 2.4 -1.4 1.5 0.0 1.8 0.0 辞岡県 静岡 北東 2.2 7.0 1.8 0.0 茨城県 つくば 北西 2.2 2.9 9.9 0.0 栃木県 真岡 東北東 1.0 0.6 9.7 0.0 群馬県 前橋 北 3.2 3.2 8.9 0.0 埼玉県 熊谷 西北西 4.3 4.4 9.8 0.0 千葉県 千葉 北北西 2.9 5.7 7.3 0.0 東京都 東京 北北西 3.3 5.7 7.6 0.0 神奈川県 横浜 北 4.0 6.0 6.7 0.0 山梨県 甲府 西北西 2.6 3.2 7.6 0.0 長野県 長野 東、東南東 2.1 -2.4 4.5 0.0		神奈川県	横浜	北	3.3	5.0	1.7	0.0
静岡県 静岡 北東 2.2 7.0 1.8 0.0 茨城県 つくば 北西 2.2 2.9 9.9 0.0 栃木県 真岡 東北東 1.0 0.6 9.7 0.0 群馬県 前橋 北 3.2 3.2 8.9 0.0 埼玉県 熊谷 西北西 4.3 4.4 9.8 0.0 千葉県 千葉 北北西 2.9 5.7 7.3 0.0 東京都 東京 北北西 3.3 5.7 7.6 0.0 神奈川県 横浜 北 4.0 6.0 6.7 0.0 長野県 長野 東、東南東 2.1 -2.4 4.5 0.0		山梨県	甲府	東、南南東	1.3	2.7	1.8	0.5
茨城県 つくば 北西		長野県	長野	北北東	2.4	-1.4	1.5	0.0
振木県 真岡 東北東 1.0 0.6 9.7 0.0 1		静岡県	静岡	北東	2.2	7.0	1.8	0.0
群馬県 前橋 坊玉県 熊谷 西北西		茨城県	つくば	北西	2.2	2.9	9.9	0.0
2/2 持玉県 熊谷 西北西 4.3 4.4 9.8 0.0		栃木県	真岡	東北東	1.0	0.6	9.7	0.0
2/2 千葉県 千葉 北北西 2.9 5.7 7.3 0.0 東京都 東京 北北西 3.3 5.7 7.6 0.0 神奈川県 横浜 北 4.0 6.0 6.7 0.0 山梨県 甲府 西北西 2.6 3.2 7.6 0.0 長野県 長野 東、東南東 2.1 -2.4 4.5 0.0		群馬県	前橋	北	3.2	3.2	8.9	0.0
2/3 東京都 東京 北北西 3.3 5.7 7.6 0.0 神奈川県 横浜 北 4.0 6.0 6.7 0.0 山梨県 甲府 西北西 2.6 3.2 7.6 0.0 長野県 長野 東、東南東 2.1 -2.4 4.5 0.0		埼玉県	熊谷	西北西	4.3	4.4	9.8	0.0
神奈川県 神奈川県 山梨県 横浜 甲府 西北西 4.0 6.0 6.7 0.0 長野県 長野 東、東南東 2.6 3.2 7.6 0.0	2/2	千葉県	千葉	北北西	2.9	5.7	7.3	0.0
山梨県 甲府 西北西 2.6 3.2 7.6 0.0 長野県 長野 東、東南東 2.1 -2.4 4.5 0.0	2/3	東京都	東京	北北西	3.3	5.7	7.6	0.0
長野県 長野 東、東南東 2.1 -2.4 4.5 0.0		神奈川県	横浜	北	4.0	6.0	6.7	0.0
		山梨県	甲府	西北西	2.6	3.2	7.6	0.0
静岡県 静岡 西北西、北北西 1.9 6.5 6.4 0.0		長野県	長野	東、東南東	2.1	-2.4	4.5	0.0
		静岡県	静岡	西北西、北北西	1.9	6.5	6.4	0.0

※:北北東、東北東、東、東南東、南南東、南、西、北西、北北西

3.4.2 質量濃度及び組成

- (1) 測定値の妥当性の検証
- ①イオンバランスの確認

図 3-4-2-1 に、コア期間中の各地点の各日のデータから求めた陽イオン $(Na^+,NH_4^+,K^+,Ca^{2+},Mg^{2+})$ 及び陰イオン (Cl^-,NO_3^-,SO_4^{2-}) それぞれの合計当量濃度の比較を示す。データの取り扱いは春季 $(3.1.2\ (1))$ と同様である。全体的に、陰イオン当量濃度合計/陽イオン当量濃度合計は概ね $0.8\sim1.2$ に収まっていたが、全 167 データ中、18 データがこの範囲の外側に分布していた。中でも吉田の 1/27、富士の 1/26、29、湖西の 1/30 の 4 データは 0.7 未満で、陰イオンに比べて陽イオンが多かった。また、幸手の 1/25 は 1.3 を超えており、陽イオンに比べて陰イオンが多かった。

②マスクロージャーモデルによる検証

図 3-4-2-2 に、コア期間中の各地点の各日のデータから推定した質量濃度と、標準測定法による質量濃度の比較を示す。推定式とデータの取り扱いは春季(3.1.2

(1)) と同様である。全体としては、標準測定法による質量濃度に対する推定質量濃度の比は概ね $0.8\sim1.2$ となっていたが、綾瀬の 1/31、勝浦の 1/31 は 0.7 未満となっていた。

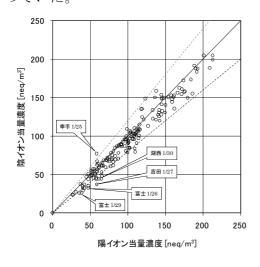


図 3-4-2-1 イオンバランス

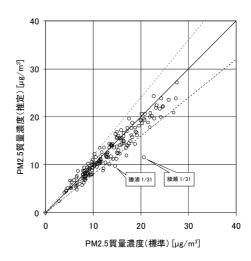


図 3-4-2-2 マスクロージャーモデル

(2)季節平均濃度と組成の分布

図 3-4-2-3 に、コア期間中の各地点の PM2.5 平均濃度を地図に示す。また、一部の地点については、PM2.5 主要成分(イオン成分、炭素成分)の組成を円グラフに示す。 PM2.5 平均濃度は、房総半島(外房)に位置しバックグラウンド地点とされる勝浦を除いた関東の中部及び東部地域では $15\mu g/m^3$ 以上となったが、全体的に濃度は低めであった。主要成分組成は、全体的に NO_3 、 SO_4 ²⁻、 NH_4 +の3つのイオン比率が拮抗する傾向となっており、甲府を除いた前橋から長野、静岡にわたる西寄

りの地点では SO_4^{2-} の割合が若干高めの傾向が見られ、勝浦と市原を除いた関東の中部及び東部地域では、 NO_3 の割合が高い傾向が見られた。OC と EC については、地域的な傾向は見られなかった。

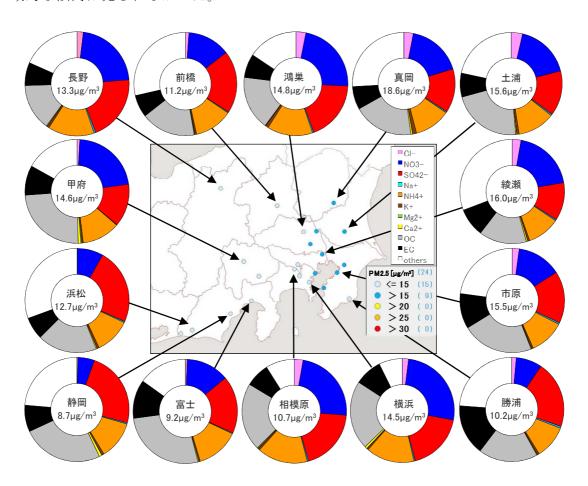


図 3-4-2-3 PM2.5 平均濃度(地図)と PM2.5 主要成分組成(円グラフ)

3.4.3 水溶性イオン成分濃度

図 3-4-3-1 に、コア期間中の SO_4^{2-} および SO_2 の平均濃度分布を示す。 SO_2 は東京湾周辺と甲府でやや高い傾向が見られるが、 SO_4^{2-} は比較的濃度が低く、 SO_2 の分布とは異なっていた。

図 3-4-3-2 に、コア期間中の NO_3 および NOx の平均濃度分布を示す。NOx は前橋、勝浦、吉田、静岡を除いた地点で全体的に高い傾向で、 NO_3 は、関東の中部及び東部地域と甲府、長野等の内陸部でやや高く、前橋、吉田、静岡県、千葉県南部ではやや低い傾向が見られ、概ね NOx の傾向と類似した分布となった。図 3-4-3-3 に、コア期間中の Cl の平均濃度分布を示す。Cl は、低温になる冬季には粒子成分として捕捉されやすく、勝浦、多摩、相模原、横浜を除いた関東の中部及び東部地域の地点で $0.3\mu g/m^3$ より高くなり、PM2.5 平均濃度と類似した分布となった。(以下、入れるか要検討)図 3-4-3-4 に、コア期間中の K^+ の平均濃度分布を示す。 K^+ は真岡

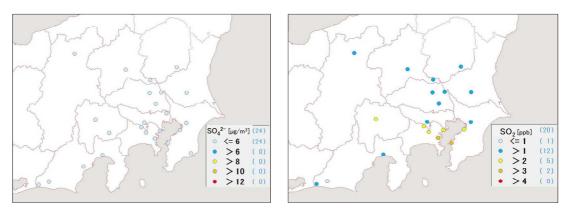


図 3-4-3-1 SO₄²⁻ (左) および SO₂ (右) の平均濃度分布

図 3-4-3-2 NO₃ (左) および NOx (右) の平均濃度分布

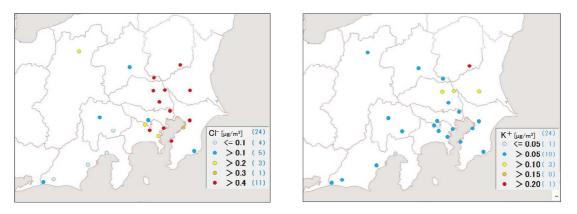


図 3-4-3-3 Cl の平均濃度分布 図 3-4-3-4 K⁺の平均濃度分布(入れるか要検討)

3.4.4 炭素成分濃度

図 3-4-4-1 に、コア期間中の EC および OC の平均濃度分布を示す。EC は前橋、多摩、相模原を除いた関東地方と甲府及び富士で中程度の濃度となったが、その中で千葉の 4 地点は何れも $1.5\mu g/m^3$ より高い濃度であった。OC は東京湾周辺や真岡、土浦、さいたま、甲府で $3\mu g/m^3$ 以上となったが、全体的に濃度差は小さかった。図

3-4-4-2 に、コア期間中の WSOC および Ox の平均濃度分布、図 3-4-4-3 に TC に占める OC の割合(OC/TC)および OC に占める WSOC の割合(WSOC/OC)の分布を示す。WSOC については、真岡や東京湾周辺の富津、川崎で $2\mu g/m^3$ 以上となったが、全体的に濃度差は小さく、WSOC/OC についても 80%を超える地点は無かった。Ox も全地点で $35\mu g/m^3$ 未満であり、濃度差は小さかった。OC/TC は勝浦を除いた地点で $60\%\sim80\%$ の範囲に収まり、比率の差は小さく、全体的に顕著な傾向は見られなかった。図 3-4-4-4 に、コア期間中の NMHC の平均濃度分布を示す。NMHC は川崎、市原、大和、甲府、富士で高かったが、いずれも OC の濃度は中程度であった。図 3-4-4-5 に OC と Ox および OC と NMHC の関係を示す。OC と Ox の関係では真岡を除いた多くの地点が軸に近い円弧状の分布を示し、OC と Ox には関係が認められないため、冬季については光化学二次生成の寄与は小さいことが示唆された。一方 OC と NMHC の関係では、右上がりの分布となったが明確な関係はみられなかった。(以下、入れるか要検討)図 3-4-4-6 に、OC と K^+ および WSOC と K^+ の関係を示す。OC と K^+ ともに明確な関係はみられなかった。

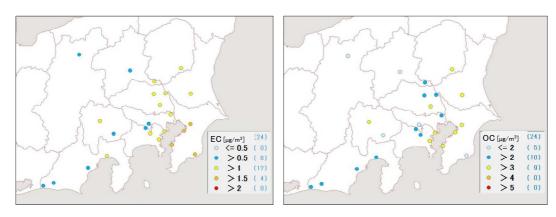


図 3-4-4-1 EC(左) および OC(右) の平均濃度分布

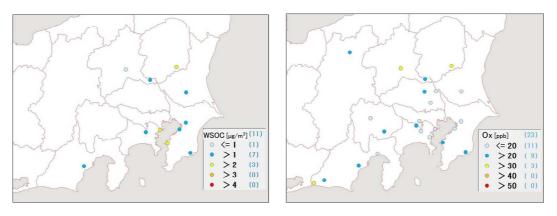


図 3-4-4-2 WSOC(左) および Ox(右) の平均濃度分布

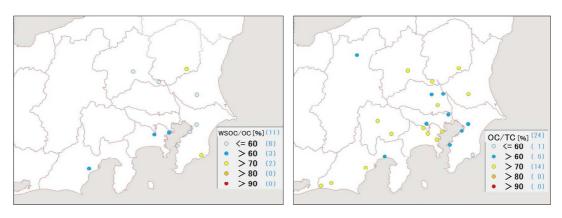


図 3-4-4-3 WSOC/OC(左) および OC/TC(右)の平均分布

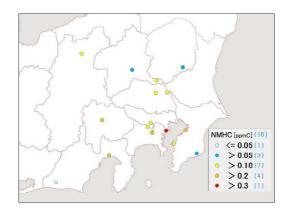


図 3-4-4-4 NMHC の平均濃度分布

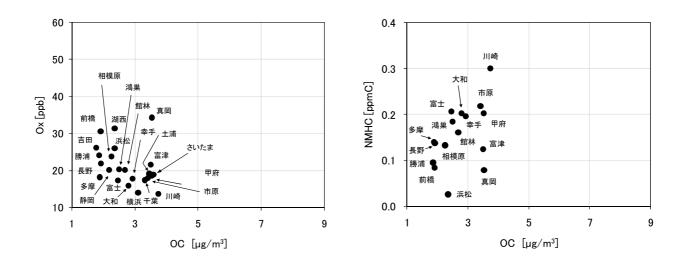


図 3-4-4-5 OC と Ox (左) および OC と NMHC (右) の関係

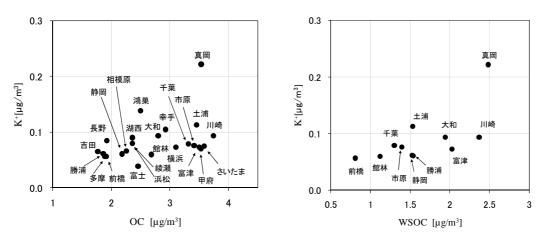


図 3-4-4-6 OC と K+(左) および WSOC と K+(右)の関係(入れるか要検討)

3.4.5 無機元素濃度

図 $3-4-5-1\sim14$ に、コア期間中のナトリウム(Na)、アルミニウム(AI)、カリウム(K)、カルシウム(Ca)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ヒ素(As)、セレン(Se)、鉛(Pb)の平均濃度分布をそれぞれ示す。Cr、Mn、Fe、Zn、Pb は沿岸部や都市部などで相対的に高い傾向が見られ、工業活動や都市活動との関連が示唆される。Na、K、V、As は地域的な差は小さく顕著な傾向は見られなかった。Cu については、大和と土浦が高かったが、大和は 1/25 の 200ng/m³ が突出して高く、同様の現象が春季にも見られた。また、AI、Ca、Ni については、AI で土浦とさいたまが、Ca で富津と湖西が、Ni で土浦がいずれも高い結果であったが、地域的な傾向は見られなかった。Se については、神奈川県の 4 地点と鴻巣で中程度以上の濃度となった。

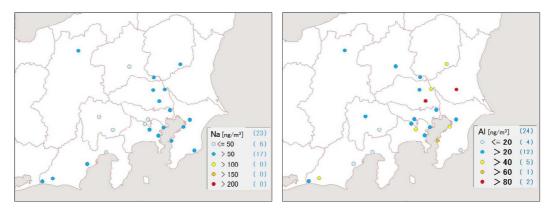
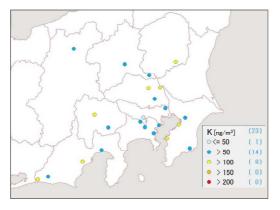



図 3-4-5-1 ナトリウムの平均濃度分布 図 3-4-5-2 アルミニウムの平均濃度分布

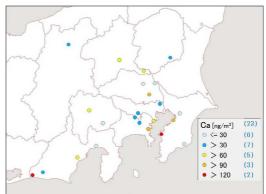


図 3-4-5-3 カリウムの平均濃度分布

図 3-4-5-4 カルシウムの平均濃度分布

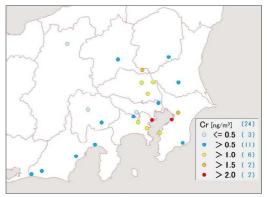
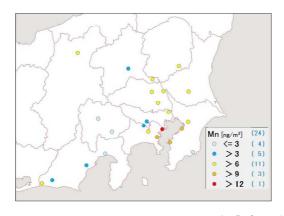



図 3-4-5-5 バナジウムの平均濃度分布

図 3-4-5-6 クロムの平均濃度分布

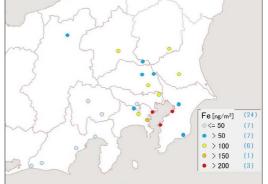


図 3-4-5-7 マンガンの平均濃度分布

図 3-4-5-8 鉄の平均濃度分布

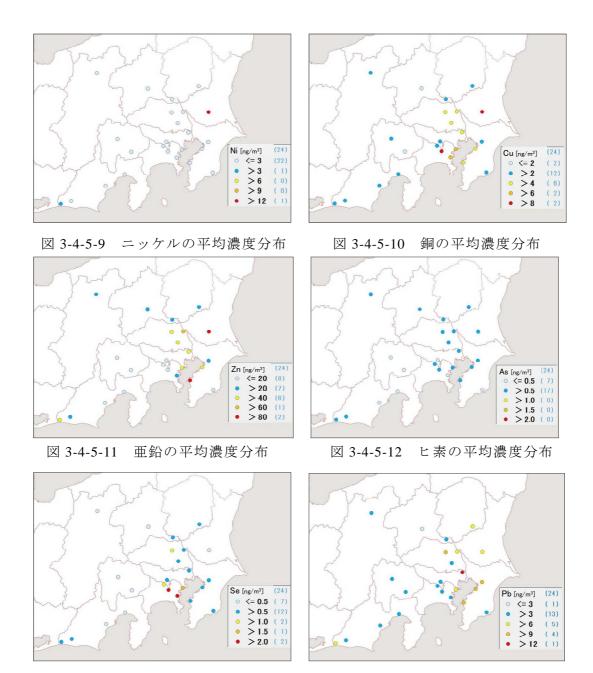


図 3-4-5-13 セレンの平均濃度分布

図 3-4-5-14 鉛の平均濃度分布

3.5 四季の比較

コア期間における各季節の PM2.5 平均濃度の全体的な傾向は、夏季>春季>冬季>秋季であった。特に、夏季は、期間平均濃度が $25\mu g/m^3$ を超過した地点が 24 地点中 13 地点となっていた。一方、秋季は 24 地点中 19 地点が $15\mu g/m^3$ 未満となっていた。主要成分組成については、夏季は $(NH_4)_2SO_4$ が $5\sim6$ 割程度を占めている地点が多く、春季も夏季ほどではないが $(NH_4)_2SO_4$ が $2\sim3$ 割程度となり、夏季・春季に比べて割合は下がるが、 NH_4NO_3 の割合が他の季節に比べて大きく、 $2\sim3$ 割程度を占めていた。また、秋季は、PM2.5 濃度が低いものの、OC の割合が他の季節より大きく、 $3\sim4$ 割程度を占めていた。

 SO_4^2 -について四季を通してみると、東京湾岸から静岡県にかけての沿岸部で相対的に高い分布となる傾向であったが、前駆体である SO_2 の分布とは必ずしも同じ傾向ではなかった。このため、地域内での移流・生成、および広域的な移流が複合的に影響していることが考えられる。 NO_3 -については、濃度が低い春季・夏季を除いて秋季・冬季についてみると、神奈川県・東京都・埼玉県で相対的に高い傾向であり、前駆体である NOx の分布とも概ね同じ傾向であった。このため、都市部における燃焼発生源が寄与し、地域内で生成したものによる影響が大きいと考えられる。CI-についても、濃度が低い春季・夏季を除いて秋季・冬季についてみると、神奈川県・東京都・埼玉県・茨城県・栃木県といった平野部全般で高い傾向であった。

EC については、神奈川県東部・東京都・千葉県・埼玉県・群馬県東部といった辺りで相対的に高い傾向であったが、冬季はその中でも千葉県でより高くなっていた。これは、冬季に卓越する北寄りの風による移流が影響した可能性が考えられる。OC については、春季から秋季は埼玉県・茨城県・栃木県・群馬県といった関東平野の内陸部で高い傾向であり、夏季は同様に内陸部である山梨県でも高い傾向であった。OC と Ox の関係を比較すると、春季と夏季は、秋季と冬季に比べて OC と Ox が相関する傾向がみられた。このため、春季と夏季は全般的に光化学二次生成による寄与が示唆される。一方、OC と NMHC の関係を比較すると、秋季と冬季は、春季と夏季に比べて OC と NMHC が弱いながらも相関する傾向がみられた。このため、光化学によらない二次有機粒子、あるいは NMHC とともに発生する一次有機粒子が影響している可能性が考えられる。ただし、秋季の鴻巣・館林・幸手・さいたまは OC 濃度が非常に高いが、NMHC はさほど高くない(さいたまは未測定)ことから、他の地点よりも寄与が大きい一次粒子の発生源が存在していることが示唆される。これは、秋季の OC と K+の関係を考慮すると、植物質燃焼の寄与が大きかったことが 推測される

無機元素については特徴がみられたものを挙げると、Na は、沿岸部において、海風が卓越する春季・夏季に高い傾向がみられた。Al は、関東(1 都 6 県)において春季に高かった。V は、他の季節に比べて夏季に東京湾岸や静岡県の沿岸部の一部において高かったが、他の季節についても相対的な濃度分布としては同様であった。

 $As \cdot Pb$ は、全般的に秋季・冬季に比べて春季・夏季の方が高い傾向であった。Cu は、春季・夏季・冬季に大和において高く、各期間中に突出して高い濃度(8/1 に $290ng/m^3$, 1/25 に $200 ng/m^3$ など)もみられた。

4.1 常時監視データによる P M 2.5 高濃度日 出現状況の把握(群馬県)

4 年間の PM2.5 高濃度発生状況

本章では、年間の PM2.5 高濃度発生状況を把握することを目的に、PM2.5 常時監視測定データ (日平均値)を用いて解析を行った。4.1 節では、各都県の高濃度日発生状況ならびに広域的高濃度事象について報告する。4.2 節~4.5 節では、4.1 節で把握された PM2.5 高濃度事象の中から各季節の代表的な事象を対象に、大気汚染常時監視項目データ (1 時間値)や成分調査期間に該当する場合には成分データを用いた解析結果について報告する。

4.1 常時監視データによる PM2.5 高濃度日出現状況の把握

4.1.1 解析方法

使用データは、平成27年4月1日~28年3月31日のPM2.5自動測定データから得られた日平均値(速報値)、解析対象地点は一般局139局である(測定局一覧は資料編に示す)。表4-1-1に都県別の測定局数および日平均値データ数、図4-1-1に測定局の位置を示す。

各測定局の欠測日の割合は、139 局中 133 局が 5%以下であり、6 局は 8~19%であった が全局で有効日数 250 日以上を満たしていた。高濃度日の定義は、日平均値の環境基準で ある 35 μ g/m³ を超えた日とし、それぞれの発生頻度を集計した。

表 4-1-1 解析対象局数および PM2.5 日平均値データ数(のベ日数)

都県	測定局数	データ数
茨城県	16	5660
栃木県	12	4391
群馬県	8	2928
埼玉県	32	11505
千葉県	20	7249
東京都	8	2871
神奈川県	15	5322
山梨県	4	1446
長野県	6	2135
静岡県	18	6453
合計	139	49960

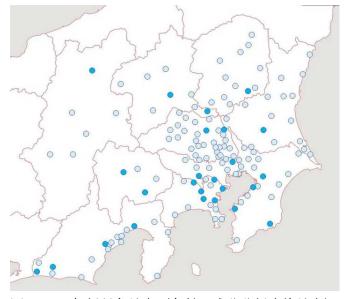


図 4-1-1 解析対象地点(色付は成分分析実施地点)

4.1.2 結果

(1) 高濃度日の発生状況

日平均値が 35 μ g/m³ を超過した高濃度日は、328 日(のべ日数)であり全測定データの 0.7%であった。この日数は前年度(990 日、2.4%、解析対象 116 局)に比べて少なかった。 年間の高濃度日発生状況を見るため、都県別に日平均値>35 μ g/m³ となった局数を集計した 結果を表 4-1-2 に示す。また都県別の日平均値の最大値の推移を図 4-1-2 に、全測定局数に

表 4-1-2 PM2.5 高濃度日 (>35µg/m³) 出現状況 (枠内の数値は該当局数)

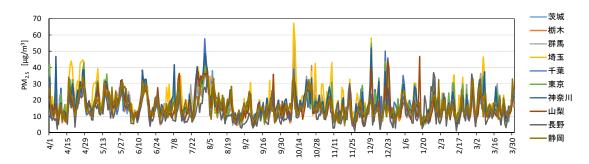


図 4-1-2 都県別の PM2.5 日平均値の最大値の推移

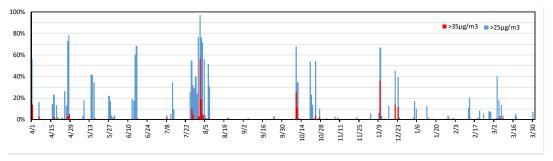


図 4-1-3 PM2.5 日平均値が >35 µg/m³ または>25 µg/m³ となった地点数の割合(全都県)

対する 35 μ g/m³ 超過局数の割合を図 4-1-3 に示す。なお、図 4-1-3 には参考として 25 μ g/m³ を超過した局数の割合も示す。

表 4-1-2 から、27 年度は 4 月、7~8 月、10 月、12 月に関東地域を中心に 1 日~数日間にわたる比較的規模の大きい高濃度事象が発生していた(表中の \leftrightarrow)。図 4-1-2 に示すとおり日平均値の最大値は 67.3 μ g/m³(2015/10/10、埼玉県幸手局)であり、70 μ g/m³を超過した日はなかった。主な高濃度事象の具体的な発生期間と発生地域を表 4-1-3 にまとめた。高濃度の発生範囲は関東地域内が多く、いくつかの事例で山梨県まで拡大していた。図 4-1-3 と合わせて見ると、4 月 25~28 日や 7 月 26 日~8 月 3 日の事例など、日環境基準は超えないまでも>25 μ g/m³の比較的高い濃度となった測定局が多く存在していた。いずれも広域的に濃度が高くなり、その中の一部で 35 μ g/m³を超えたという状況であったと推察される。

表 4-1-3 主な PM_{2.5} 高濃度事象

期間	発生範囲	詳細解析
2015/4/1	南関東を中心に5都県	4.2 節
4/25~28	南関東を中心に5都県	
7/26~8/3 *	関東+山梨県	4.3 節
10/10~11	北関東+埼玉県、千葉県	4.4 節
10/24 *	栃木県、群馬県、埼玉県	
12/10	関東+山梨県	4.5 節
$12/21\sim 23$	南関東および茨城県	

[※] 成分分析期間中に発生した高濃度事象.

(2) 都県別の高濃度日発生率

自治体によって解析対象とする測定局数に偏りがあるため、都県別に高濃度発生率(35 μg/m³ 超過データ数/全データ数)で高濃度日の発生状況を比較した。都県別の年間の発生率を図 4-1-4 に、月別に集計した高濃度発生率を図 4-1-5 に示す。

図 4-1-4 から、高濃度日発生率で最も高かったのは東京都 (1.1%) で、次いで埼玉県 (0.9%) であった。静岡県では高濃度日に該当する日はなく 0%、長野県でも該当日数は少なく発生率は低い値であった。前年度の同様の集計結果では 0.8~4.1%の範囲であったので、それと比較すると 27 年度は全体的に低い発生率であったと言える。また、図 4-1-5 から月別の高濃度日発生率は、いずれの都県においても 4月、8月、10月、12月に分散しており、明瞭な季節傾向は見られなかった。25~27年度の結果を比較すると、図 4-1-6に示すように、25年度は 7、8月と 2月、26年度は 6月に突出して高く、季節によって違いが見られていた。25、26年度とも多数の地点で日環境基準を超える大規模な高濃度事象が発生したため、その月の発生率が高くなったが、27年度はそこまで規模の大きい事象は発生しなかったため、全体的に低い値で明確な季節傾向は見られなかったと考えられる。

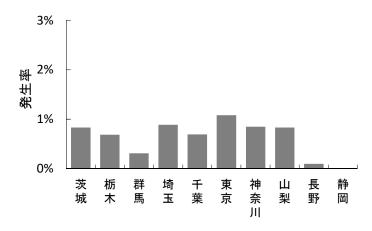


図 4-1-4 都県別の PM2.5 高濃度日発生率 (日平均値 >35µg/m³)

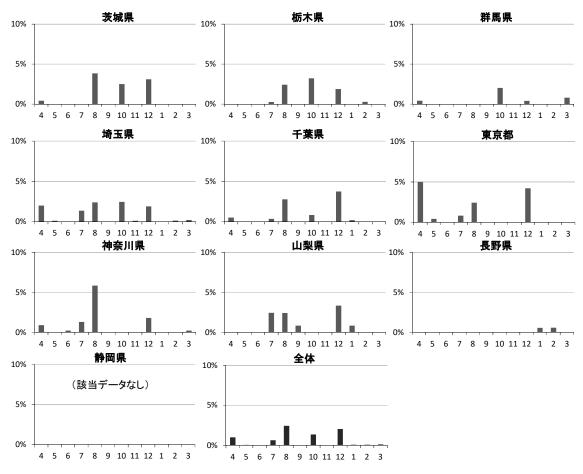
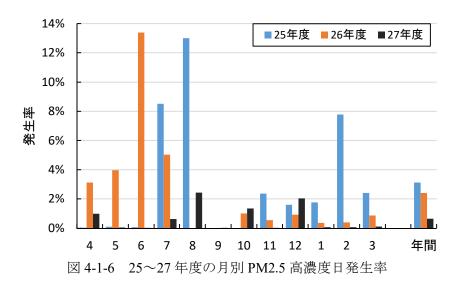



図 4-1-5 月別の PM2.5 高濃度日発生率(日平均値 >35µg/m³)

4.2 春季 (横浜市)

4.2 PM2.5 高濃度事象の詳細解析 (春季)

4.2.1 解析方法

解析対象は表 4-1-3 に示した主な PM2.5 高濃度事象のうち季節的な特徴を考慮して春季 (4月1日前後)、夏季 (7月26日及び8月1日前後)、秋季 (10月10日前後)、冬季 (12月10日前後)とした。解析対象地点は図 4-1-1 に示したとおりである。解析には大気汚染常時監視項目 (PM2.5、NOx、 SO_2 、Ox、NMHC、風向、風速、温度、湿度)の1時間値を使用した。

PM2.5 の環境基準の評価では日平均値(常時監視データ)は0時を起点にした24時間平均値が用いられるが、成分分析では10時を起点とした24時間で36.5 質量濃度は異なる場合がある。また、PM2.5 の1時間値の精度は保証されておらず、今回の解析では経時変化等を把35.5 提するうえでの参考として使用した。

高濃度の発生時刻や期間中の濃度変化を把握するために、調査地点を東京湾沿岸部や太平洋沿岸部、甲信地方等の5区域に分け、事象別にPM2.5の質量濃度の推移を解析した。

各地点は常時監視測定項目や成分分析 実施の有無、地理的分布を踏まえて選定した。 選定地点と区域を図 4-2-1 及び表 4-2-1 に示す。

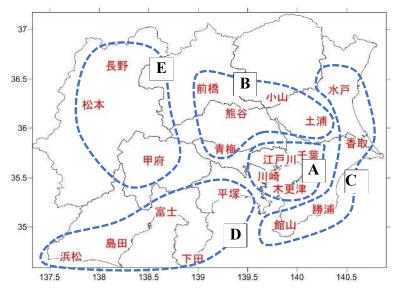


図 4-2-1 区域及び選定地点

表 4-2-1 5 区域と選定地点

区域	名 称(測定局名)
A 東京湾 沿岸部	木更津(木更津中央) 千葉(千城台北小学校) 江戸川(江戸川区南葛西) 川崎(国設川崎)
B 関東平野 中央及び 内陸部	前橋(衛生環境研究所) 小山(小山市役所) 土浦(土浦保健所) 熊谷(熊谷) 青梅(青梅市東青梅)
C 太平洋 沿岸部①	水戸(水戸石川) 香取(香取羽根川) 勝浦(勝浦小羽戸) 館山(館山亀ケ原)

区域	名 称(測定局名)	
	平塚(旭小学校)	
D	下田(下田市役所)	
太平洋	富士(救急医療センター)	
沿岸部②	島田(島田市役所)	
	浜松(浜松中央測定局)	
F	長野(環境保全研究所)	
甲信部	松本(松本)	
一一一	甲府(甲府富士見)	

4.2.2 高濃度の発生状況(日平均値 35µg/m³ 超を高濃度とする)

事象別に PM2.5 質量濃度(日平均値)の分布状況を示す。

春季高濃度事象(図 4-2-2) について、3月31日はほぼ全域で15µg/m³を超え35µg/m³以下であったが、4月1日に関東平野の中央部(埼玉県東部、東京都東部、千葉県北西部)及び茨城県西部、群馬県南東部で高濃度が発生した。4月2日には静岡県の1地点を除き15µg/m³以下と濃度が大きく低下した。

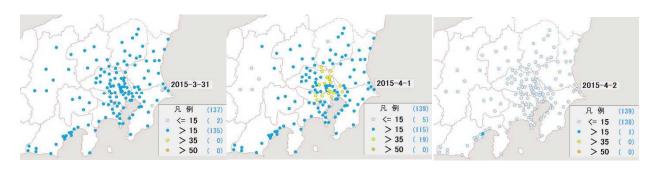


図 4-2-2 PM2.5 質量濃度分布 (単位:μg/m³)

4.2.3 高濃度の発生時刻や濃度変化の把握

高濃度は主に3月30日から4月1日にかけて発生した(図4-2-3)。

30 日は、A 区域(東京湾沿岸部)が午前中に濃度が上昇し午後に低下するパターンであった。B 区域(関東平野中央及び内陸部)は熊谷で濃度が上昇していたが他地点で上昇はみられず、C 区域(太平洋沿岸部①)は水戸が午後に濃度が急上昇していたが、他地点は上昇していなかった。D 区域(太平洋沿岸部②)と E 区域(甲信部)では午後と夜間に濃度が上昇していたが、甲府は逆に夜間に濃度が低下していた。

31 日は A 区域の江戸川と川崎、B 区域の土浦、C 区域の水戸、E 区域の各地点で午前中に濃度が上昇した。D 区域では島田の濃度が高く 18 時に 46µg/m³ であった。

4月1日は全区域で高濃度となったが、区域によって濃度の上昇する時間帯が異なっていた。A区域は午前中と夜間に濃度が上昇し、B区域は夜間に上昇し、C区域では午後に上昇した。D区域では深夜に上昇し、下田では72μg/m³と急上昇した。E区域では長野と甲府で午後に濃度が上昇したが、松本はその時間帯は低下していた。全区域ともに1日の夜間から深夜にかけて急激に濃度が低下するパターンであった。

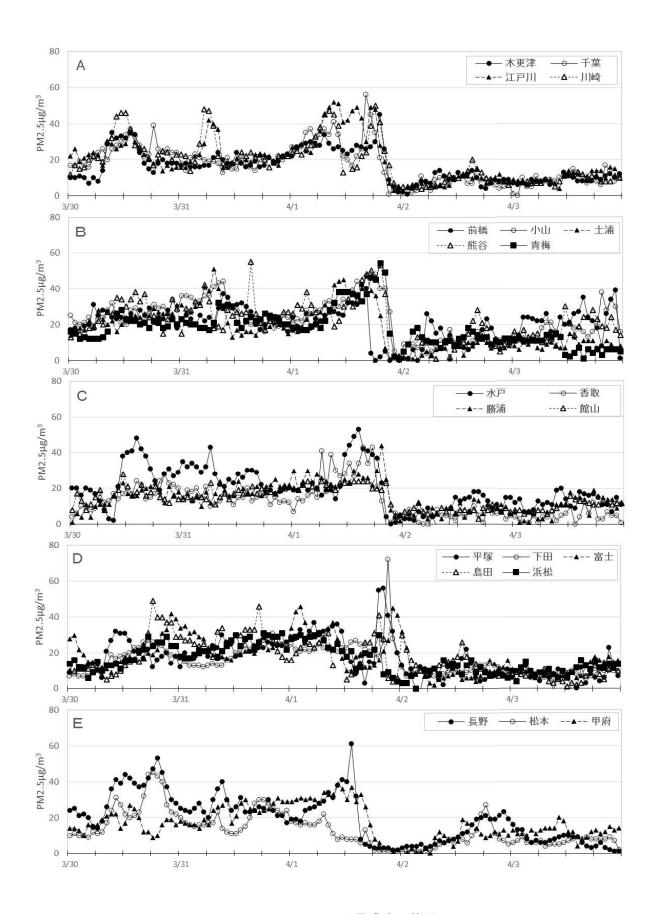


図 4-2-3 PM2.5 質量濃度の推移

4.2.4 気象を含めた詳細解析

(1) 気象概要

3月31日は本州では高気圧に広く覆われ、晴れて最高気温が高くなった。4月1日は本州を寒冷前線が南下し、ほぼ全国的に雨。最高気温は概ね前日より低下した。2日は移動性高気圧に広く覆われ、晴れて日中は気温が上昇した。天気図を図4-2-4-1に示す。

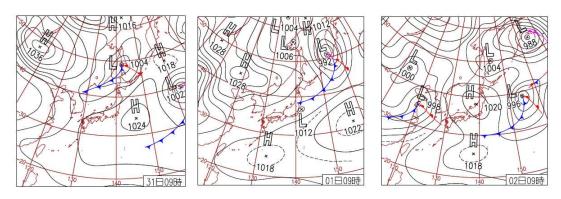


図 4-2-4-1 天気図 (気象庁 http://www.data.jma.go.jp/fcd/yoho/hibiten/)

(2) PM2.5 や関連物質の挙動

図 4-2-2 において、多くの地点で高濃度がみられた 4 月 1 日を中心に検討した。

31日24時は東京湾からやや強い南西の風が吹いており、掛川市大東支所でPM2.5 が $40\mu g/m^3$ であったが他は $35\mu g/m^3$ 未満であった。また、埼玉県の一部、立川市泉町及び富士でNOx 濃度が40ppb を超過していた(図4-2-4-2①左)。

1日の6時は関東平野で弱い北系の風となり、主に関東平野南部で PM2.5、NOx 及び NMHC 濃度が上昇した(図 4-2-4-2①右)。なお、相対湿度を観測している 27%の地点が 90%以上の高湿度であった。

12 時は駿河湾、東京湾からやや強い南西の風が吹き込んでいたが、関東平野北部では北東の弱い風が吹き、関東平野中央部に風の収束線がみられ、PM2.5 の高濃度域が概ね関東平野の中央部に出現した。また、NOx、NMHC の高濃度域も概ね東京湾の北部から内陸部に集中し、特に、江戸川と浦安猫実ではNOx 濃度が 100ppb を超過していた。なお、SO₂ が 8ppb を超過する地点が長野県の諏訪、佐久と東京湾沿岸部の市原岩崎西、太平洋沿岸部の神栖消防にみられた(図 4-2-4-2②左)。

15 時は駿河湾、東京湾からの南西の風と鹿島灘からの北東の風が吹いており、12 時と同様に風の収束線付近である関東平野中央部から北東部で PM2.5 が高濃度となり、NOx、NMHC は東京湾北部沿岸部で高濃度となっていた。Ox は関東平野北部及び山梨県で 60ppb を超過する地点がみられた。また、SO₂ が 8ppb を超過する地点が長野県の佐久と沿岸部の市原、香取、神栖消防にみられた(図 4-2-4-2②右)。

18 時は駿河湾からの南西の風と鹿島灘からの北東の風であり、12 時、15 時と同様に PM2.5 は関東平野中央部に高濃度域があり、神奈川県北部のみ NOx が 40ppb を超過し、 NMHC が 0.3ppmC を超過していた。Ox は関東平野中央部で 60ppb を超過する地点が みられた。SO₂ は低下傾向にあり 8ppb を超過する地点はなかった(図 4-2-4-2③左)。

21 時は鹿島灘からの北東の風が卓越し、50µg/m³を超過する PM2.5 の高濃度域は関東

平野を南下しており、降雨の影響もあって NOx は全地点が 40ppb 以下となり、NMHC も低下して大月を除き 0.2ppmC 以下となった。Ox についても濃度が低下し、60ppb を 超過したのは主に、神奈川県東部及び千葉県の内房地域であった(図 4-2-4-2③右)。

さらに、図 4-2-4-3 に示す東京タワーの高度別温度 ¹⁾ をみると、1 日の 14 時頃から高度 103m以下で逆転層が形成されていた。この時間帯の東京湾北部沿岸部及びその周辺部で NOx 及び NMHC 濃度が高くなっており、また、Ox 濃度が 60ppb を超過する地点が関東平野中央部から北部地域にみられた。

このとき、駿河湾、東京湾からの南西風と鹿島灘からの北東風により関東平野の中央部に収束域がみられており、地域内で発生した PM2.5 やその原因物質が関東平野中央部を中心に蓄積し、さらに逆転層の形成も確認されたことから、PM2.5 等がこの地域に滞留したと考えられた。

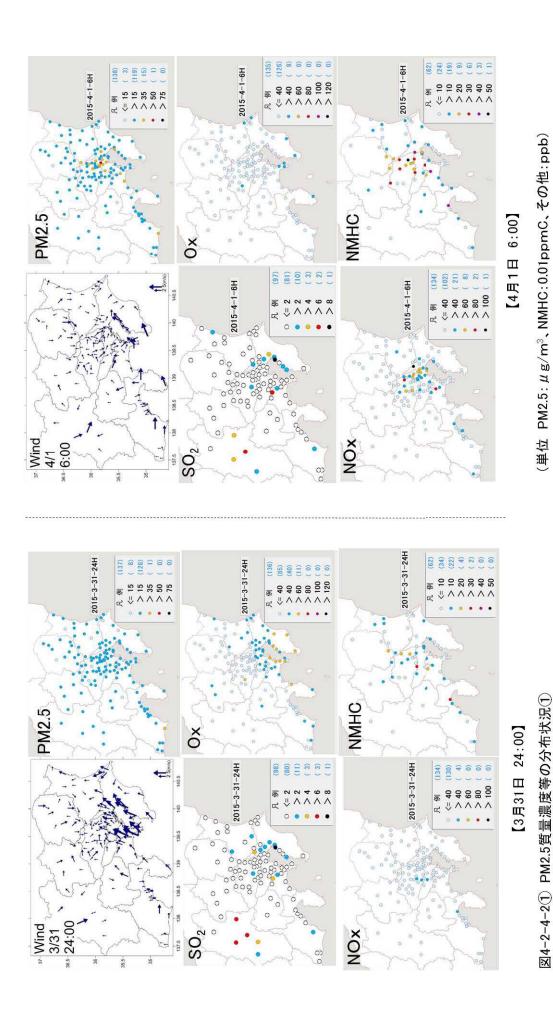
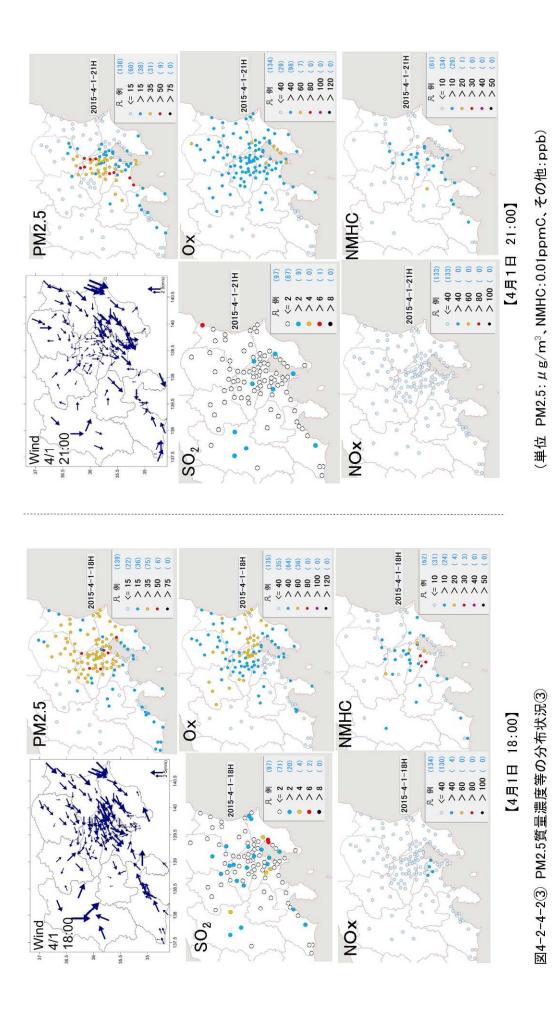



図4-2-4-2② PM2.5質量濃度等の分布状況②

|単位 PM2.5: μg/m³、NMHC:0.01ppmC、その他:ppb)

 ∞

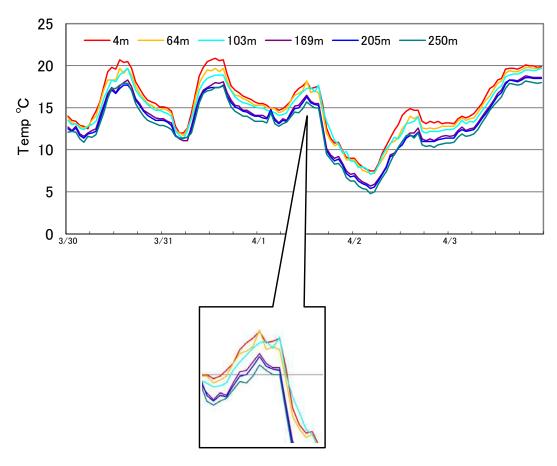


図 4-2-4-3 東京タワーの高度別温度

参考文献

1) 東京都環境局 大気汚染測定結果(月報データ)

 $https://www.kankyo.metro.tokyo.jp/air/air_pollution/result_measurement.html\\$

| 4.3 发子(

4.3 PM2.5 高濃度事象の詳細解析(夏季)

4.3.1 高濃度の発生状況 (日平均値 35μg/m³ 超を高濃度日とする)

夏季に複数の地点で高濃度日が発生したのは 7 月 26、27 日と 7 月 31~8 月 3 日にかけてであった(表 4-1-2)。このうち 7 月 26、27 日の事例を S1、7 月 31 日~8 月 3 日の事例を S2 とする。

事例 S1 についてみると、7月 26 日に主に神奈川県東部と埼玉県南東部を中心とした地域で高濃度が発生し、翌 27 日は埼玉県西部で高濃度が発生した。また山梨県大月では両日とも高濃度となった(図 4-3-1)。

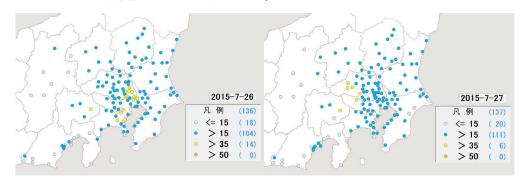
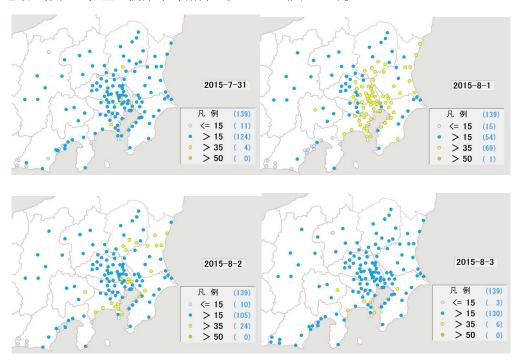
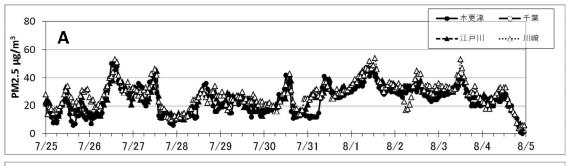
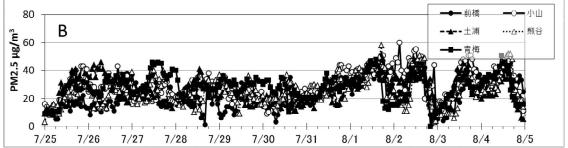


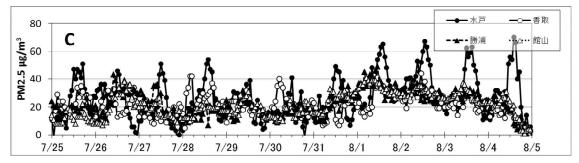
図 4-3-1 PM2.5 質量濃度分布(S1) (単位:μg/m³)

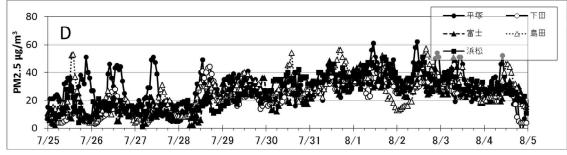
事例 S2 についてみると、7月 31日に高濃度となったのは4地点であったが、翌8月 1日には関東平野の広い範囲で高濃度が発生した。千葉県松戸では日平均値57.6μg/m³の高濃度を記録した。翌2日になると高濃度の発生地域は減少し、茨城、栃木の一部や神奈川南部の相模湾沿いに発生した。8月3日にはさらに高濃度の発生地域は減少し、主に関東平野南部に発生した(図4-3-2)。




図 4-3-2 PM2.5 質量濃度分布(S2) (単位:μg/m³)


4.3.2 高濃度の発生時刻や濃度変化の把握


事例 S1 についてみると、7月 26 日は主に A、B、C 区域で日中の PM2.5 質量濃度の上昇が見られた (図 4-3-3)。A 区域では正午頃に $40\mu g/m^3$ を超える濃度となり、夜間になっても濃度は $20\mu g/m^3$ 程度までしか低下しなかった。翌 27 日にも日中の濃度上昇が見られたが、夜間の濃度が低下しており、日平均値としては高濃度日とはならなかった。D、E 区域も日中は濃度が上昇する傾向を示したものの他区域ほどは濃度が上がらず、また夜間には濃度が低下したことから日平均値としては高濃度日とはならなかった。


事例 S2 については、7月 31 日の午前中に濃度が上昇し正午頃にピークとなったのち、 濃度が低下するものの、多くの地点では夜間も 20μg/m³程度までしか下がらず、翌 1 日 には再び濃度が上昇した。このように夜間に濃度が十分低下しないまま、翌日の日中に 濃度が上昇することによって、連続して高濃度日が発生したと考えられた。

A 区域ではどの地点もこの傾向がみられた。B 区域は8月2日の午後に急激な濃度低下がみられたが、前橋や小山では雷雨や降雨が観測されており、地域的な気象の影響を受けたものと考えられた。C 区域では水戸で日中の濃度が上昇していた。日平均値の分布図でも8月1、2日は水戸付近の地点で濃度が高いことが確認できた(図4-3-2)。これはC 区域のうち、8月1日の夜間に南風によって関東北部(栃木、茨城)に PM2.5 が移動し濃度が高まったこと(後述の図4-3-6②左図)、千葉の太平洋側では強い海風の進入によって光化学オキシダントや PM2.5 濃度が低下したが、茨城の太平洋側ではこうした状況が起こらなかったこと(後述の図4-3-6②右図)などが影響したと考えられた。E 区域は日中の濃度上昇がみられるものの、A~C 区域ほどは上昇せず、また夜間に濃度が低下したことから日平均値としては高濃度日とはならなかった。

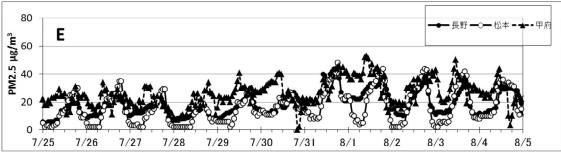


図 4-3-3 PM2.5 質量濃度の推移

4.3.3 気象を含めた詳細解析

(1)気象概要

事例 S1 の発生期間において、7月 26 日は長崎県に台風 12 号が上陸(のち熱帯低気圧に変化)したものの、全国 129 地点*で猛暑日となった。東京では今年初めての猛暑日となった。翌 27 日も東日本は晴れて、群馬県館林では 38.7℃を記録するなど関東甲信では 40 地点*で猛暑日となった。天気図を図 4-3-4①に示す。

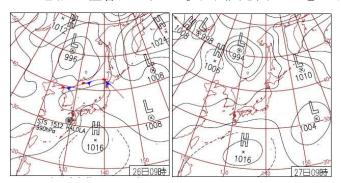


図 4-3-4① 天気図 (気象庁 http://www.data.jma.go.jp/fcd/yoho/hibiten/)

事例 S2 の発生期間において、7月 31 日は西日本から東日本にかけて 157 地点で猛暑日となった。翌 8月 1 日も東日本の内陸部を中心に気温が上昇し、全国 223 地点*で猛暑日となり、群馬県館林では気温 39.4℃を記録した。2 日も引き続き気温が上昇し、全国 179 地点*で猛暑日となった。3 日も高気圧に覆われたことから西日本から東日本にかけて気温が上昇し、全国 132 地点*で猛暑日となった。天気図を図 4-3-4②に示す。

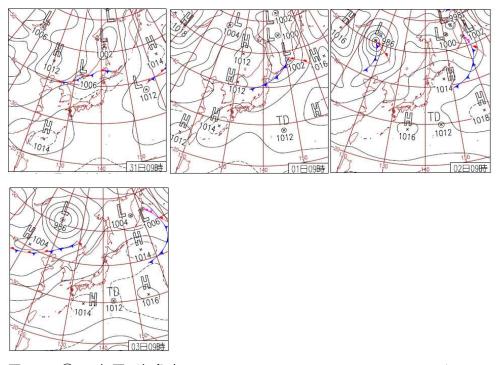


図 4-3-4② 天気図(気象庁 http://www.data.jma.go.jp/fcd/yoho/hibiten/)

*地点数は気象庁気象観測所における気温の測定地点

(2) PM2.5 や関連物質の挙動

事例 S1,2 の発生期間を含む夏季の PM2.5 成分分析から、主要成分は SO_4^2 ・ NH_4^+ 、OC であることが確認された(3.2「夏季解析」及び後述の 4.3.3(3)「成分分析結果」を参照)。 ここでは PM2.5 質量濃度のほかに主要成分の前駆物質である SO_2 や NMHC と、これら前駆物質からの二次粒子の形成に影響を及ぼす光化学オキシダントを中心に解析した。

①事例 S1

7月26日は関東平野内の各地で気温が上昇し、埼玉、東京、千葉、神奈川では光化学スモッグ注意報が発令されており、光化学反応による二次粒子の形成が盛んに起こったと考えられた。PM2.5 質量濃度は正午頃に最も高くなったことから(図 4-3-3)、この時刻の状況をみると PM2.5 は東京湾沿岸部及びその周縁部の濃度が高く、光化学オキシダントの濃度分布とも概ね一致した(図 4-3-5 左)。風向は相模湾海風と東京湾海風によって東京と神奈川の境を中心に収束線がみられており、光化学オキシダント濃度等はこの付近で高かった。また気温は埼玉、東京で 35℃を超えた分布を示した。一方、この時茨城や千葉の太平洋側では海風が吹いており、これら沿岸部では PM2.5 や光化学オキシダント濃度は低かった。SO2と NMHCをみると、SO2は東京湾沿岸部の千葉県側で高く、NMHCは東京湾沿岸部の神奈川県側で高い分布を示した。21時になっても概ね同様の風向を示し、収束域は埼玉へと移動した(図 4-3-5 右)。夜間であっても埼玉、東京、神奈川では同時刻に光化学オキシダント濃度が 80ppb を超えていた。翌27日正午も26日と同様の風向や気温分布を示し、PM2.5や光化学オキシダント濃度の高い状況が続いた。

②事例 S2

7月31日は気温が上昇し、各地で猛暑日となった。光化学スモッグ注意報が埼玉、千 葉、茨城で発令されており、事例 S1 と同様に光化学反応による二次粒子の形成が盛ん であったと考えられた。夜間になると光化学オキシダント濃度は低下するものの PM2.5 質量濃度は 35μg/m³ を超える地点が多く、8 月 1 日の午前 3 時(図 4-3-6①左)の時点で も関東平野の中央部付近を中心に高い濃度が継続していた。また、平野部では 25℃を 超える地点が多かった。1日正午には(図4-3-6①右)、東京湾の沿岸部や静岡から千葉、 茨城にかけての太平洋側でやや強い海風が吹いているものの、平野部の風は比較的弱 く、東京や埼玉では風の収束域がみられるとともに気温が 35℃を超えていた。この時 PM2.5 質量濃度は関東平野中央部(埼玉、東京)付近を中心に広い地域で高濃度となって おり、光化学オキシダント濃度が 100ppb を超える地点が東京、埼玉、千葉でみられた。 千葉や神奈川の一部では SO₂ の濃度が 10ppb を超え、これらの地域では NMHC も 0.3ppmC を超える濃度となった。午後9時には海風が強くなり(図 4-3-6②左)、関東平 野の広い地域で南風となった。このとき、PM2.5 質量濃度が 35μg/m³ を超える地点が関 東平野北部の栃木、茨城でもみられており、南風の影響を受けて高濃度域が移動した と考えらえた。翌2日も気温が上昇し、埼玉や千葉では光化学スモッグ注意報が発令 されるなど、活発な光化学反応により二次粒子が形成されたと考えられた。風向や気 温分布、また、PM2.5 や光化学オキシダント濃度分布も1日と概ね同じ傾向にあった。 (図 4-3-6②右)。

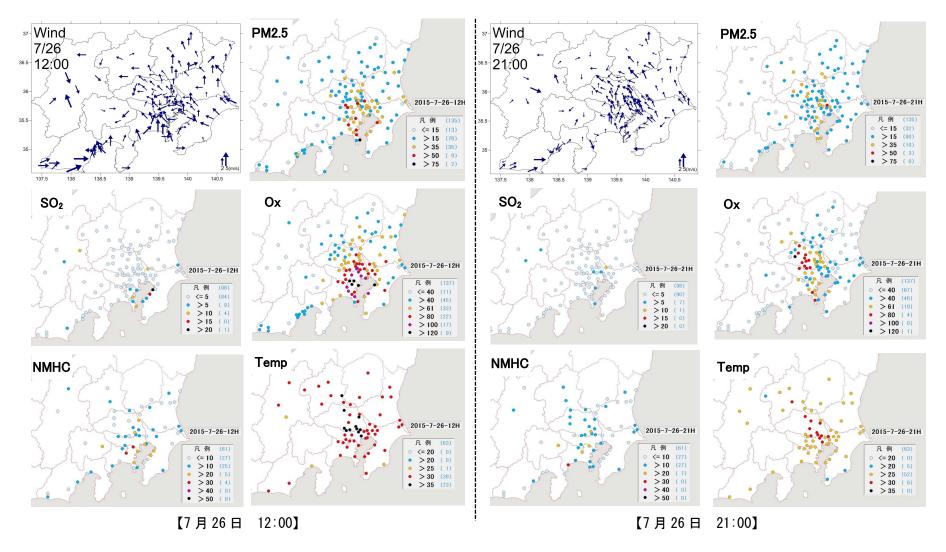


図 4-3-5 PM2.5 質量濃度等の分布状況(事例 S1 7月 26 日)

(単位 PM2.5: /g/m³, NMHC:0.01ppmC, 気温:℃, その他:ppb)

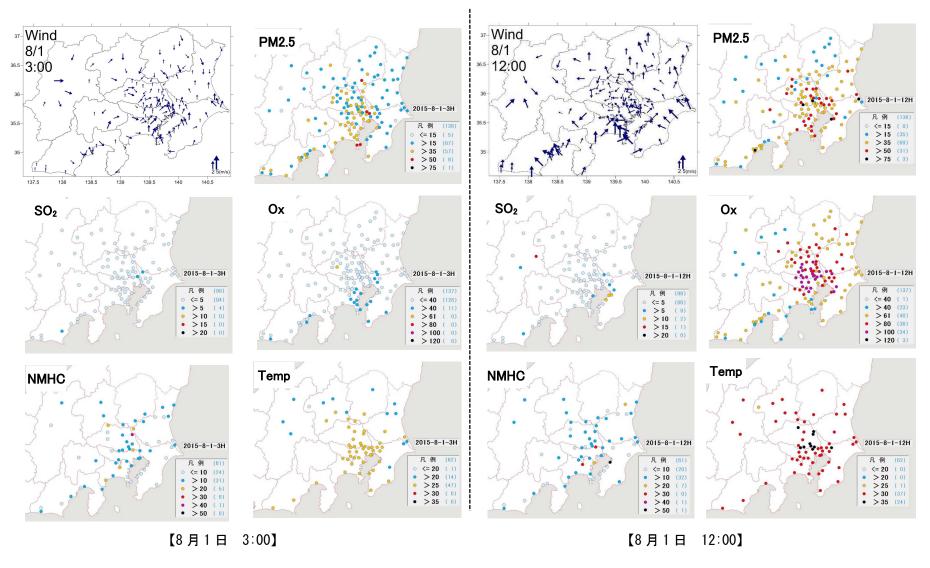


図 4-3-6① PM2.5 質量濃度等の分布状況(事例 S2 8 月 1 日)

(単位 PM2.5: µg/m³, NMHC:0.01ppmC, 気温: ℃, その他:ppb)

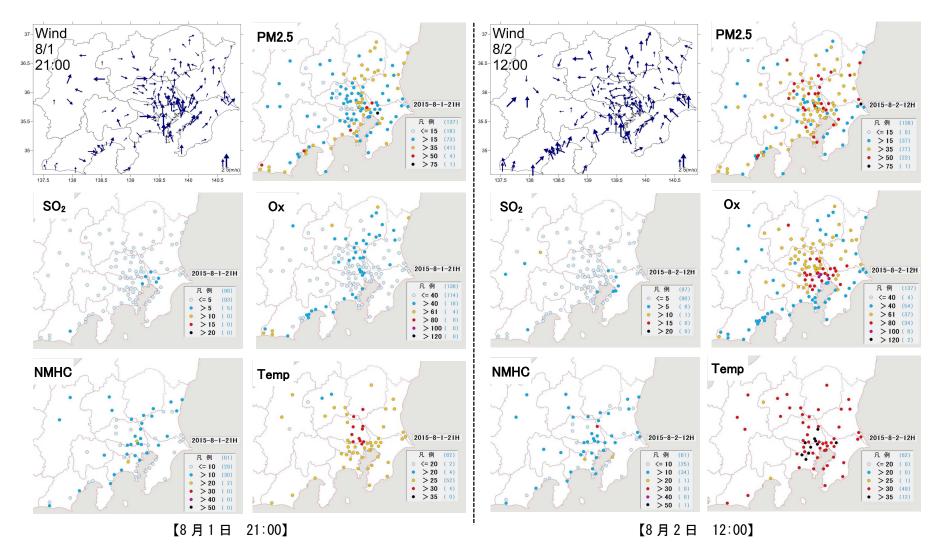


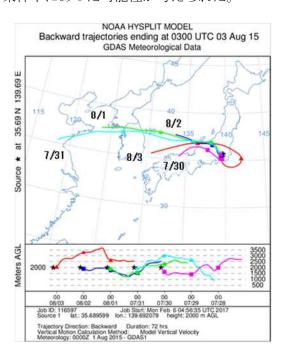
図 4-3-6② PM2.5 質量濃度等の分布状況(事例 S2 8 月 1~2 日)

(単位 PM2.5: µg/m³, NMHC:0.01ppmC, 気温: ℃, その他:ppb)

(3)成分分析結果(夏季成分分析)

夏季成分分析期間における PM2.5 中の成分濃度を地点別に図 4-3-7 に示す。また、SO₄²⁻と OC の濃度推移を地点別に図 4-3-8 として示す。

成分分析の結果から、主要成分は SO_4^2 、 NH_4^+ 、OC であることが確認された。


 SO_4^{2-} は S2(7月31日~8月2日)で濃度が高く、OC は 7月25、26日の濃度が高い傾向にあり、両成分の濃度がピークとなる日には違いが見られた。

(なお、成分分析は 10 時~翌日 10 時を起点として算出されており、自動濃度測定機の測定日とのずれが生じる)

SO₄²-についてみると多くの地点で成分分析分析期間の開始日である 7 月 22 日以降は降雨が観測された 7 月 27 日を除き、日を追うごとに概ね増加傾向にあった。

OC も SO4²と同様に 7 月 22 日以降は増加傾向を示すものの、SO4²とは異なり 28 日以降の濃度上昇はみられなかった。気温が上昇する日が連続したことから、OC が揮発しやすく PM2.5 中の粒子として存在しにくい条件下にあった可能性が考えられた。

PM2.5の高濃度日が連続して発生したS2期間について後方流跡線解析を行ったところ(図4-3-7)、東京上空(都庁上空2,000m)を起点とする大気は、SO4²-濃度が増加した7月31日から8月2日にかけて朝鮮半島方面を経由していたことが明らかとなった。ただし越境汚染など、関東域外の影響をどの程度受けていたかは不明であり、さらなる検討が必要である。

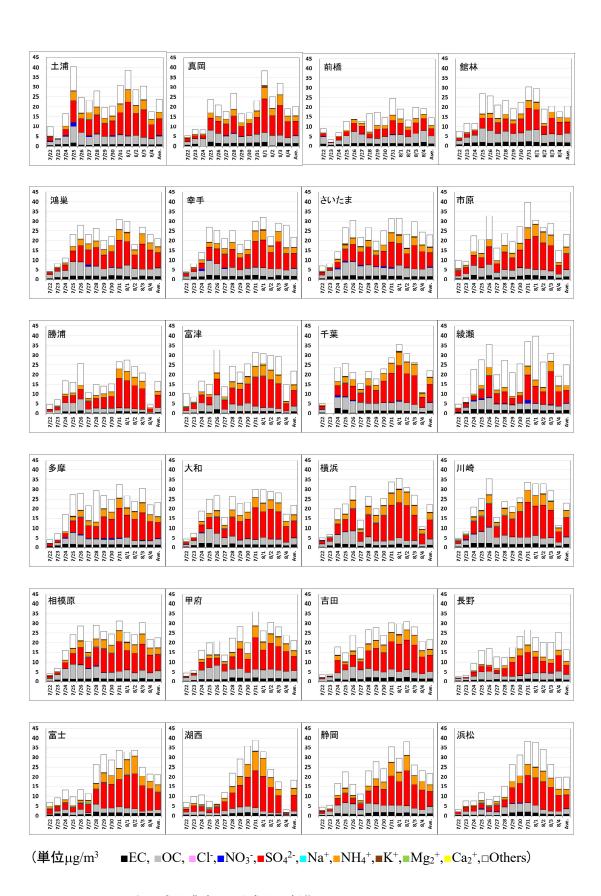
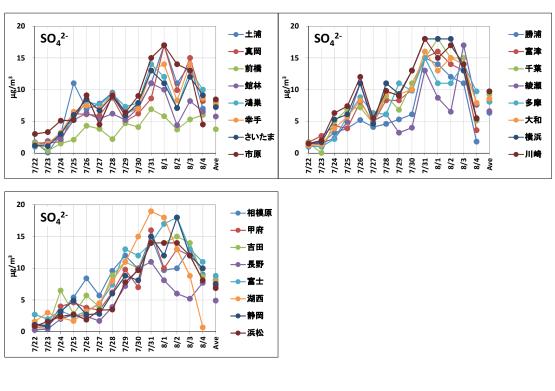
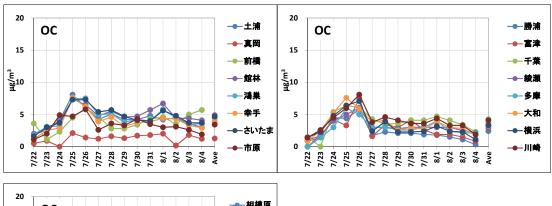




図 4-3-7 PM2.5 中の成分濃度(夏季成分分析期間)

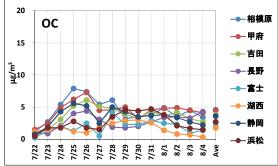


図 4-3-8 硫酸イオン及び有機炭素濃度の推移(夏季成分分析期間)

4.4 PM2.5 高濃度事象の詳細解析 (秋季)

4.4.1 高濃度の発生状況

秋季に複数の地点で高濃度を示したのは、10月10日及び11日であった。9日から広域で 濃度がやや上昇し、翌10日には栃木南部、埼玉東部、茨城、千葉北部で高濃度が発生した。 特に、栃木南部、埼玉東部では日平均値50 μg/m³を超える高濃度であった。11日には埼玉 東部で高濃度となり、前日の高濃度地点がやや南側へと変化した(図4-4-1-1)。

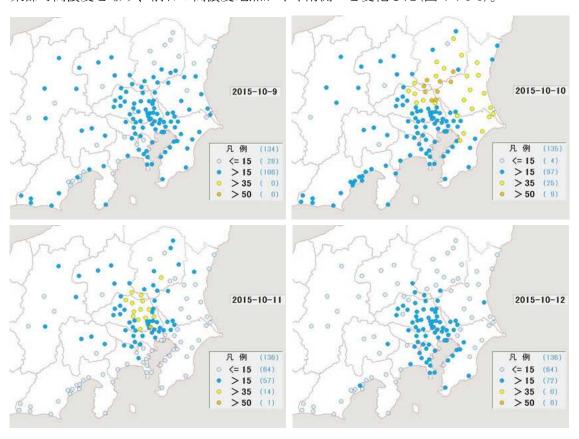


図 4-4-1-1 PM2.5 質量濃度分布(単位:µg/m³)

4.4.2 高濃度の発生時刻や濃度変化の把握

調査地点を前節と同じ 5 区域に分け、PM2.5 の質量濃度の推移を解析した(図 4-4-2-1)。 高濃度が発生したのは、10 月 10 日、11 日であった。特に 10 月 10 日午後から 11 日未明にかけては、A、B、C 区域において濃度が非常に高くなった。この事象でピークとなった時間は、A 区域では 10 日の 15 時頃、B 区域では 10 日の 18 時から 24 時頃、C 区域では場所によって異なるが、10 日の正午から 21 時頃であり、全般的に、濃度の高い地点が時間とともに北上していく傾向がみられた。特に B 区域では、小山でピーク時に 120 $\mu g/m^3$ 前後の濃度となったほか、土浦を除いて 11 日も比較的濃度が高い状態が継続した。一方、A 区域では一旦濃度が下がったものの、11 日の午後から濃度が上がり始め、江戸川と川崎では 11 日の 24 時から 12 日の 3 時頃にかけて再度ピークとなった。

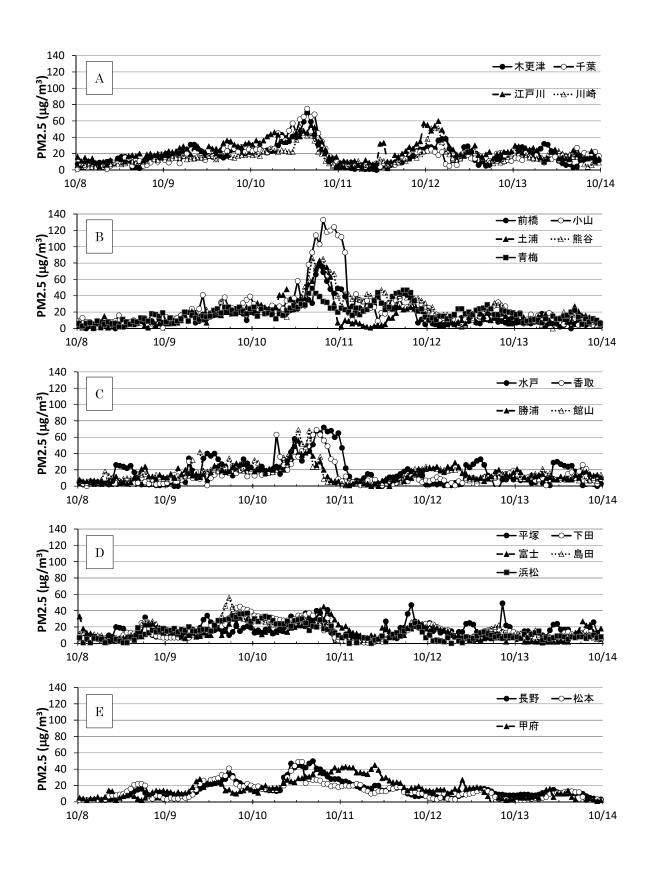


図 4-4-2-1 PM2.5 質量濃度の推移

4.4.3 気象を含めた詳細解析

(1) 気象概要

10月10日は、前線の影響で西日本から東日本で雲が多く、関東でも夕方から太平洋側の沿岸部で雨の所があった。11日は、二つの低気圧がそれぞれ北東へ進み、午前中は東海から関東にかけて広く雨となったが、関東では午後から次第に曇りとなった。12日は、発達した低気圧に寒気が流れ込み、西日本から東日本の太平洋側は晴れや曇りとなった。

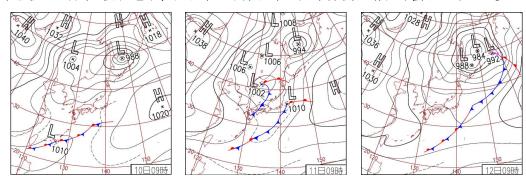


図 4-4-3-1 天気図 (気象庁 http://www.data.jma.go.jp/fcd/yoho/hibiten/)

(2) PM2.5 や関連物質の挙動

図 4-4-2-1 において、高濃度のピークが確認された 10 月 10 日の午後を中心に解析した。 PM2.5 濃度、NOx、湿度(RH)、NHMC、温度(Temp)の分布状況及び風向風速を図 4-4-3-2 ①~③に示す。

10日は早朝から全域で北風が吹いていたが、正午頃から関東では南風が吹き始めた。正午に(図 4-4-3-2①左) PM2.5 は広域で濃度が上昇し始め、15時には(図 4-4-3-2①右)、埼玉東部と千葉の東京湾沿岸部で特に濃度が高くなった。一方、NOx、NMHC は東京湾沿岸部で高濃度となった。また、関東全域で南風が吹くようになり、18時には(図 4-4-3-2②左)、PM2.5濃度の高い地点は栃木南部、茨城へと北上し、特に小山では、100 μg/m³を超える濃度となった。NOx、NMHC 濃度の高い地点も、東京東部、埼玉東部、千葉西部へと北上した。21時には(図 4-4-3-2②右)、栃木で北風が吹くようになり、関東南部からの南風との収束域が栃木南部、埼玉東部でみられ、その地域で PM2.5濃度が継続して高くなった。特に埼玉東部では、11日になっても35μg/m³を超える比較的濃度の高い地点が多く見られた。

この事象では、まず、10 日正午にかけて全域で PM2.5 濃度が上昇した。その後、埼玉東部や千葉の東京湾沿岸部等で濃度の高い地点がみられるようになり、南風により栃木南部、茨城へと北上した。そして、21 時からの栃木での北風の進入により、栃木南部、埼玉東部で PM2.5 が滞留し、濃度が高くなったと考えられる。

他文献において、加須 (埼玉県) と幸手で、10 日に WSOC や地域汚染の指標とされる NO_3 - 濃度が高かったこと 1)が報告されており、今回の PM2.5 濃度の高い地点が、NOx や NMHC 濃度の高い地点と重なる部分がある点も考慮すると、本事象は、硝酸系二次粒子や有機粒子による地域汚染の影響を受けていると推測される。なお、10 日の 18 時頃からは湿度が上昇し、ほとんどの場所で気温が 20 C 未満と高くなかった(図 4-4-3-2②左)ことから、硝酸塩が生成しやすい状況であったと考えられる $2^{1,3}$ 。一方、8 日から 12 日は四国から関東にかけて PM2.5 濃度が高く、奈良県や愛知県など、 SO_4 $2^{1,3}$ 震変が高く越境汚染の影響が疑われる

地域もあったことが報告されている 4 。また、加須において、 10 日にかけて越境汚染の指標とされる 5 とから、 5 とから、 5 とから、関東においても、地域汚染だけでなく越境汚染の影響もあったと推測される。

なお、図 4-4-2-1 で、11 日 24 時頃に東京湾沿岸部(A 区域)でのみ PM2.5 濃度のピークが確認されたことについては、11 日 21 時頃に、栃木や埼玉で北風となり、前述した 11 日 の埼玉東部の濃度の高い地点が南下したためと考えられる。また、NMHC 濃度の高い地点と一致することから(図 4-4-3-2③) 有機粒子の影響もあったと推測される。

参考文献

- 1) 長谷川 第57回大気環境学会年会講演要旨集,191(2016)
- 2) Jacob, D.J. Introduction to atmospheric chemistry, Princeton University Press, New Jersey, 212-215(1999)
- 3) 速水ら 大気環境学会誌, 39, 77 (2004)
- 4) 中島ら 第57回大気環境学会年会講演要旨集,352(2016)
- 5) 米持ら 埼玉県環境科学国際センター報 第16号, 110(2016)

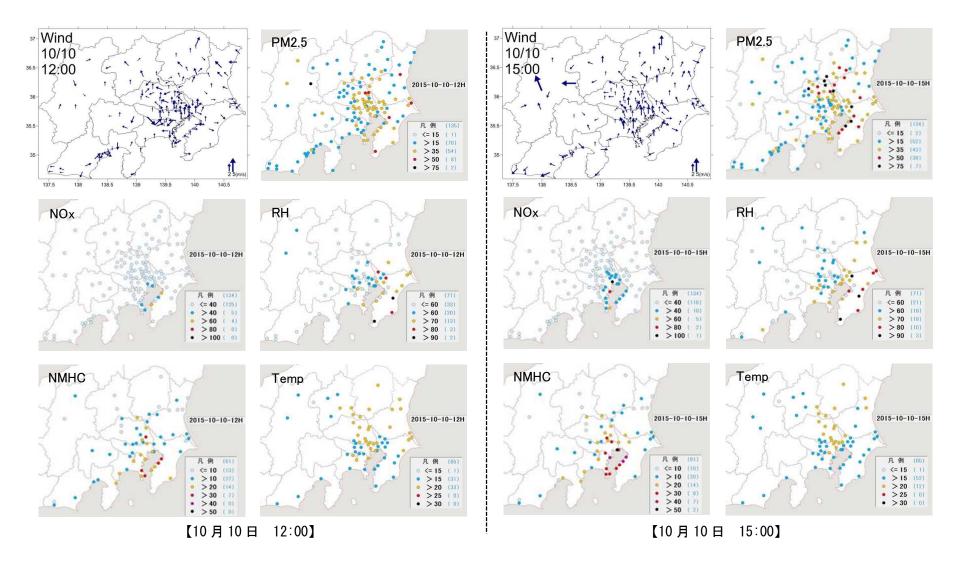


図 4-4-3-2① PM2.5 質量濃度等の分布状況①

(単位 PM2.5:μg/m³, NMHC:0.01ppmC, RH:%, Temp:°C, その他:ppb)

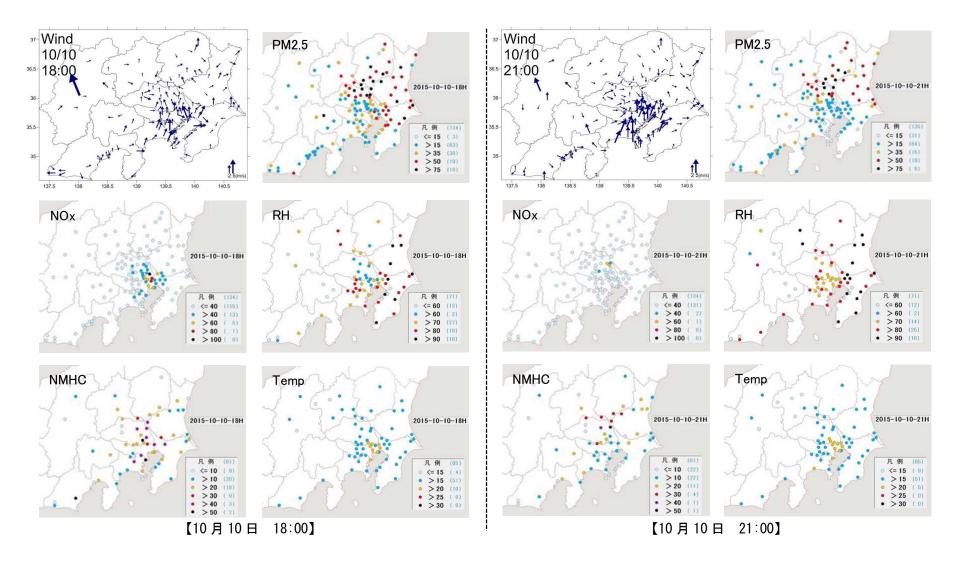


図 4-4-3-2② PM2.5 質量濃度等の分布状況②

(単位 PM2.5:μg/m³, NMHC:0.01ppmC, RH:%, Temp:℃, その他:ppb)

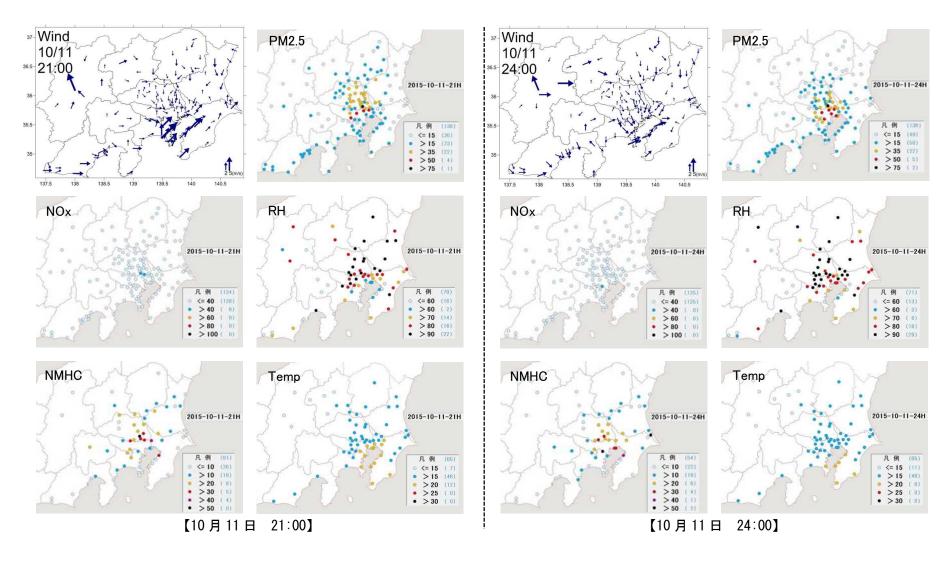


図 4-4-3-2③ PM2.5 質量濃度等の分布状況③

(単位 PM2.5:μg/m³, NMHC:0.01ppmC, RH:%, Temp:°C, その他:ppb)

4.5 PM2.5 高濃度事象の詳細解析(冬季)

4.5.1 高濃度の発生状況

冬季に複数の地点で高濃度を示したのは、12月10日であった。関東平野の中央部から南部(茨城県南西部、栃木県南部、埼玉県東部、東京都東部、千葉県西部、神奈川県東部)で高濃度が発生した(図 4-5-1-1)。

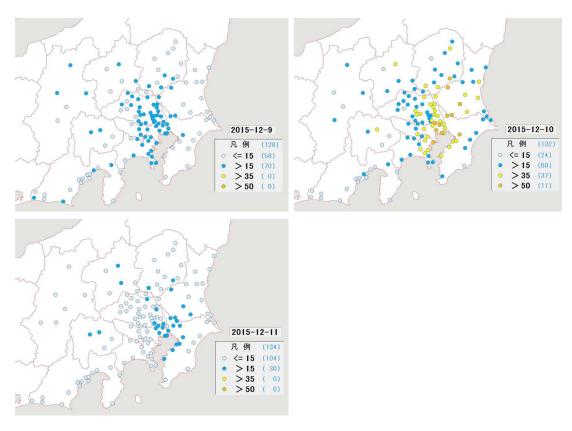


図 4-5-1-1 PM2.5 質量濃度分布(単位:μg/m³)

4.5.2 高濃度の発生時刻や濃度変化の把握

高濃度は主に 12 月 10 日から 11 日にかけて発生した(図 4-5-2-1)。濃度の高い地点は主に A 区域にあり、時間とともに濃度が上昇し、その後急激に濃度が低下するパターンを示した。A 区域では 9 日 23 時頃から濃度が高く、時間の経過とともに継続的に濃度が上昇し、千葉、江戸川では 10 日 24 時頃にピークがみられた。各地点とも同様の推移を示すものの、川崎は 10 日 15 時及び 20 時にピークがみられ、他の地点より早い時間に濃度が低下した。なお、木更津はこの間欠測であった。B 区域では、小山と土浦で A 区域と同様の濃度上昇がみられたが、前橋、熊谷、青梅では濃度上昇は緩やかであり、10 日 16 時から 20 時をピークとして濃度が低下した。C 区域は、水戸と香取で 10 日 20 時頃をピークとする濃度上昇がみられた。D 区域は、平塚で 10 日正午及び 11 日 1 時に濃度上昇がみられたが、他の地点では濃度上昇はみられなかった。E 区域では、甲府で 10 日から 11 日にかけて緩やかな濃度上昇がみられた。長野では 10 日 14 時から 18 時にかけて濃度が上昇し、その後急激に低下した。この時間は煙霧が観測されていた。

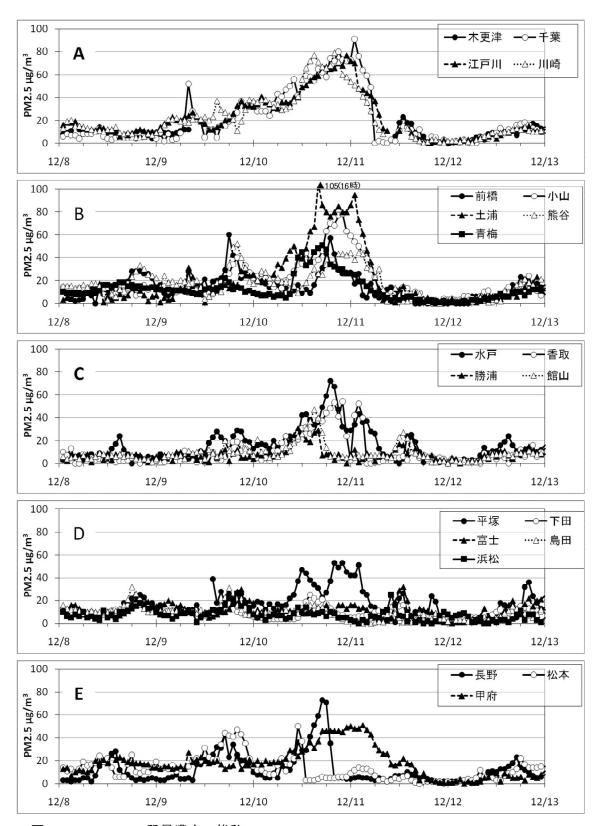


図 4-5-2-1 PM2.5 質量濃度の推移

4.5.3 気象を含めた詳細解析

(1) 気象概要

12月9日は高気圧に広く覆われ、全国的に晴れて冷え込んだ。10日は西から次第に雨雲が広がり、関東甲信では昼頃から雲に覆われ、深夜から雨が降りだした。茨城、栃木、東京、千葉、長野では煙霧が観測され、神奈川、山梨、静岡では靄が観測された。11日は発達した低気圧の影響で各地で大雨や暴風となった。天気図を図 4-5-3-1 に示す。

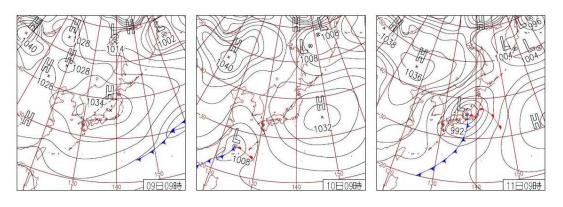


図 4-5-3-1 天気図 (気象庁 http://www.data.jma.go.jp/fcd/yoho/hibiten/)

(2) PM2.5 や関連物質の挙動

図 4-5-1 において多くの地点で高濃度がみられた 12 月 10 日を中心に検討した。PM2.5 濃度、NOx、湿度 (RH) 、NHMC、Ox の分布状況及び風向風速を図 4-5-3-4①~③に示す。

9日21時(図4-5-3-4①左)は関東平野北部及び東京都、神奈川県では弱い北西風、 千葉県では弱い北東風が吹き、風の収束域である埼玉県東部、東京都東部、神奈川県 東部でPM2.5 濃度が上昇した。また、NOx、NMHC が高く、高湿度であった。

10日3時から11時頃に(図4-5-3-4①右、図4-5-3-4②左)弱い北西風が吹き、それに伴い埼玉県でPM2.5濃度が低下する一方、東京湾沿岸部でPM2.5濃度が上昇した。NOx、NMHCも東京湾沿岸部で高い値を示した。

正午から 18 時頃に(図 4-5-3-4②右)東京湾からの弱い海風が内陸部に向けて吹き込み、埼玉県東部では弱い西風が吹いた。風の収束域が関東平野の中央部でみられ、収束域を中心に PM2.5 濃度が上昇した。この時間は NOx 濃度も高い値を示した。図 4-5-3-2 に示す NO2 濃度の推移(4.2.1 で示した地点のうち、PM2.5(日平均値)35 μ g/m³以上の地点を対象とした)によると、この時間での濃度上昇が確認できる。発生源から排出された NO は、O3 と反応し NO2 となる。一方、NO2 は光により NO に分解される 1。正午頃から雲に覆われ日照がなくなり、NO2 の光分解が抑制されたことが、NO2 高濃度の要因と考えられる。

さらに、図 4-5-3-3 に示す東京タワーの高度別気温 ²⁾によると、19 時頃から逆転層が生じており、大気が引き続き安定していたことから、関東平野の中央部では PM2.5 濃度のさらなる上昇がみられ、20 時から翌 2 時(図 4-5-3-4③左)にかけてピークを示した。湿度が上昇していたことから、次の式に示す反応が進行し硝酸塩の生成が促進さ

れたものと考えられるり。

 $NO_2 + O_3 \rightarrow NO_3 + O_2$

 $NO_3 + NO_2 \rightarrow N_2O_5$

 $N_2O_5 + H_2O \rightarrow 2HNO_3$

特に濃度の高かった関東南部では、10 日 23 時頃から降雨があり、PM2.5 濃度は下がり始めた。11 日 6 時頃(図 4-5-3-4③右)から雨が強まるととも北風が強まり、濃度は急激に下がった。

本現象においては、PM2.5 濃度が高くなった地域が NOx や NMHC 濃度の高い地域と概ね一致したことから、高濃度は硝酸塩や有機粒子の影響を受けたものと考えられた。なお、埼玉県においては成分測定が行われており、NO3、OC、WSOC、char-EC が高く、CI も相対的に上昇していたことから、バイオマス燃焼や廃棄物焼却が影響した可能性を指摘している³⁾。限られた地域において濃度が上昇していることから、大気が安定した状態である中で、粒子化が促進されたことによる地域汚染によるものと考えられた。

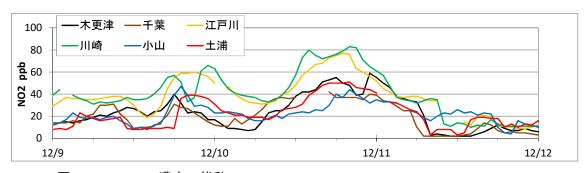


図 4-5-3-2 NO2濃度の推移

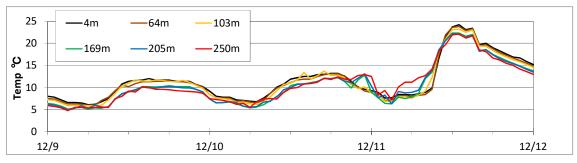


図 4-5-3-3 東京タワーの高度別気温

参考文献

- 1) Jacob,D.J. Introduction to atmospheric chemistry, Princeton University Press, New Jersey, 212-215(1999)
- 2) 東京都環境局,大気汚染測定結果 http://www.kankyo.metro.tokyo.jp/air/air_pollution/result_measurement.html
- 3) 長谷川 第 57 回大気環境学会年会講演要旨集, 191(2016)

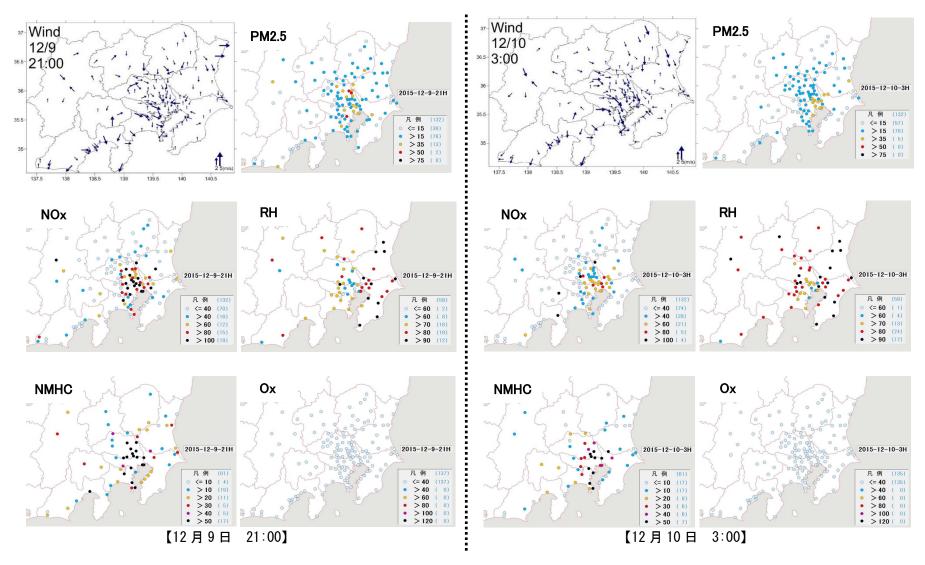


図 4-5-3-4① PM2.5 質量濃度等の分布状況①

(単位 PM2.5: μg/m³, NMHC:0.01ppmC, RH:%, その他:ppb)

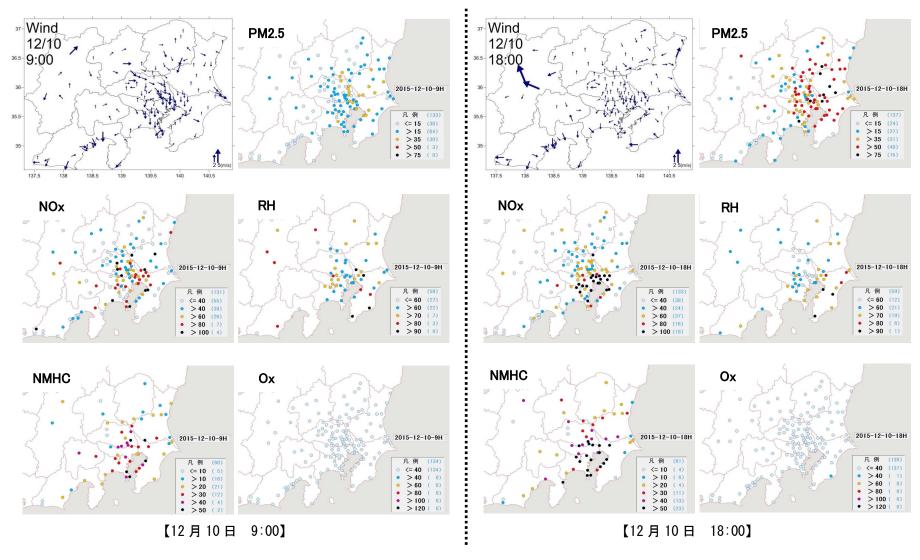
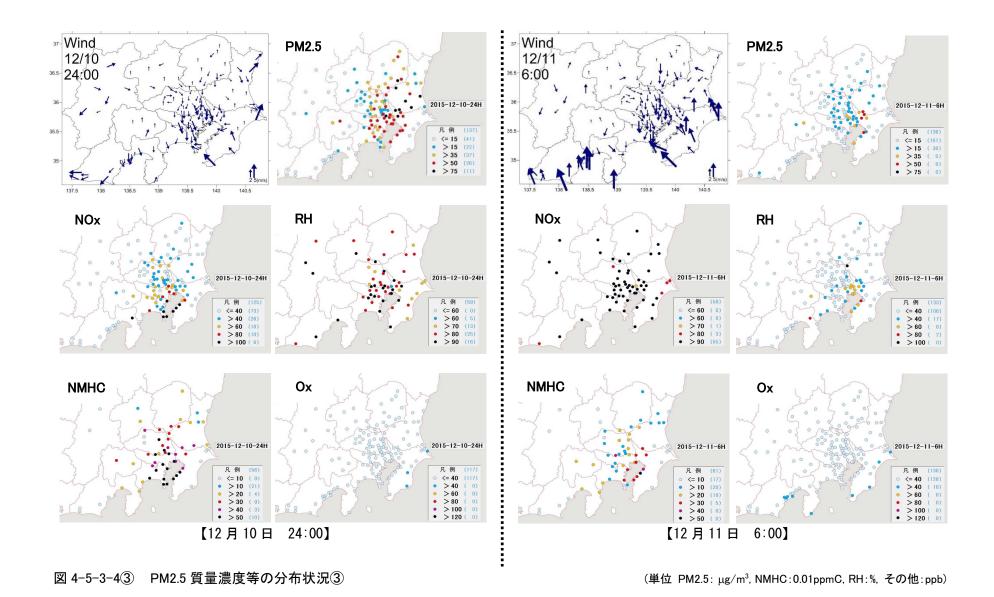



図 4-5-3-4② PM2.5 質量濃度等の分布状況②

(単位 PM2.5: μg/m³, NMHC:0.01ppmC, RH:%, その他:ppb)

4.6 高濃度イベントのまとめ

・PM2.5 常時監視データ(日平均値)を用いて、平成 27 年度における PM2.5 高濃度日の発生 状況について調査した。その結果、4 月、7~8 月、10 月、12 月には関東地域を中心に 1 日~数日間にわたる比較的規模の大きい高濃度事象が発生していた。6 月、9 月と 11 月は、 高濃度日数が少なかった。高濃度発生率としては、規模の大きい事象が発生した 4、8、10、 12 月に分散して高く、明瞭な季節傾向は見られなかった。前年度の結果と比較すると、5 月~7 月の高濃度発生率は大きく減少しており、また 9 月の高濃度発生率は引き続き小さ かった。大規模な高濃度事象の発生状況は年によって異なっており、今後も複数年に対し て同様の集計を行い、データを蓄積した上で、再度検討していく必要がある。

・常時監視データ(1時間値)を用いて高濃度事象の詳細解析を行った結果、以下のことが確認された。また、表 4-6-1 に発生規模とともに推定される生成要因を整理した。

3月31日~4月1日の事象(春季)は、関東平野中央部で高濃度化した。31日は気温が上昇し、一部の地域で夜間から NOx の高濃度化が観察された。1日には寒冷前線の南下に伴い雨へと転じ、駿河湾と東京湾からやや強い南西の風が吹き込んでいたが、のちに鹿島灘から北東の弱い風が吹き関東平野の中央部に風の収束域が形成された。また14時ごろから東京タワーの高度別気温において、103 m以下で逆転層が生じ、その後も大気が安定したことで、PM2.5 の高濃度化が起こった。その後北東の風が卓越し、PM2.5 の高濃度地域が南下したと考えられた。以上のとおり、PM2.5 の高濃度化が限定した地域で発生し、ほぼ同時間帯の同地域でNOx の濃度が高くなったことから、地域汚染の影響を受けたと考えられた。

7月26日~7月27日の事象(夏季S1)は、東京、神奈川の境を中心に風の収束域が形成され、神奈川県東部と埼玉県南東部を中心に高濃度化した。関東甲信では40地点で猛暑日を観測し、埼玉、東京、千葉、神奈川では光化学スモッグ注意報が発令されており、光化学反応による二次生成が活発であったと考えられた。PM2.5の高濃度地域では二酸化硫黄およびNMHCが高い地点もあった。これらのことから、本事象は光化学反応による二次粒子生成の影響を受け高濃度化したものと考えられた。

7月31日~8月3日の事象(夏季S2)では、関東平野の広い範囲で高濃度化した。この期間、西日本から東日本にかけて広い範囲で猛暑日を記録し、茨城、埼玉、千葉では光化学スモッグ注意報が発令された。夜間になると光化学オキシダント濃度は低下するものの、PM2.5 濃度は関東平野の中央付近を中心に夜間でも高い濃度が維持された。翌日も気温が上昇し、光化学反応によって濃度が上昇することで連日の高濃度化を引き起こしたと考えられた。

また、成分分析の結果から、主要成分は硫酸イオン、アンモニウムイオン、有機炭素であった。硫酸イオンは夏季 S1 及び夏季 S2 において濃度の上昇が見られたが、有機炭素は夏季 S2 において上昇が見られなかった。これは気温の上昇に伴い、有機炭素成分がガス状成分として存在し、粒子化が起こりにくい、あるいは粒子化となっても揮発しやすい状況にあったためと推察された。また、硫酸イオンの高濃度化から光化学反応による PM2.5 の高濃度化が支持された。

10月10~11日の事象(秋季)は、10月9日から広範囲でやや濃度が上昇し、10日に栃木、埼玉、茨城、千葉で高濃度化した。さらに10日正午ごろから吹き始めた南風の影響を受け濃度の高い地点が北上し、21時ごろからは栃木での北風の進入により、栃木南部、埼玉東部で滞留し、濃度が高くなったと考えられた。10日正午前後の広範囲における濃度上昇から広域的な汚染が示唆され、また、その後のPM2.5の高濃度化地点にNOx、NMHCの高濃度化地点と重なる部分があることから硝酸系二次粒子や有機粒子の影響も受けたと考えられ、広域汚染と地域汚染の複合事例と推察された。

12月10日の事象(冬季)は、関東平野中央部で高濃度化した。10日正午ごろから夕方にかけて関東平野の中央部で風の収束域が形成され、PM2.5 濃度が上昇した。またこの時間から雲に覆われて日照がなくなったことから NO_2 の光分解反応が抑制され、 NO_2 の濃度が上昇した。加えて東京タワーの高度別気温に、逆転層が観察され、安定した大気の中で湿度の上昇に伴い硝酸塩の生成が促進されたことで高濃度化したと考えられた。また限られた地域において濃度が上昇していることから大気が安定した状態にある中で粒子化が促進されたことによる地域汚染と考えられた。

平成 27 年度に観測された高濃度化要因は、安定した大気中での二次粒子並びに有機粒子 生成が主であり、昨年度までと同様、地域汚染の影響が大きいものであった。地域内での 発生源対策が重要である。

表 4-6-1 高濃度事例の特徴と推測される要因

事象	規模	特徵	推測される要因
春季	小	関東平野中央部で高濃度化 NOx の高濃度地域と合致	関東平野中央部に風の収束域が形成 燃焼を伴う発生源による影響 高度別気温における逆転層の形成による 大気の安定化
夏季 S1	小	神奈川県東部と埼玉県南東部を中心に高濃度化 埼玉、東京、千葉、神奈川で光 化学スモッグ注意報が発令 高濃度化地域の一部で二酸化硫 黄および NMHC も高濃度化	東京、神奈川の境を中心に風の収束域が形成 光化学反応による二次粒子生成の影響
夏季 S2	中	関東平野の広い範囲で高濃度化 期間を通して猛暑日 夜間も高濃度を維持	光化学反応による二次粒子生成の影響
秋季	小	広範囲でやや濃度が上昇 その後栃木、埼玉、茨城、千葉 で高濃度化 PM2.5 高濃度地域は NOx と NMHC の高濃度地域と一部合致	栃木南部、埼玉北部に風の収束域が形成 硝酸系二次粒子や有機粒子の形成
冬季	中	関東平野中央部で高濃度化	関東平野中央部に風の収束域を形成 日照の減少に起因する NO ₂ の光分解抑制 による硝酸系二次粒子生成 高度別気温における逆転層の形成による 大気の安定化

本編 5 発生源寄与の推定(千葉県, 山梨県, さいたま市)

5 発生源寄与の推定

5.1 計算方法

昨年の報告書で、従来より使用してきた線形計画法と米国 EPA が提唱している有効分散最小二乗法(EPA-CMB8.2)を比較して、全体的に CMB8.2 の方が妥当な結果が得られる傾向があり、計算の妥当性を示す評価指数も複数あり、マニュアルも整備されていることから、今後は EPA-CMB8.2 により、発生源寄与の推定を行うこととなった。

昨年と同様に東京都微小粒子状物質検討会報告書⁽¹⁾の発生源データを引用して計算した山神らの報告⁽²⁾を参考にして、表 5-1-1 の 8 発生源×20 項目の発生源データを用いて計算を行った。フィッティング(CMB 法の適合計算)に用いたのは SO_4^{2-} 、 NO_3^- 、 Cl^- 、 NH_4^+ 、OC を除いた 15 項目である。今回のデータについて計算したところ、全地点で計算が中断することなく計算結果が得られた。

環境データは、各調査期間の全期間にあたる 14 個のデータを平均し、検出下限値以下のデータについては、検出下限値の半分とした。測定誤差については、14 個のデータの標準偏差を用いた。14 個全てが検出限界以下の場合は標準偏差がゼロになるが、ゼロでは計算できないため、平均値と同じ検出下限値の半分とした。昨年度はコア期間の 7 個のデータで計算をしたために標準偏差のバラッキが大きく、いくつか計算が進まない事例が見られた。

二次粒子の計算については、昨年は SO_4^2 -、 NO_3 -、Cl-、 NH_4 +の合計に OC の 1.4 倍を加えた後、寄与率計算で得られた一次粒子分を差し引いて計算したが、今回はより詳細に二次粒子の挙動を調べるために 4 種類の二次粒子を計算した。まず、 SO_4^2 -、 NO_3 -、Cl-、 NH_4 +の当量濃度を比較して NH_4 +過剰であれば、 SO_4^2 -と NO_3 -と Cl-の当量濃度を元に (NH_4) $_2SO_4$ と NH_4NO_3 と NH_4Cl を計算し、過剰の NH_4 +をその他とした。 NH_4 +が不足の場合は、 NH_4 +濃度を元に SO_4^2 -、 NO_3 -、Cl-を当量濃度比に配分して (NH_4) $_2SO_4$ と NH_4NO_3 と NH_4Cl を計算した後、過剰の SO_4^2 -と NO_3 -と Cl-をその他とした。 (NH_4) $_2SO_4$ は硫酸塩の二次粒子であるため、二次(硫酸塩)と表記する。同様に NH_4NO_3 は二次(硝酸塩)、 NH_4Cl は二次(塩化物)と表記する。有機エアロゾルの二次粒子については、OC の 1.6 倍を乗じて、寄与率計算で得られた一次粒子分を差し引いて計算した。差し引く OC についても 1.6 倍とした。係数を 1.4 から 1.6 としたのは、3 章と同様に都市域の平均的な値としたためである。この二次粒子については二次(OC)と表記する。

CMB8.2 の計算では、Best Fit 等、いくつかのオプションが付けられるが、今回も昨年同様 Source Elimination のみを選択した。これは「負となる発生源について除外して再計算する」ものである。

表 5-1-1 発生源データ (単位: g/g)

	SC)4	NO)3	C	1	N	a	K	
道路粉じん	$5.68x10^{-4}$	$4.49x10^{-4}$	$1.93x10^{-4}$	1.18x10 ⁻⁴	3.35×10^{-4}	1.53x10 ⁻⁴	1.25x10 ⁻²	2.66x10 ⁻³	1.27x10 ⁻²	3.39x10 ⁻³
海塩粒子	7.80x10 ⁻²	1.60x10 ⁻²	0.00	0.00	0.551	2.75x10 ⁻²	0.304	1.52x10 ⁻²	1.10x10 ⁻²	1.10x10 ⁻³
鉄鋼工業	0.00	0.00	0.00	0.00	3.41x10 ⁻²	6.82x10 ⁻³	1.36x10 ⁻²	2.72x10 ⁻³	1.32x10 ⁻²	2.64x10 ⁻³
石油燃焼	0.318	0.160	0.00	0.00	$9.20 \text{x} 10^{-4}$	9.20×10^{-4}	1.00x10 ⁻²	5.00×10^{-3}	$8.50 \text{x} 10^{-4}$	$8.50 \text{x} 10^{-4}$
廃棄物焼却	0.00	0.00	0.00	0.00	0.270	2.70x10 ⁻²	0.120	1.20x10 ⁻²	0.200	2.00x10 ⁻²
自動車排ガス	2.16x10 ⁻²	2.16x10 ⁻³	0.00	0.00	$2.00 \text{x} 10^{-4}$	2.00x10 ⁻⁵	7.64x10 ⁻⁵	7.64x10 ⁻⁶	1.97x10 ⁻⁴	1.97x10 ⁻⁵
ブレ ー キ粉じん	4.90x10 ⁻³	1.52×10^{-4}	0.00	0.00	1.25x10 ⁻²	2.50x10 ⁻³	7.60x10 ⁻³	2.50x10 ⁻³	3.50x10 ⁻³	$7.00 \text{x} 10^{-4}$
植物燃焼	1.61x10 ⁻²	3.22x10 ⁻³	2.03x10 ⁻³	4.06×10^{-4}	2.59x10 ⁻²	5.18x10 ⁻³	6.55x10 ⁻³	1.31x10 ⁻³	6.32x10 ⁻²	1.26x10 ⁻²

	Ca		NI	I 4	0	С	EC		A	l
道路粉じん	5.52x10 ⁻²	2.62x10 ⁻²	6.05x10 ⁻³	9.68×10^{-4}	6.90x10 ⁻²	2.83x10 ⁻²	1.28x10 ⁻²	4.10x10 ⁻³	6.11x10 ⁻²	7.66×10^{-3}
海塩粒子	1.17x10 ⁻²	$5.85x10^{-4}$	0.00	0.00	0.00	0.00	2.80x10 ⁻⁸	2.80x10 ⁻⁸	2.90x10 ⁻⁷	2.90x10 ⁻⁸
鉄鋼工業	4.51x10 ⁻²	9.02x10 ⁻³	0.00	0.00	0.00	0.00	$5.00 \text{x} 10^{-3}$	5.00×10^{-3}	9.99x10 ⁻³	2.00x10 ⁻³
石油燃焼	$8.50 \text{x} 10^{-4}$	$4.30x10^{-4}$	0.00	0.00	0.00	0.00	0.300	0.125	2.10x10 ⁻³	1.10x10 ⁻³
廃棄物焼却	1.10x10 ⁻²	2.20x10 ⁻³	0.00	0.00	0.00	0.00	5.00x10 ⁻²	5.00x10 ⁻²	4.20x10 ⁻³	8.40×10^{-4}
自動車排ガス	1.46x10 ⁻³	$1.46 \text{x} 10^{-4}$	0.00	0.00	0.247	2.47x10 ⁻²	0.494	4.94x10 ⁻²	1.57x10 ⁻³	1.57×10^{-4}
ブレーキ粉じん	3.18x10 ⁻²	6.36x10 ⁻³	0.00	0.00	7.98x10 ⁻²	3.07x10 ⁻²	0.153	7.60x10 ⁻²	1.94x10 ⁻²	3.88x10 ⁻³
植物燃焼	4.15x10 ⁻⁴	8.30x10 ⁻⁵	1.27x10 ⁻²	2.54x10 ⁻³	0.415	8.29x10 ⁻²	9.71x10 ⁻²	1.94x10 ⁻²	$3.70 \text{x} 10^{-4}$	7.40x10 ⁻⁵

	S	Sc		V	(Cr	M	n	F	e
道路粉じん	1.33x10 ⁻⁵	3.52x10 ⁻⁶	$1.08x10^{-4}$	3.45x10 ⁻⁵	2.79x10 ⁻⁴	1.55x10 ⁻⁴	1.06x10 ⁻³	3.86x10 ⁻⁴	5.31x10 ⁻²	6.42×10^{-3}
海塩粒子	1.20x10 ⁻⁹	$6.00 \text{x} 10^{-10}$	5.80x10 ⁻⁸	1.74x10 ⁻⁸	1.50x10 ⁻⁹	4.50x10 ⁻¹⁰	5.80x10 ⁻⁸	1.74x10 ⁻⁸	2.90x10 ⁻⁷	8.70x10 ⁻⁸
鉄鋼工業	1.32x10 ⁻⁶	2.64x10 ⁻⁷	1.25x10 ⁻⁴	2.50x10 ⁻⁵	3.16x10 ⁻³	6.32x10 ⁻⁴	2.20x10 ⁻²	2.20x10 ⁻³	0.157	1.57x10 ⁻²
石油燃焼	9.00x10 ⁻⁸	4.50x10 ⁻⁸	6.38x10 ⁻³	3.19x10 ⁻³	2.10x10 ⁻⁴	1.05x10 ⁻⁴	$1.20 \text{x} 10^{-4}$	4.00x10 ⁻⁵	4.60x10 ⁻³	2.30x10 ⁻³
廃棄物焼却	4.60x10 ⁻⁷	9.20x10 ⁻⁸	2.70x10 ⁻⁵	1.35x10 ⁻⁵	8.50x10 ⁻⁴	8.50x10 ⁻⁴	3.30×10^{-4}	3.30x10 ⁻⁴	6.10x10 ⁻³	6.10×10^{-3}
自動車排ガス	1.19x10 ⁻⁷	1.19x10 ⁻⁸	7.25x10 ⁻⁶	7.25x10 ⁻⁷	1.16x10 ⁻⁵	1.16x10 ⁻⁶	1.93x10 ⁻⁵	1.93x10 ⁻⁶	9.89x10 ⁻⁴	9.89x10 ⁻⁵
ブレ ー キ粉じん	4.00x10 ⁻⁶	8.00x10 ⁻⁷	5.90x10 ⁻⁵	1.18x10 ⁻⁵	4.21x10 ⁻⁴	8.42x10 ⁻⁵	$7.20 \text{x} 10^{-4}$	1.44x10 ⁻⁴	9.12x10 ⁻²	1.82x10 ⁻²
植物燃焼	0.00	0.00	0.00	0.00	0.00	0.00	1.00x10 ⁻⁵	2.00x10 ⁻⁶	$1.00 \text{x} 10^{-4}$	2.00x10 ⁻⁵

	Zı	n	A	s	S	e	S	b	L	a
道路粉じん	1.31x10 ⁻³	$7.96 \text{x} 10^{-4}$	1.13x10 ⁻⁵	4.19x10 ⁻⁶	1.43x10 ⁻⁶	5.50x10 ⁻⁷	1.30x10 ⁻⁵	7.42x10 ⁻⁶	3.13x10 ⁻⁵	1.05x10 ⁻⁵
海塩粒子	2.90x10 ⁻⁸	8.70x10 ⁻⁹	2.90x10 ⁻⁸	8.70x10 ⁻⁹	1.20x10 ⁻⁷	3.60x10 ⁻⁸	1.40x10 ⁻⁸	4.20x10 ⁻⁹	9.00x10 ⁻⁹	2.70x10 ⁻⁹
鉄鋼工業	5.15x10 ⁻²	1.03x10 ⁻²	$1.03 \text{x} 10^{-4}$	1.03×10^{-4}	5.11x10 ⁻⁵	5.11x10 ⁻⁵	9.00x10 ⁻⁵	9.00x10 ⁻⁵	9.75x10 ⁻⁶	9.75x10 ⁻⁶
石油燃焼	$4.00 \text{x} 10^{-4}$	$2.00x10^{-4}$	2.30x10 ⁻⁵	1.20x10 ⁻⁵	4.80x10 ⁻⁵	4.80x10 ⁻⁵	6.90x10 ⁻⁶	3.50x10 ⁻⁶	4.00x10 ⁻⁵	4.00x10 ⁻⁵
廃棄物焼却	2.60x10 ⁻²	1.30x10 ⁻²	$1.50 \text{x} 10^{-4}$	1.50×10^{-4}	0.00	0.00	9.52x10 ⁻⁴	4.80×10^{-4}	7.70x10 ⁻⁶	7.70x10 ⁻⁶
自動車排ガス	$6.24 \text{x} 10^{-4}$	6.24x10 ⁻⁵	3.69x10 ⁻⁶	3.69x10 ⁻⁷	1.67x10 ⁻⁶	1.67x10 ⁻⁷	1.96x10 ⁻⁵	1.96x10 ⁻⁶	3.41x10 ⁻⁷	3.41x10 ⁻⁸
ブレーキ粉じん	$3.26 \text{x} 10^{-3}$	$6.52 \text{x} 10^{-4}$	2.20x10 ⁻⁵	4.40x10 ⁻⁶	3.50x10 ⁻⁶	1.75x10 ⁻⁶	2.13x10 ⁻³	4.26x10 ⁻⁴	$7.00 \text{x} 10^{-6}$	1.40x10 ⁻⁶
植物燃焼	$1.00 \text{x} 10^{-4}$	2.00x10 ⁻⁵	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

右側の数字は誤差

太字:フィッティングに使用した項目

SO4~NH4は水溶性イオンのデータ

5.2 春季の計算結果

EPA-CMB8.2 による春季の計算結果を図 5-2-1 に示す。PM2.5 濃度が四季の中で 2 番目に高く、19 地点で $15 \mu \, \mathrm{g/m^3}$ を超え、前橋とさいたまで $20 \mu \, \mathrm{g/m^3}$ を超えた。千葉と川崎でその他がマイナスとなった。マップ上に円グラフで示した結果を図 5-2-2 に示す。このマップでは、円グラフの重なりを減らして見やすくするためにいくつかの地点の位置をずらしている。また、円グラフの表示では、その他がマイナスの場合は二次 (OC) をその分だけ減らして調整した。

大和で植物燃焼の寄与が約 23%と非常に大きいことと前橋とさいたまで道路 粉じんの寄与が 17%近いという特徴がある。二次(塩化物)はほぼゼロであったが、二次(硫酸塩)はどの地点でも 3 割以上を占めることが多く、二次(OC) は 2 割以上を占めることが多かった。また、関東中央部で二次(硝酸塩)が多い傾向がある。

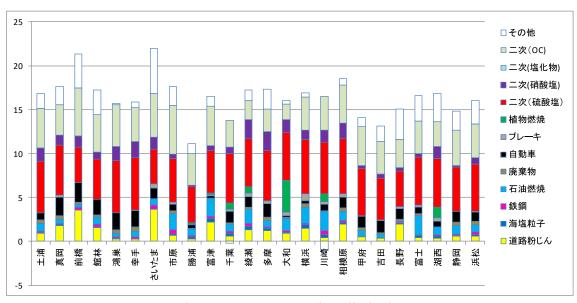


図 5-2-1 2015 年春季の発生源寄与率の推定結果 (単位: μg/m³)

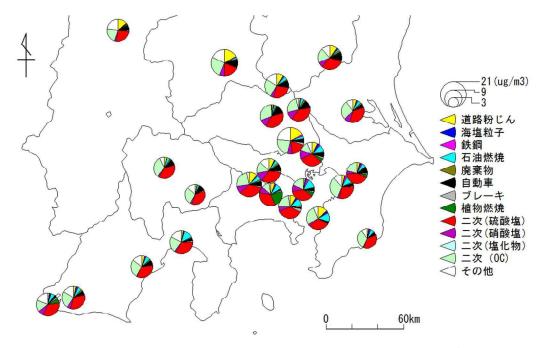


図 5-2-2 2015 年春季の発生源寄与率の推定結果(マップ)

5.3 夏季の計算結果

夏季の計算結果を図 5-3-1 及び図 5-3-2 に示す。PM2.5 濃度が最も高く、19 地点で $20 \mu \, \mathrm{g/m^3}$ を超えていた。千葉、横浜、川崎でその他がマイナスとなった。二次(硫酸塩)が四季で最も多く、3 割から 5 割以上を占め、平均で $9 \mu \, \mathrm{g/m^3}$ 以上の量があった。その一方で、二次(硝酸塩)は四季で最も少なく、二次(塩化物)はほぼゼロで、二次(OC)は二次(硫酸塩)の半分程度であった。石油燃焼は四季で最も多く、東京湾や駿河湾周辺で多い傾向があり、川崎が全データ

で最も多い結果となった。また、川崎は海塩粒子と鉄鋼も全データで最も多い 結果となった。

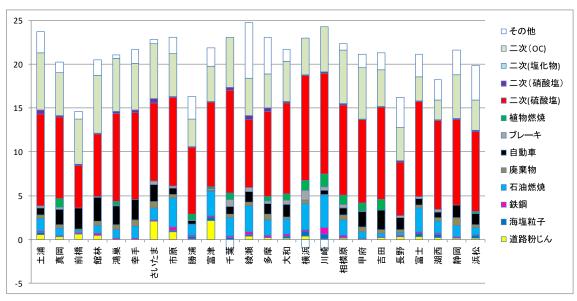


図 5-3-1 2015 年夏季の発生源寄与率の推定結果 (単位: μg/m³)

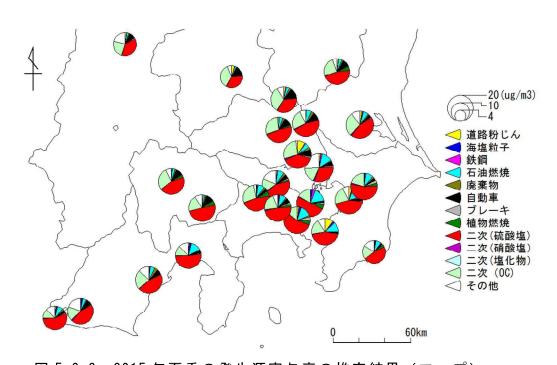


図 5-3-2 2015 年夏季の発生源寄与率の推定結果(マップ)

5.4 秋季の計算結果

秋季の計算結果を図 5-4-1 及び図 5-4-2 に示す。PM2.5 濃度が四季で 2 番目に低く、 $15\,\mu$ g/m³ を超えたのは真岡、館林、鴻巣、幸手、さいたま、浜松の 6 地点であった。その他が $0.1\,\mu$ g/m³ 以上のマイナスとなったのは、さいたま、千葉、横浜、川崎、大和、甲府、吉田の 7 地点であった。

秋季の最大成分は二次 (OC) で、15 地点で 3 割を超え、ほぼ 3 分の 1 を占めていた。鴻巣が全データで最大となり粒子の半分近くを占めた。二番目に多い成分は二次 (硫酸塩) で 14 地点で 2 割を超え、ほぼ 4 分の 1 を占めていた。二次 (硝酸塩) はほとんど 1 割未満で、二次 (塩化物) は春、夏に続いてほぼゼロであった。自動車の寄与量が四季の中で秋季が最も多く、館林では全データで最も高い結果となった。植物燃焼の寄与も四季の中で最も多く計算されており、千葉では 18%を超える結果が得られている。また、さいたまと浜松で道路粉じんが高い結果が得られた。

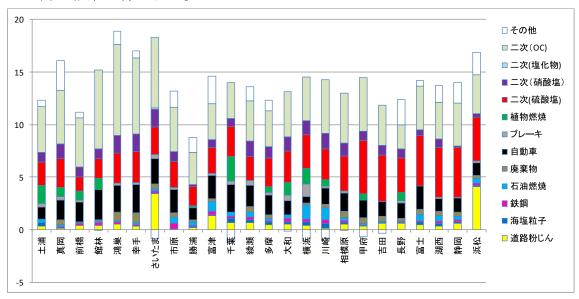


図 5-4-1 2015 年秋季の発生源寄与率の推定結果 (単位: μg/m³)

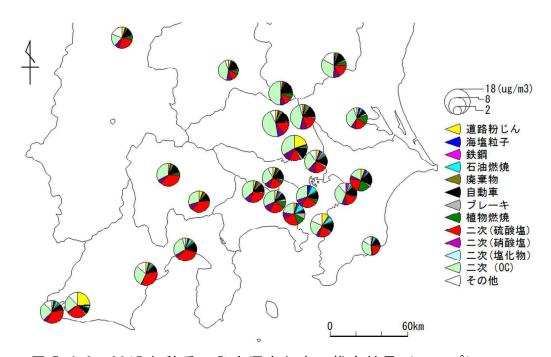


図 5-4-2 2015 年秋季の発生源寄与率の推定結果(マップ)

5.5 冬季の計算結果

冬季の計算結果を図 5-5-1 及び図 5-5-2 に示す。PM2.5 濃度が四季の中で最も低く、 $15 \mu \text{ g/m}^3$ を超えたのは真岡のみであった。ただし、真岡については測定期間が異なっている点に注意が必要である。その他がマイナスになる地点が多く、 $0.1 \mu \text{ g/m}^3$ 以上のマイナスとなった地点は、幸手、さいたま、多摩、富津、千葉、大和、横浜、川崎、相模原、富士、甲府、吉田の 12 地点と四季で最多であった。

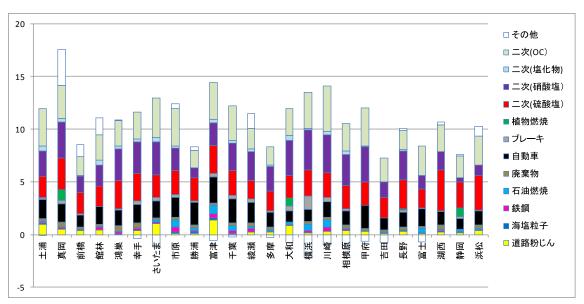


図 5-5-1 2015 年冬季の発生源寄与率の推定結果 (単位: μg/m³)

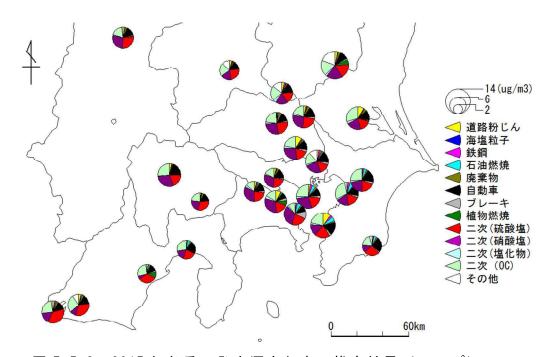


図 5-5-2 2015 年冬季の発生源寄与率の推定結果(マップ)

二次(硝酸塩)の寄与が四季の中で最大で、20 地点で二次(硫酸塩)を上回る結果となった。二次(硫酸塩)が 2 割を超えたのは 13 地点であったが、二次(硝酸塩)が 3 割を超えたのは 20 地点であった。二次(塩化物)が計算されるようになったが、20 地点で $0.4\,\mu\,\mathrm{g/m^3}$ 未満と少ない結果であった。また、二次(OC)が 2 割を超えたのは 20 地点であった。一方、自動車の寄与量が秋季に次いで多い結果で、寄与率で見ると四季で最大であった。横浜のブレーキ粉じんが全データで最大で 10% を超えた。

5.6 四季の結果の妥当性について

四季の計算の妥当性の評価値を表 5-6-1 に示す。 R^2 はフィッティングに用いた項目の誤差で重み付けした実測値と計算値の相関係数の二乗である。マニュアル $^{(3)}$ では、0.8 未満ではよく説明できていないと書かれている。 χ^2 は実測値と計算値の差の二乗和を誤差で重みづけした後、自由度(=項目数一発生源数)で除したものである。マニュアルでは、1 未満が良い適合で、 $1\sim2$ なら受け入れ可、4 以上なら一つ以上の項目がよく説明されていないと書かれている。

% MASS は計算された寄与量が実測値の PM2.5 濃度に占める割合であり、今回は二次粒子の計算を後で行ったため、二次粒子分を加えた値を示した。マニュアルには PM2.5 濃度が $10~\mu g/m^3$ 未満でなければ、 $80\sim120\%$ の範囲で受け入れ可とある。

		春季			夏季			秋季			冬季	
	R^2	χ^2	%MASS									
土浦	0.840	0.83	90.3%	0.930	0.26	89.8%	0.714	1.47	95.3%	0.870	0.60	100.3%
真岡	0.851	0.98	88.2%	0.825	0.63	94.2%	0.814	1.01	82.5%	0.856	0.66	80.5%
前橋	0.803	1.39	81.9%	0.803	0.91	94.1%	0.794	1.15	95.1%	0.845	0.65	87.0%
館林	0.874	0.70	83.7%	0.815	1.52	91.2%	0.893	0.58	100.2%	0.843	0.44	85.7%
鴻巣	0.852	0.45	99.2%	0.828	1.00	98.1%	0.798	0.83	93.1%	0.738	1.06	99.3%
幸手	0.827	0.59	95.9%	0.848	0.63	92.4%	0.844	0.54	95.9%	0.853	0.63	103.0%
さいたま	0.775	1.07	76.6%	0.897	0.79	98.0%	0.868	0.84	105.0%	0.747	1.41	109.5%
市原	0.859	0.93	87.8%	0.900	0.63	92.1%	0.815	1.04	88.4%	0.801	0.94	96.5%
勝浦	0.654	1.57	89.9%	0.764	1.17	84.0%	0.766	1.17	84.0%	0.812	0.87	95.8%
富津	0.790	1.12	93.4%	0.848	0.92	90.5%	0.744	1.47	81.9%	0.783	1.73	104.0%
千葉	0.873	0.66	101.4%	0.816	0.84	105.2%	0.805	1.13	108.6%	0.719	1.46	102.0%
綾瀬	0.901	0.91	93.2%	0.881	0.89	74.5%	0.785	1.57	90.2%	0.654	2.17	88.0%
多摩	0.842	1.53	87.1%	0.883	1.13	81.8%	0.816	1.57	92.2%	0.799	1.02	103.6%
大和	0.663	2.31	97.4%	0.903	1.01	93.6%	0.907	0.68	101.0%	0.753	1.25	106.8%
横浜	0.801	0.99	97.2%	0.899	0.63	104.2%	0.858	0.96	108.2%	0.823	0.92	119.2%
川崎	0.875	0.96	106.5%	0.905	0.56	105.8%	0.851	1.07	108.2%	0.869	0.41	107.4%
相模原	0.871	0.96	96.3%	0.887	1.19	96.7%	0.828	1.22	100.0%	0.860	0.77	113.6%
甲府	0.849	0.99	92.8%	0.912	0.56	92.7%	0.883	0.44	104.8%	0.731	0.85	105.4%
吉田	0.747	1.52	86.6%	0.907	0.51	91.0%	0.853	0.55	103.1%	0.684	1.11	111.3%
長野	0.856	1.11	77.1%	0.908	0.66	78.6%	0.836	0.73	80.5%	0.842	0.61	98.1%
富士	0.832	0.86	82.5%	0.895	0.49	87.7%	0.864	0.69	96.2%	0.909	0.46	108.7%
湖西	0.815	0.96	81.0%	0.839	0.68	87.5%	0.846	0.67	88.5%	0.870	0.41	97.3%
静岡	0.887	0.87	85.3%	0.870	0.51	86.9%	0.874	0.76	86.0%	0.862	0.80	98.6%
浜松	0.845	0.81	83.3%	0.782	0.62	80.5%	0.860	0.72	87.2%	0.868	0.38	90.5%

表 5-6-1 四季の計算結果の妥当性

 R^2 が 0.8 未満は春季が 5 例、夏季が 2 例、秋季が 6 例、冬季が 9 例で、濃度 が最も高い夏季で適合性が高く、濃度が最も低い冬季の適合性が低かった。四季を通じて χ^2 が 4 を超えることはなく、2 を超えたのも春季の大和と冬季の綾瀬のみであった。%MASS が 80%未満は春季が 2 例、夏季は 2 例、秋季と冬季は 1 例もなく、120%以上は四季を通じてなかった。四季を通じて不適合とならなかったのは 10 地点で、1 例のみ不適合となったのは 6 地点で、2 例のみは 4 地点であった。最も多い 3 例の不適合はさいたまと<mark>綾瀬と</mark>勝浦と富津の 4 地点であった。全体的に計算が良好に行われたと考えられる。

5.7 季節別 区分別の発生源寄与について

5.7.1 寄与量について

表 5-7-1 に季節別、区分別の傾向をまとめた。この表で「最大データ」というのは、全計算結果の寄与量(μ g/m³)の最大値である。春と夏に多くなるものが多く、道路粉じん、海塩粒子、鉄鋼、石油燃焼、廃棄物焼却、二次(硫酸塩)、二次(OC)が挙げられる。秋に多くなる発生源は自動車と植物燃焼、二次(OC)で、冬に多くなる発生源は二次(硝酸塩)と二次(塩化物)だけであった。

	最大データ	春	夏	秋	冬	区分別
道路粉じん	浜松/秋	1.16	0.42	0.74	0.39	春は内陸>沿岸
海塩粒子	川崎/夏	0.18	0.17	0.14	0.04	沿岸>内陸
鉄鋼	川崎/夏	0.20	0.20	0.22	0.17	沿岸>内陸
石油燃焼	川崎/夏	1.03	1.62	0.40	0.82	沿岸>内陸
廃棄物焼却	幸手/秋	0.25	0.41	0.37	0.26	内陸>沿岸
自動車排ガス	館林/秋	1.12	1.28	1.79	1.60	冬を除いて内陸>沿岸
ブレーキ粉じん	横浜/冬	0.23	0.27	0.25	0.25	沿岸>内陸
植物燃焼	大和/春	0.31	0.42	0.51	0.12	春は沿岸>内陸
二次(硫酸塩)	横浜/夏	5.25	9.45	3.13	2.37	やや沿岸>内陸
二次(硝酸塩)	横浜/冬	1.05	0.19	1.01	2.38	内陸>沿岸
二次(塩化物)	館林/冬	0.00	0.00	0.01	0.21	やや内陸>沿岸
二次(OC)	鴻巣/秋	3.85	4.74	4.60	2.75	冬を除いて内陸>沿岸
その他	綾瀬/夏	1.73	1.79	0.71	0.01	春は内陸>沿岸

表 5-7-1 季節別・区分別の発生源寄与量

注)数値は全地点の平均濃度(μg/m³) 色の凡例:<mark>最も高い</mark>・二番目に高い・最も低い

区分別にみると、内陸>沿岸となるのは春の道路粉じん(黄砂や土壌の舞い上がりが含まれると考えられる。)、廃棄物焼却、冬を除く自動車、二次(硝酸塩)、冬を除く二次(OC)が挙げられる。内陸>沿岸の傾向が見られるものとしては、二次(塩化物)が挙げられる。沿岸>内陸となるものは、海塩粒子、鉄鋼、石油燃焼、ブレーキ粉じん、春の植物燃焼で、沿岸>内陸の傾向が見られるものは、二次(硫酸塩)であった。

5.7.2 寄与率について

図 5-7-1 に春季の沿岸・内陸の区分別の平均寄与率を示す。四季で最も道路 粉じんの割合が多く、内陸が沿岸より高くなっている。石油燃焼はコンビナートや工場が多い沿岸が内陸よりも高くなっているが、自動車は逆に内陸>沿岸であり、ディーゼル車運行規制地域外が多い影響が考えられる。二次(硫酸塩)はやや沿岸>内陸で、二次(OC)はやや内陸>沿岸の傾向がある。

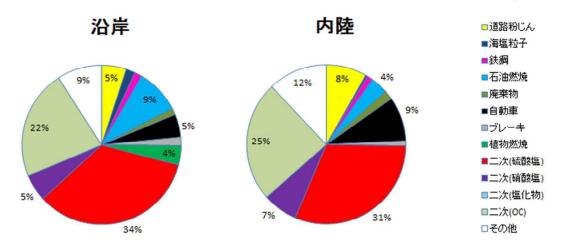


図 5-7-1 春季の沿岸・内陸の区分別の寄与率

図 5-7-2 に夏季の沿岸・内陸の区分別の平均寄与率を示す。四季で最も濃度が高い時期であり、最大成分は二次(硫酸塩)で、沿岸が内陸よりも高い傾向である。2 番目の成分である二次(OC)は春季と同様に内陸>沿岸である。石油燃焼は沿岸では3 番目の成分であり、寄与率では内陸の2倍になる。内陸では自動車3番目の成分であり、寄与率では沿岸の2倍以上である。

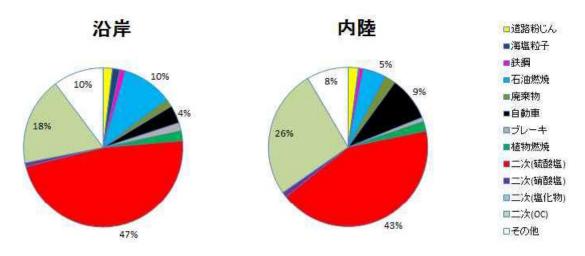


図 5-7-2 夏季の沿岸・内陸の区分別の寄与率

図 5-7-3 に秋季の沿岸・内陸の区分別の平均寄与率を示す。二次(OC)が秋

季の最大成分で、春季・夏季同様に内陸>沿岸である2番目の成分である二次 (硫酸塩)は沿岸>内陸である。自動車の寄与量は四季で最大であるが、寄与率では冬に次いで2番目であり、やや内陸>沿岸である。夏季にほとんど見られなかった二次(硝酸塩)が寄与率としては4番目の成分となった。石油燃焼は春季・夏季同様に沿岸>内陸であるが、寄与率としては大きくはない。

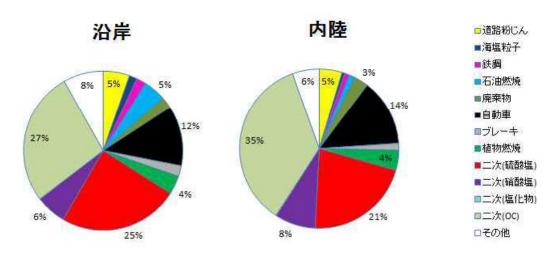


図 5-7-3 秋季の沿岸・内陸の区分別の寄与率

図 5-7-4 に冬季の沿岸・内陸の区分別の平均寄与率を示す。沿岸では最大成分は二次(硫酸塩)であるが、二次(OC)とほとんど変わらず、二次(硝酸塩)も接近している。内陸の最大成分は二次(硝酸塩)であるが、二次(OC)と二次(硫酸塩)も接近している。4番目の成分はいずれも自動車であるが、沿岸と内陸で同じ寄与率となった。石油燃焼は四季全てについて沿岸>内陸であった。

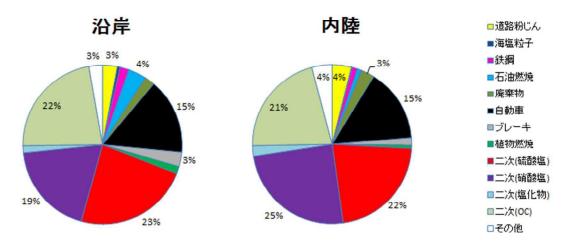


図 5-7-4 冬季の沿岸・内陸の区分別の寄与率

5.8 二次粒子の計算方法について

今回のレポートでは、15項目×8 発生源で CMB8.2 の計算を行ってから水溶性イオンのデータと OC の分析値から二次粒子の計算を別に行うこととしたが、二次粒子を 4 種類に分けたため、当量濃度を確認して NH4+が過剰なのか不足なのかを判断して計算する必要があり、実測値と計算値の関係などもあって計算がやや複雑になった。 CMB8.2 のマニュアルでは計算例として示されている発生源データとして、硫酸アンモニウムと硝酸アンモニウムと硝酸アンモニウムと硝酸アンモニウムと硝酸アンモニウムと硝酸アンモニウムと硝酸アンモニウムと硝酸アンモニウムは SO_4^{2-} が 72.7%で NH_4 +が 27.3%の組成で、硝酸アンモニウムが NO_3 -が 77.45%で NH_4 +が 22.55%の組成で、硝酸ナトリウムが NO_3 -が 72.95% で Na+が 27.05%の組成としたデータセットが例として示され、不確かさについてはいずれも 1/10 が設定されている。そこで、今後の参考のために表 5-1-1 の 20 項目から OC のみフィッティングから外して、硫酸アンモニウムと硝酸アンモニウムと硝酸ナトリウムを発生源として加えた 19 項目×11 発生源で CMB8.2 の計算を行ってみた。

その結果、図 5-8-1 に示すように発生源データに硫酸アンモニウム等を入力して求めた二次(硫酸塩)の推定値は、 SO_4^{2-} 、 NO_3^- 、 Cl^- 、 NH_4^+ の当量濃度から別計算で求めたものとほとんど変わらなかった。

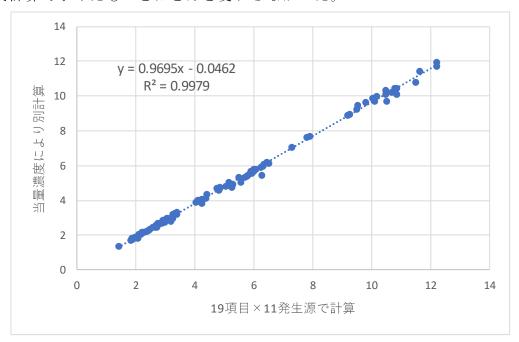


図 5-8-1 二つの方法による二次(硫酸塩)の推定値の比較 (単位: μg/m³)

一方、二次(硝酸塩)については、図 5-8-2 に示すようにややバラツキが見られ、当量濃度から別計算する方がおよそ 2μ g/m³以上の濃度で小さくなる傾向が認められた。硝酸ナトリウムについては、冬季はほとんど計算されなかったが、その他の季節では平均して 1%程度の寄与率が計算された。

二次粒子の計算方法としては、発生源データに硫酸アンモニウム等を入力する方法の方が簡単である。100%OCという発生源を想定する武田らの方法 4)

を採用すれば二次(OC)の計算も可能となる。ただ、輸送中に変質しないという前提条件と合致するかという問題もあり、CMB8.2のマニュアル例に示されていない二次(塩化物)の計算も含めて、今後検討すべき課題である

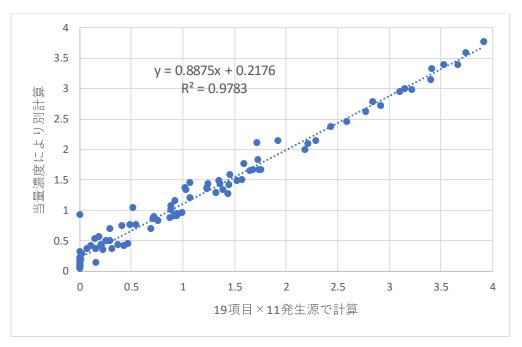


図 5-8-2 二つの方法による二次 (硝酸塩) の推定値の比較 (単位: μg/m³)

参考文献

- 1) 東京都微小粒子状物質検討会:東京都微小粒子状物質検討会報告書(2011) http://www.kankyo.metro.tokyo.jp/air/pm25v23.pdf
- 2) 山神真紀子、久恒邦裕、池盛文数:微小粒子状物質 (PM2.5) の発生源寄与率の推定.名古屋市環境科学調査センター年報.1. p.20-25 (2012)
- 3) EPA: EPA-CMB8.2 User's Manual

http://www3.epa.gov/ttn/scram/models/receptor/EPA-CMB82Manual.pdf

4) 武田麻由子、小松宏昭:神奈川県における微小粒子状物質 (PM2.5) の特徴について (平成24年度) (2) CMB法を用いた発生源寄与の推定.神奈川県環境科学センター研究報告 第36 号 18~26頁(2013)

6 今後の課題

本調査会議は、昭和 56 年から浮遊粒子状物質に係る調査研究を開始し、平成 20 年度 以降は PM2.5 に着目した新たな調査を実施してきたところである。一方で平成 21 年には 環境基準が告示され、その後、環境省により平成 24 年には成分測定マニュアルが策定さ れるなど、国の動きを受け、全国の自治体では常時監視としての成分分析の体制整備が進 められた。さらに、平成 28 年 4 月には成分測定マニュアルの一部が改訂され、水溶性有 機炭素成分及びガス成分の測定方法が通知された。

近年、本調査会議では、PM2.5 の成分分析の分析体制はほぼ整備されたことから、各自治体が常時監視として実施する成分分析調査の結果を持ち寄り、解析を行う活動に移行している。本年度においても、平成27年度の調査結果を持ち寄ってデータの解析を行うとともに、平成28年度の調査を実施した。また、自治体間での分析手法の統一や精度の確保のほか、PM2.5 が高濃度となる要因の解析手法の検討などの新たな課題も浮上している。

また、平成27年度から、夏季のみ成分分析データの解析を行うこととした変更に伴い、報告書の構成を従来の成分毎から、季節毎に変更し、それぞれの季節について各自治体が執筆担当することとした。この変更により、各自治体が取り扱うデータ量が大幅に増えたこともあり、報告内容に統一感を持たせる工夫が必要となった。

このため、今後は次に挙げる事項について検討していきたい。

- · PM2.5 高濃度事例の解析手法
- 年間を通じた解析(調査結果解析)方法
- 自治体間の分析精度の確保
- ・ 成分測定マニュアル改訂への対応
- 報告書の構成変更に伴う執筆内容の工夫

これらの事項に対して、本調査会では、自動測定機による常時監視データ及び成分分析結果等による高濃度事例の解析、精度管理試料を用いた自治体間での分析精度の確保に努めており、今後も継続的な検討が必要と思われる。また、国民への情報発信強化のため平成26年度に新たにホームページを作成しており、今後も本調査会の活動及び調査結果について情報提供を続けていく方針である。

Ⅱ 資料編

1 試料採取要領

1.1 PM2.5調査

PM2.5 採取については、「環境大気常時監視マニュアル第 6 版 (平成 22 年 3 月)」(以下、常時監視マニュアル)や「大気中微小粒子状物質 (PM2.5) 成分測定マニュアル (平成 24 年 4 月)」(以下、成分測定マニュアル)に準拠した。捕集に使用した PM2.5 サンプラー及びろ紙を表 1-1 に示した。

表 1-1 捕集に使用した PM2.5 サンプラー及びろ紙

				PTFE			石英
番号	地点名	サンプラー		ろ紙	サンプラー		ろ紙
		,,,,	メーカー	品名	,,,,	メーカー	品名
1	土浦	2025	Whatman	PM2.5 エアモニタリング 用フィルター 46.2mm 2 μ m	2000	Whatman	Grade QMA ϕ 47
2	真岡	2025D	PALL	Teflo 47mmΦ 2.0 μ m	2025D	PALL	Model 2500QAT-UP 47mmΦ
3	前橋	2025	PALL	Teflo 47mmΦ 2.0 μ m	2025	PALL	Model 2500QAT-UP 47mmΦ
4	館林	2025i	PALL	Teflo 47mmΦ 2.0 μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
5	鴻巣	2025	PALL	Teflo 47mmΦ 2.0 μ m	2025	PALL	Model 2500QAT-UP 47mmΦ
6	幸手	2025	PALL	Teflo 47mmΦ 2.0 μ m	2025	PALL	Model 2500QAT-UP 47mmΦ
7	さいたま	2000	Whatman	PM2.5 エアモニタリング 用フィルター 46.2mm 2μm	2000	PALL	Model 2500QAT-UP 47mmΦ
8	市原	2025i	PALL	Teflo 47mmΦ 2.0 μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
9	勝浦	2025i	PALL	Teflo 47mmΦ 2.0 μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
10	富津	2025i	PALL	Teflo 47 mm Φ 2.0μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
11	千葉	2025i	PALL	Teflo 47mmΦ 2.0 μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
12	綾瀬	LV-250	Whatman	PM2.5 エアモニタリング用フィルター 46.2mm 2μm	LV-250	PALL	Model 2500QAT-UP 47mmΦ
13	多摩	LV-250	Whatman	PM2.5 エアモニタリング 用フィルター 46.2mm 2μm	LV-250	PALL	Model 2500QAT-UP 47mmΦ
14	大和	2025	PALL	Teflo 47 mm Φ 2.0μ m	2025	PALL	Model 2500QAT-UP 47mmΦ
15	横浜	MCAS-SJA	PALL	Teflo 47mmΦ 2.0 μ m	MCAS-SJA	PALL	Model 2500QAT-UP 47mmΦ
16	川崎	2025i	PALL	Teflo 47 mm Φ 2.0μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
17	相模原	MCAS-SJ	Whatman	PM2.5 エアモニタリング 用フィルター 46.2mm 2μm	MCAS-SJ	PALL	Model 2500QAT-UP 47mmΦ
18	甲府	2025i	PALL	Teflo 47mmΦ 2.0 μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
19	吉田	2025i	PALL	Teflo 47mmΦ 2.0 μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
20	長野	MCI	Whatman	PM2.5 エアモニタリング 用フィルター 46.2mm 2 μ m	MCI	PALL	Model 2500QAT-UP 47mmΦ
21	富士	2025	PALL	Teflo 47mmΦ 2.0 μ m	2025	PALL	Model 2500QAT-UP 47mmΦ
22	湖西	2025	PALL	Teflo 47 mm Φ 2.0μ m	2025	PALL	Model 2500QAT-UP 47mmΦ
23	静岡	2025i	PALL	Teflo 47 mm Φ 2.0μ m	2025i	PALL	Model 2500QAT-UP 47mmΦ
24	浜松	2025	PALL	Teflo 47mmΦ 2.0 μ m	2025	PALL	Model 2500QAT-UP 47mmΦ

注) 2025: FRM 2025 吸引ガス量 16.7L/分(実) 2025: FRM 2025i 吸引ガス量 16.7L/分(実) 2025D: 2025-D (FEM) 吸引ガス量 16.7L/分(実) 2000: FRM 2000 吸引ガス量 16.7L/分(実) MCI: 東京ダイレック MCI サンプラー 吸引ガス量 20L/分(標準)

LV-250:柴田科学 吸引ガス量 16.7L/分(標準) MCAS-SJA:ムラタ計測器 吸引ガス量 30L/分(実)

(実):実流量 (標準):標準流量

1.2 フィルターパック法による調査

本調査会議のフィルターパック法による調査では、平成 26 年 7 月 29 日に成分測定マニュアルへ追加された「ガス成分の測定方法(暫定法)」、または、平成 26 年度と同様に全国環境研究所協議会酸性雨調査部会で実施している酸性雨調査のフィルターパック法を参考に試料の採取を行った。

写真 1-2-1 フィルターホルダー(4 段)

- (1) 本調査の試料採取に用いたフィルターホルダー (4 段) は、写真 1-2-1 のように、F0 から F3 までの 4 段構造になっている。F0 ではエアロゾル成分 (SO_4^2 、 NO_3 、Cl、 NH_4 、 Na^+ 、 K^+ 、 Mg^{2+} 、 Ca^{2+})を、F1~F3 ではガス成分 (SO_2 , HNO_3 , NH_3 , HCl) を捕集する。
- (2) 準備は、ディスポーサブルのプラスチック手袋を着用して行う。まず、フィルターホルダー(4 段)を専用の組み立てキットで分解する。その後、可能であれば実験室用洗浄液に1晩浸し(省略してもよい)、次いで水道水、超純水(EC:0.15mS/m以下)の順で洗浄し、乾燥後、チャック付ポリ袋に入れて保存する。
- (3) F0 のろ紙は市販品の PTFE ろ紙を、F1 のろ紙は市販品のポリアミドろ紙を用いる。 F2 はセルロースろ紙を 6%炭酸カリウム+2%グリセリン水溶液に含浸したものを用い、 F3 はセルロースろ紙を 5%リン酸+2%グリセリン水溶液に含浸したものを用いる。
- (4) フィルターホルダー組立は、ディスポーサブルのプラスチック手袋を着用して、純水で洗浄したプラスチック製ピンセットを用いて行う。フィルターホルダー (4 段)を専用の組み立てキットを用いて、フィルターホルダーの各段にろ紙を装着する。ホルダー間の漏れを防ぐために、ろ紙の装着や脱着は隙間やろ紙の破損に細心の注意を払いながら行う。ろ紙及び組立て後のフィルターを長時間保存する際にはチャック付ポリ袋に入れて密封した上で、さらにアルミ蒸着パックに入れて密封し、冷蔵保存する。
- (5) 試料の採取にあたっては、捕集装置の大気採取部が地上から 5~10m の高さになるように設置する。また、屋上に設置して、採取部が建物の上に有る場合は、床面から 3m 以上になるようにする。捕集装置の構成は、フィルターホルダー(雨よけ内、下向き)→フローメーター→乾性積算流量計→バイパス→ポンプの順に空気が流れるようにする。
- (6) 流量を 1L/min に調整し試料を採取する。専用の組み立てキットを用いて、フィルターホルダー (4 段) を分解してろ紙を取り出し、各段のろ紙をそれぞれペトリスライド (ろ紙ケース) に入れ、チャック付ポリ袋で密封し、さらにアルミ蒸着パックに入れて密封し、分析まで冷蔵保存する。なお、フィルターホルダーからろ紙を取り出す際は、ディスポーサブルのプラスチック手袋を着用して、純水で洗浄したプラスチックピンセットを用いて行う。ろ紙回収後は可能な限り早く抽出操作を実施する。

2 測定方法及び検出下限・定量下限

2.1 粒子状物質濃度

(1) ろ紙の秤量

常時監視マニュアル及び成分測定マニュアルに準拠し、ろ紙を一定の温度、相対湿度で恒量化し、精密電子天秤で秤量した。秤量の条件を表2-1に示した。

表 2-1 ろ紙の秤量に関する測定地点ごとの条件

					温度	相対湿度		精密電子天秤	
番号	地点名			ろ紙の種類	(°C)		感度	機器	名 機種
				PM2.5 エアモニタリング用フィルター	(*C)	(%)	(μg)	メーカー	
1	土浦	PTFE	Whatman	PM2.5 エアモーダリンク用フィルター 46.2mm 2μm	21.5±1.5	35±5	1	METTLER TOLEDO	MX-5
2	真岡	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	METTLER TOLEDO	MX-5
3	前橋	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	Sartorius	MSA2.7S-000-DF
4	館林	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	Sartorius	MSA2.7S-000-DF
5	鴻巣	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	Sartorius	MSE6.6S-000-DF
6	幸手	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	Sartorius	MSE6.6S-000-DF
7	さいたま	PTFE	Whatman	PM2.5 エアモニタリング用フィルター 46.2mm 2 μ m	21.5±1.5	35±5	1	Sartorius	M5P-F
8	市原	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	エー・アンド・デー	BM-20
9	勝浦	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	エー・アンド・デー	BM-20
10	富津	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	エー・アンド・デー	BM-20
11	千葉	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	METTLER TOLEDO	XP2UV
12	綾瀬	PTFE	Whatman	PM2.5 エアモニタリング 用フィルター 46.2mm 2 μ m	21.5±1.5	35±5	1	Sartorius	MC-5
13	多摩	PTFE	Whatman	PM2.5 エアモニタリング用フィルター 46.2mm 2μm	21.5±1.5	35±5	1	Sartorius	MC-5
14	大和	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	0.1	Sartorius	SE2-F
15	横浜	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	0.1	Sartorius	SE2-F
16	川崎	PTFE	PALL	Teflo 47mmΦ 2.0 <i>μ</i> m	21.5±1.5	35±5	1	METTLER TOLEDO	XP6
17	相模原	PTFE	Whatman	PM2.5 エアモニタリング用フィルター 46.2mm 2 μ m	21.5±1.5	35±5	0.1	Sartorius	SE2-F
18	甲府	PTFE	PALL	Teflo 47mmΦ 2.0 <i>μ</i> m	21.5±1.5	35±5	1	Sartorius	MSA2.7S-000-DF
19	吉田	PTFE	PALL	Teflo 47mmΦ 2.0 <i>μ</i> m	21.5±1.5	35±5	1	Sartorius	MSA2.7S-000-DF
20	長野	PTFE	Whatman	PM2.5 エアモニタリング 用フィルター 46.2mm 2 μ m	21.5±1.5	35±5	1	Sartorius	ME5-F
21	富士	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	Sartorius	ME5-F
22	湖西	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	Sartorius	ME5-F
23	静岡	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	Sartorius	MSA2.7S-000-DF
24	浜松	PTFE	PALL	Teflo 47mmΦ 2.0 μ m	21.5±1.5	35±5	1	Sartorius	MSA2.7S-000-DF

(2) 濃度の算出

ろ紙の秤量結果及び吸引大気量から次式により粒子状物質の濃度 (μg/m³) を求めた。

粒子状物質の濃度 = (We - W_b - Δ WL) ÷ V

ただし We : 捕集後のろ紙の重量 (μg)

W_b : 捕集前のろ紙の重量 (μg)

 Δ WL: ラボブランク用フィルター (3 枚以上) の

捕集前後の質量変化の算術平均値

V : 吸引大気量 (m³)

2.2 水溶性イオン成分濃度

分析方法は、成分測定マニュアルに準拠した。ろ紙を切出し、抽出瓶に入れた。ここに超純水を加えて抽出した後、フィルタでろ過し、試験液とした。これをイオンクロマトグラフに注入し、試験液中の陽イオン 5 成分(NH_4 ⁺、Na⁺、K⁺、 Mg^{2+} 、 Ca^{2+})、陰イオン 3 成分(C1 $^-$ 、 $N0_3$ $^-$ 、 $S0_4$ 2) の濃度を測定した。分析条件を表 2 - 2 に示した。

表 2-2 水溶性イオン成分濃度の分析条件

番号	地点名	ろ紙 の	切出し量	親水処理(エタノー	超純水	抽出	4		前処理 フィルター			イオンクロマトグ	`ラフ
		種類	(枚)	ル)	(mL)	方法	時間(分)	メーカー	品名	型式	メーカー	カチオン	アニオン
1	土浦	PTFE	1/2	-	10	振とう+超音波	20	ADVANTEC	DISMIC	25HP020AN	DIONEX	ICS-2000	ICS-2000
2	真岡	石英	1/4	-	10	超音波	20	ADVANTEC	DISMIC	25CS045AN	Thermo Scientific	ICS-2100	ICS-2100
3	前橋	PTFE	1/2	ı	20	振とう+超音波	20+15	ADVANTEC	DISMIC	25HP045AN	DIONEX	ICS-1100	ICS-1100
4	館林	PTFE	1/2	1	20	振とう+超音波	20+15	ADVANTEC	DISMIC	25HP045AN	DIONEX	ICS-1100	ICS-1100
5	鴻巣	PTFE	1/2	あり	10	超音波	15	ADVANTEC	GLクロマトディスク	_	DIONEX	ICS-2100	ICS-2100
6	幸手	PTFE	1/2	あり	10	超音波	15	ADVANTEC	GLクロマトディスク	-	DIONEX	ICS-2100	ICS-2100
7	さいたま	石英	1/4	1	10	超音波	30	GL Science	GLクロマトディスク	13AI	DIONEX	ICS-1500	ICS-2000
8	市原	石英	1/4	1	8	超音波	20	ADVANTEC	DISMIC	-	東ソー	IC-2010	IC-2010
9	勝浦	石英	1/4	1	8	超音波	20	ADVANTEC	DISMIC	-	東ソー	IC-2010	IC-2010
10	富津	石英	1/4	1	8	超音波	20	ADVANTEC	DISMIC	-	東ソー	IC-2010	IC-2010
11	千葉	石英	1/4	ı	10	超音波	20	Membrane Solutions Limited	MS PTFE Syringe filter	symplepure PTFE 0.45 μ m	DIONEX	DX-320	DX-320
12	綾瀬	石英	1/4	1	15	超音波	10	ADVANTEC	DISMIC	13HP	DIONEX	ICS-1100	ICS-1100
13	多摩	石英	1/4	1	15	超音波	10	ADVANTEC	DISMIC	13HP	DIONEX	ICS-1100	ICS-1100
14	大和	石英	1/4	1	8	超音波	20	Millipore	Millex	LH 0.45µm	東ソー	IC-2010	IC-2010
15	横浜	石英	1/4	1	10	超音波	15	Millipore	Millex	LH 0.45µm	DIONEX	ICS-1000 ICS-1500	ICS-1000 ICS-1500
16	川崎	石英	1/2	_	10	超音波	10	ADVANTEC	DISMIC	25HP020AN	DIONEX	ICS-1600	ICS-2100
17	相模原	石英	1/4	1	10	超音波	15	Merck Millipore	Millex	Millex-HV	DIONEX	ICS-1000 ICS-1500	ICS-1000 ICS-1500
18	甲府	石英	1/2	-	20	超音波	20	PALL	Acrodisc	13mm, 0.45 μm	島津製作所	2C-ADsp	2C-ADsp
19	吉田	石英	1/2	-	20	超音波	20	PALL	Acrodisc	13mm, 0.46 μm	島津製作所	2C-ADsp	2C-ADsp
20	長野	石英	1/4	ı	10	超音波	20	GL Science	GLクロマトディスク	25AI	DIONEX	ICS-1000	ICS-1100
21	富士	石英	1/4	1	10	超音波	20	ADVANTEC	DISMIC	13HP045CN	DIONEX	ICS-1100	ICS-2100
22	湖西	石英	1/4	1	10	超音波	20	ADVANTEC	DISMIC	13HP045CN	DIONEX	ICS-1100	ICS-2100
23	静岡	PTFE	1/2	_	10	超音波	20	ADVANTEC	DISMIC	25CS045AS	Metrohm	IC-850	IC-850
24	浜松	PTFE	1/2	1	15	超音波	20	ADVANTEC	DISMIC	25HP045AN	Metrohm	930コンパクトICFlex	930コンパクHCFlex

2.3 炭素成分

2.3.1 炭素成分濃度

分析方法は、成分測定マニュアルに準拠した。試料を捕集した石英ろ紙を切出し、炭素分析装置により、IMPROVE プロトコル又は IMPROVE_A プロトコルにより濃度を測定した。なお、分析雰囲気は、0C1 から 0C4 までが 1He、1EC1 から 1EC3 までが 1EC3 まで 1EC3 までが 1EC3 までが 1EC3 まで 1EC3 までが 1EC3 までが 1EC3 までが 1EC3 までが 1EC3 ま

表 2-3-1 炭素成分濃度測定に関する測定地点ごとの条件

					() I = 1 + m								分析	条件						
番号	地点名	ろ紙	前処理	切出し量	分析装置	プロトコル名	0		0	C2		C3	0	C4	E			C2		C3
		温度(℃)	時間(h)		機種名		温度(℃)	時間(秒)												
1	土浦	350	1	0.515cm ²	DRI MODEL2001A	IMPROVE	120	-	250	_	450	-	550	-	550	_	700	-	800	-
2	真岡	350	1	1cm ²	Sunset Laboratory	IMPROVE	120	_	250	_	450	_	550	_	550	_	700	_	800	-
3	前橋	350	1	0.503cm ²	DRI MODEL2001A	IMPROVE	120	_	250	_	450	_	550	_	550	_	700	_	800	-
4	館林	350	1	0.503cm ²	DRI MODEL2001A	IMPROVE	120	-	250	_	450	-	550	_	550	_	700	-	800	-
5	鴻巣	350	0.5	0.503cm ²	DRI MODEL2001A	IMPROVE	120	_	250	_	450	_	550	_	550	_	700	_	800	-
6	幸手	350	0.5	0.503cm ²	DRI MODEL2001A	IMPROVE	120	-	250	_	450	_	550	-	550	_	700	_	800	-
7	さいたま	350	1	0.503cm ²	DRI MODEL2001A	IMPROVE	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
8	市原	350	1	1cm ²	Sunset Laboratory	IMPROVE	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
9	勝浦	350	1	1cm ²	Sunset Laboratory	IMPROVE	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
10	富津	350	1	1cm ²	Sunset Laboratory	IMPROVE	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
11	千葉	900	3	1.5cm ²	Sunset Laboratory	IMPROVE	120	自動昇温	250	自動昇温	450	自動昇温	550	自動昇温	550	自動昇温	700	自動昇温	800	自動昇温
12	綾瀬	-	_	1/4(枚)	DRI MODEL2001A	_	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
13	多摩	-	_	1/4(枚)	DRI MODEL2001A	_	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
14	大和	350	1	0.498cm ²	DRI MODEL2001A	IMPROVE	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
15	横浜	600	1	1/4(枚)	DRI MODEL2001A	IMPROVE	120	-	250	_	450	_	550	-	550	_	700	_	850	-
16	川崎	350	1	1cm ²	Sunset Laboratory	IMPROVE	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
17	相模原	350	1	0.503cm ²	DRI MODEL2001A	IMPROVE	120	150-580	250	150-580	450	150-580	550	150-580	550	150-580	700	150-580	800	150-580
18	甲府	500	3	1cm ²	Sunset Laboratory	IMPROVE	120	180	250	180	450	180	550	180	550	240	700	210	800	210
19	吉田	500	3	1cm ²	Sunset Laboratory	IMPROVE	120	180	250	180	450	180	550	180	550	240	700	210	800	210
20	長野	350	1	1cm ²	Sunset Laboratory	IMPROVE	120	180	250	180	450	180	550	180	550	480	700	210	800	210
21	富士	350	3	1cm ²	Sunset Laboratory	IMPROVE	120	180	250	180	450	180	550	180	550	240	700	210	800	210
22	湖西	350	3	1cm ²	Sunset Laboratory	IMPROVE	120	180	250	180	450	180	550	180	550	240	700	210	800	210
23	静岡	500	3	1cm ²	Sunset Laboratory	IMPROVE	120	180	250	180	450	180	550	180	550	240	700	210	800	210
24	浜松	500	3	1cm ²	Sunset Laboratory	IMPROVE	120	180	250	180	450	180	550	180	550	240	700	210	800	210

2.3.2 水溶性有機炭素成分濃度 (WSOC)

試料を捕集したろ紙を切出し、新鮮な超純水を加えて抽出し、その抽出液をフィルタで ろ過した。燃焼酸化-赤外線式 TOC 分析法により TOC 装置を用いて、抽出液中の全炭素の 濃度を測定した。分析条件を表 2-3-2 に示した。

表 2-3-2 水溶性有機炭素成分濃度測定に関する測定地点ごとの条件

番号	地点名	ろ紙 の	切出し量	超純水	抽出	1	前	処理フィルタ	Þ —	分	析装置
ш-7	70.M.U	種類	(枚)	(mL)	方法	時間(分)	メーカー	品名	型式	メーカー	機種
1	土浦	PTFE	1/2	10	振とう器+超音波	10+10	ADVANTEC	DISMIC	25HP020AN	島津製作所	TOC-V CSN
2	真岡	石英	1/2	30	超音波	20	ADVANTEC	DISMIC	13CP045AN	Analytikjena	multi N/C 3100
3	前橋	PTFE	1/2	20	振とう器+超音波	20+15	ADVANTEC	DISMIC	25HP045AN	島津製作所	TOC-V
4	館林	PTFE	1/2	20	振とう器+超音波	20+15	ADVANTEC	DISMIC	25HP045AN	島津製作所	TOC-V
5	鴻巣	_	_	_	_	-	-	ı	_	_	_
6	幸手	_	_	_	_	1	1	ı	_	_	_
7	さいたま	石英	1/4	15	超音波	20	ADVANTEC	DISMIC	13HP045AN	島津製作所	TOC-V CPH
8	市原	石英	1/4	8	超音波	20	ADVANTEC	DISMIC	_	島津製作所	TOC-5000
9	勝浦	石英	1/4	8	超音波	20	ADVANTEC	DISMIC	_	島津製作所	TOC-5000
10	富津	石英	1/4	8	超音波	20	ADVANTEC	DISMIC	- 島津製		TOC-5000
11	千葉	石英	1/4	15	超音波	20	Membrane Solutions Limited	MS PTFE Syringe filter	symplepure PTFE 0.45 μ m	島津製作所	TOC-V
12	綾瀬	_	_	_	_	1	1	_			_
13	多摩	_	_	-	_	1	1	ı			_
14	大和	石英	1/4	10	超音波	15	Millipore	マイレクス-LG	SLLGH13NL	Analytikjena	multi N/C 3100
15	横浜	_	_	_	_	1	1	ı	_	-	_
16	川崎	石英	1/2	10	超音波	10	ADVANTEC	DISMIC	25HP020AN	Analytikjena	multi N/C 3100
17	相模原	-	_	_	ı	ı	ı	ı	_	ı	_
18	甲府	石英	1/4	20	超音波	20	PALL	Acrodisc	13mm、0.45 μm	GE Analytical Instruments	Sievers900 LAB
19	吉田	石英	1/4	20	超音波	20	PALL	Acrodisc	13mm、0.45 μm	GE Analytical Instruments	Sievers900 LAB
20	長野	_	_	_	_	1	I	ı	_	_	_
21	富士	_	_		_	_	_		_	_	_
22	湖西	_	_	_	_	1	_	_	_	_	_
23	静岡	石英	1/2	20	超音波	20	ADVANTEC	DISMIC	25CS045AS	島津製作所	TOC-V CPH
24	浜松	_	_	_	_	_	_	_	_	_	_

2.4 金属等の無機元素成分濃度

分析方法は成分測定マニュアルに準拠し、酸分解/ICP-MS 法又は、エネルギー分散型蛍光 X 線分析法により、次の無機元素の濃度を測定した。ナトリウム (Na)、マグネシウム (Mg)、アルミニウム (A1)、カリウム (K)、カルシウム (Ca)、スカンジウム (Sc)、チタン (Ti)、バナジウム (V)、クロム (Cr)、マンガン (Mn)、鉄 (Fe)、コバルト (Co)、ニッケル (Ni)、銅 (Cu)、亜鉛 (Zn)、ヒ素 (As)、セレン (Se)、臭素 (Br)、ルビジウム (Rb)、ストロンチウム (Sr)、モリブデン (Mo)、銀 (Ag)、カドミウム (Cd)、アンチモン (Sb)、セシウム (Cs)、バリウム (Ba)、ランタン (La)、サマリウム (Sm)、ユウロピウム (Eu)、金 (Au)、鉛 (Pb)、ケイ素 (Si)、セリウム (Ce) (測定地点により異なる)。

(1) 酸分解/ICP-MS 法

- ① 試料を捕集したろ紙を切出し、密閉容器に入れ、<u>酸</u>を加えて分解した。分解後の溶液を、ホットプレート上で加熱蒸発させ、希硝酸を少量加えて加熱し、全量フラスコに移して標線まで希硝酸を加えて試験液を調製した。
- ② 試料を捕集したろ紙を切出し、酸を加え、超音波を 15~20 分照射した後に、80℃で 1 時間加熱した。続いて超音波を 15~20 分間照射し試験液とした。
- ① 又は②により調製した試験液を、内標準物質を用いて ICP-MS で測定した。

(2) エネルギー分散型蛍光 X 線分析法 (EDX)

試料を捕集した \underline{SK} を切り出さず、そのままサンプルホルダにセットし、エネルギー分散型蛍光 X 線装置で測定した。分析条件を表 2-4 に示した。

表 2-4 無機元素成分の分析条件

番号	地点名	測定方法	ろ紙の種類	切出し量	超純水	硝酸	ふっ化水素酸	過酸化水素	分解装	置	希硝酸	フラスコ容量	内標準物質	分析	f装置
ш.,	- 0,111	※ たりな	PAPE IZAK	(枚)			(mL)		メーカー	機種	調製濃度	(mL)	F17184-10094	メーカー	機種
1	土浦	酸分解/ICP-MS	PTFE	1/2	-	5	2	1	Milestone General	ETHOS D	0.32mol/L	10	In	Agilent	8800
2	真岡	酸分解/ICP-MS	PTFE	1/2	-	5	2	1	Milestone General	ETHOS One	5+95	50	In	Agilent	7500ce
3	前橋	酸分解/ICP-MS	PTFE	1/4	-	3	2	1	AntonPaar	Multiwave 3000	1%	50	In	Agilent	7500cx
4	館林	酸分解/ICP-MS	PTFE	1/4	-	3	2	1	AntonPaar	Multiwave 3000	1%	50	In	Agilent	7500cx
5	鴻巣	酸分解/ICP-MS	PTFE	1/2	-	5	1	1	Milestone General	ETHOS 1600	2%	10	In	Agilent	HP7700x
6	幸手	酸分解/ICP-MS	PTFE	1/2	-	5	1	1	Milestone General	ETHOS 1600	2%	10	In	Agilent	HP7700x
7	さいたま	酸分解/ICP-MS	PTFE	1	-	3.5	1	ı	Milestone General	MLS-1200MEGA	-	50	Nb,In,Pt,Bi	Agilent	7500ce
8	市原	酸分解/ICP-MS	PTFE	1/2	-	8	1	1	Milestone General	ETHOS Easy	0.3mol/L	15	In	Perkin Elmer	NexION300D
9	勝浦	酸分解/ICP-MS	PTFE	1/2	-	8	1	1	Milestone General	ETHOS Easy	0.3mol/L	15	In	Perkin Elmer	NexION300D
10	富津	酸分解/ICP-MS	PTFE	1/2	-	8	1	1	Milestone General	ETHOS Easy	0.3mol/L	15	In	Perkin Elmer	NexION300D
11	千葉	酸分解/ICP-MS	PTFE	1/2	-	5	1	1	Milestone General	ETHOS One	0.3mol/L	25	Rh	SII	SPQ9000
12	綾瀬	酸分解/ICP-MS	PTFE	1/4	-	-	-	-	Milestone General	ETHOS One	-	-	Be, Co, Ga, In, TI	Agilent	7500ce
13	多摩	酸分解/ICP-MS	PTFE	1/4	-	1	-	ı	Milestone General	ETHOS One	-	-	Be, Co, Ga, In, TI	Agilent	7500ce
14	大和	酸分解/ICP-MS	PTFE	1/2	-	5	3	-	Milestone General	-	1+99	50	Rh, TI	Agilent	7700x
15	横浜	ICP-MS/XRF法	PTFE	1/2	-	5	2	1	AntonPaar	Multiwave 3000	0.02	25	In	Agilent	7700x
16	川崎	酸分解/ICP-MS	PTFE	1/2	-	2.5	1	0.5	Analytikjena	TOPwave	0.3mol/L	20	Y, In, Ce, TI	Agilent	7700x
17	相模原	酸分解/ICP-MS	PTFE	1/2	-	5	2	1	AntonPaar	Multiwave3000	2+98	25	In	Agilent	7700x
18	甲府	酸分解/ICP-MS	PTFE	1/2	-		1%硝酸10	mL	-	-	1%	-	In	Agilent	7700x
19	吉田	酸分解/ICP-MS	PTFE	1/2	-		1%硝酸10	mL	-	-	1%	-	In	Agilent	7700x
20	長野	酸分解/ICP-MS	PTFE	1/2	-	5	2	1	Analitikjena	TOPwave	0.3mol/L	15	Y, In, TI	Agilent	7700x
21	富士	ヒートブロック超音波法/ICP-MS	PTFE	1/4	-		1%硝酸10	mL	-	-	1%	-	In	Agilent	7700x
22	湖西	ヒートプロック超音波法/ICP-MS	PTFE	1/4	-		1%硝酸10	mL	-	-	1%	-	In	Agilent	7700x
23	静岡	酸分解/ICP-MS	PTFE	1/2	-		1%硝酸10	mL	-	-	1%	-	In	Agilent	7700x
24	浜松	酸分解/ICP-MS	PTFE	1/2	-	5	2	1	AntonPaar	Multiwave PRO	1mol/L	15	Li, In, Y	Perkin Elmer	NexION300x

2.5 フィルターパック法によるガス成分、エアロゾル成分の濃度

遠沈管の中に各ろ紙を入れた後、F0、F1、F2、及びF3 にそれぞれ超純水や 0.05% (v/v) 過酸化水素水等を加え、振とう器又は超音波洗浄機を用いて抽出を行った。これらの抽出 液をフィルタでろ過した後、イオンクロマトグラフで各成分濃度を測定した。分析条件を表 2-5 に示した。

表 2-5 ガス成分、エアロゾル成分の分析条件

		切出し量					抽出溶媒				抽出		f	前処理フィルタ	2 —		分析装置	
番号	地点名	(枚)	F0	(mL)	F1	(mL)	F2	(mL)	F3	(mL)	方法	時間(分)	メーカー	品名	型式	メーカー	カチオン	アニオン
1	土浦	1	超純水	20	超純水	20	0.05%過酸化水素水	20	超純水	20	振とう+超音波	10+10	ADVANTEC	DISMIC	25HP020AN	Metrohm	IC-850	IC-850
2	真岡	1	1	-	-	1	-	ı	-	ı	-	1	1	-	1	-	1	-
3	前橋	1	超純水	20	超純水	20	0.05%過酸化水素水	20	超純水	20	振とう+超音波	20+15	MILLIPORE	Millex	SLLHH13NL	DIONEX	ICS-1100	ICS-1100
4	館林	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	鴻巣	1	超純水	10	超純水	10	超純水	10	超純水	10	超音波	20	National Scientific	F2513-17	-	DIONEX	IC-20	IC-20
6	幸手	1	超純水	10	超純水	10	超純水	10	超純水	10	超音波	20	National Scientific	F2513-17	-	DIONEX	IC-20	IC-20
7	さいたま	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	市原	1	超純水	10	超純水	10	超純水	10	超純水	10	振とう	20	ADVANTEC	DISMIC	-	東ソー	IC-2010	IC-2010
9	勝浦	1	超純水	10	超純水	10	超純水	10	超純水	10	振とう	20	ADVANTEC	DISMIC	-	東ソー	IC-2010	IC-2010
10	富津	1	超純水	10	超純水	10	超純水	10	超純水	10	振とう	20	ADVANTEC	DISMIC	1	東ソー	IC-2010	IC-2010
11	千葉	1	1	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
12	綾瀬	1	超純水	10	超純水	10	0.05%過酸化水素水	10	超純水	10	超音波	30	ADVANTEC	DISMIC	25cs	DIONEX	ISC-5000	ISC-5000
13	多摩	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14	大和	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	横浜	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16	川崎	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17	相模原	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18	甲府	1	超純水	20	超純水	20	0.05%過酸化水素水	20	超純水	20	振とう10分+超音波10分	20	Merck Millipore	Membrane Filters	HAWP04700	島津製作所	2C-ADsp	2C-ADsp
19	吉田	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	長野	1	超純水	20	超純水	20	0.05%過酸化水素水	20	超純水	20	振とう	20	GL Science	GLクロマトディスク	25AI	DIONEX	ICS-1000	ICS-1100
21	富士	1	超純水	20	超純水	20	0.05%過酸化水素水	20	超純水	20	超音波	20	ADVANTEC	DISMIC	13HP045CN	DIONEX	ICS-1100	ICS-2100
22	湖西	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23	静岡	1	1	-	-	-	-	-	-	1	-	-	1	-	-	-	1	-
24	浜松	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-

2.6 各成分の定量下限値

2.6.1 水溶性イオン成分

表 2-6-1-1 水溶性イオン成分濃度の検出下限値と定量下限値(春)

番号	地点名		Na [⁺]	NH ₄ ⁺	K ⁺	Mg ²⁺	Ca ²⁺	CI ⁻	NO ₃	SO ₄ ²⁻
钳万	地点石		$(\mu \mathrm{g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu{\rm g/m}^3)$	$(\mu{\rm g/m}^3)$	$(\mu{\rm g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu \mathrm{g/m}^3)$
-	;±	検出	0.0071	0.0092	0.045	0.011	0.021	0.0056	0.25	0.0045
1	土浦	定量	0.024	0.031	0.15	0.036	0.07	0.019	0.83	0.015
0	真岡	検出	0.0099	0.0029	0.0041	0.0035	0.078	0.01	0.02	0.0061
2	共叫	定量	0.033	0.0097	0.014	0.012	0.26	0.033	0.067	0.02
3	前橋	検出	0.0096	0.0043	0.03	0.015	0.017	0.016	0.051	0.18
ა	別作	定量	0.032	0.014	0.1	0.051	0.056	0.052	0.17	0.59
4	館林	検出	0.0096	0.0043	0.03	0.015	0.017	0.016	0.051	0.18
4	民日イヤ	定量	0.032	0.014	0.1	0.051	0.056	0.052	0.17	0.59
5	鴻巣	検出	0.026	0.0014	0.0012	0.00063	0.0053	0.046	0.0015	0.0039
J	梅未	定量	0.085	0.0048	0.0041	0.0021	0.018	0.15	0.0049	0.013
6	幸手	検出	0.026	0.0014	0.0012	0.00063	0.0053	0.046	0.0015	0.0039
U	+7	定量	0.085	0.0048	0.0041	0.0021	0.018	0.15	0.0049	0.013
7	さいたま	検出	0.044	0.0074	0.037	0.0028	0.024	0.0067	0.018	0.0075
	20.728	定量	0.15	0.025	0.12	0.0092	0.078	0.022	0.059	0.025
8	市原	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
Ů	111755	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
9	勝浦	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
	מוזענו	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
10	富津	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
10	田什	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
11	千葉	検出	0.01	0.016	0.01	0.039	0.051	0.0052	0.076	0.061
	1 /	定量	0.034	0.052	0.035	0.13	0.17	0.017	0.25	0.2
12	綾瀬	検出	0.004	0.006	0.003	0.0006	0.006	0.01	0.003	0.002
	12/12	定量	0.01	0.02	0.01	0.002	0.02	0.04	0.009	0.008
13	多摩	検出	0.004	0.006	0.003	0.0006	0.006	0.01	0.003	0.002
		定量	0.01	0.02	0.01	0.002	0.02	0.04	0.009	0.008
14	大和	検出	0.065	0.031	0.58	0.0081	0.033	0.043	0.077	0.034
	7 7 1 1	定量	0.22	0.1	1.9	0.027	0.11	0.14	0.26	0.11
15	横浜	検出	0.01	0.02	0.01	0.01	0.02	0.02	0.02	0.01
		定量	0.04	0.06	0.01	0.01	0.04	0.04	0.05	0.02
16	川崎	検出	0.054	0.071	0.0052	0.00093	0.0052	0.0091	0.0074	0.019
		定量	0.18	0.24	0.017	0.0031	0.017	0.03	0.025	0.063
17	相模原	検出	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01
		定量	0.03	0.01	0.03	0.01	0.01	0.04	0.02	0.01
18	甲府	検出	0.022	0.022	0.013	0.038	0.04	0.011	0.28	0.016
		定量	0.072	0.075	0.045	0.13	0.13	0.036	0.94	0.052
19	吉田	検出 定量	0.022 0.072	0.022	0.013	0.038	0.04	0.011 0.036	0.28	0.016
		ļ		0.075	0.045	0.13		0.000	0.94	0.052
20	長野	検出 定量	0.02 0.068	0.003	0.0042 0.014	0.0034 0.011	0.033 0.11	0.026	0.024	0.022 0.072
								0.088	0.078	
21	富士	検出	0.011	0.0053	0.0065	0.0064		0.021	0.0091	0.044
		定量	0.035	0.018	0.022	0.021 0.0058	0.17	0.069	0.03	0.15 0.019
22	湖西	検出 定量	0.04	0.025	0.0078		0.11	0.014	0.0076	
			0.13 0.018	0.084 0.0020	0.026	0.019		0.047 0.078	0.026 0.079	0.063
23	静岡	検出 定量	0.018	0.0020	0.0018	0.0055				0.0082 0.028
					0.0060	0.018		0.26	0.27	
24	浜松	検出 定量	0.0061	0.009	0.014	0.0038		0.0043	0.0044	0.0042
		疋里	0.02	0.03	0.048	0.013	0.029	0.014	0.015	0.014

表 2-6-1-2 水溶性イオン成分濃度の検出下限値と定量下限値(夏)

(世紀/m²) (0.0018 0.003 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0045 0.0017 0.016 0.0066 0.0052 0.0044 0.01 0.0051 0.056 0.052 0.0046	番号	地点名		Na [⁺]	NH ₄ ⁺	K ⁺	Mg ²⁺	Ca ²⁺	CI ⁻	NO ₃	SO ₄ ²⁻
大田 定量	钳写	地点石		$(\mu \text{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu{\rm g/m}^3)$	$(\mu \text{g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{g/m}^3)$	$(\mu \mathrm{g/m}^3)$
定重 0.035 0.0064 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0049 0.054 0.0022 0.0 0.0016 0.18 0.073 0.0 0.015 0.016 0.18 0.073 0.0 0.015 0.017 0.016 0.0 3 前橋 接出 0.0096 0.0043 0.03 0.015 0.017 0.016 0.0 4 館林 後出 0.0096 0.0043 0.03 0.015 0.017 0.016 0.0 5 渡巣 た出 0.0026 0.0014 0.01 0.056 0.052 0.0 6 幸手 検出 0.026 0.0014 0.0012 0.00063 0.0053 0.046 0.0 6 幸手 検出 0.026 0.0014 0.0021 0.018 0.15 0.0 7 さいたま 検出 0.026 0.0014 0.0021 0.018 0.15 <td>1</td> <td>上:#</td> <td>検出</td> <td>0.01</td> <td>0.0019</td> <td>0.0013</td> <td>0.0018</td> <td>0.003</td> <td>0.0013</td> <td>0.0047</td> <td>0.00087</td>	1	上:#	検出	0.01	0.0019	0.0013	0.0018	0.003	0.0013	0.0047	0.00087
定量	1	上用	定量	0.035	0.0064	0.0042	0.006	0.01	0.0045	0.016	0.0029
大き宝	٥	中回	検出	0.024	0.025	0.0045	0.0049	0.054	0.022	0.038	0.017
日本 日本 日本 日本 日本 日本 日本 日本	2	异凹	定量	0.079	0.084	0.015	0.016	0.18	0.073	0.13	0.056
日本	2	前桥	検出	0.0096	0.0043	0.03	0.015	0.017	0.016	0.051	0.18
理解 定量 0.032 0.014 0.1 0.051 0.056 0.052 0.052 0.034 0.0012 0.00063 0.0053 0.046 0.0 0.0 0.0012 0.00063 0.0053 0.046 0.0 0.0 0.0 0.0 0.0014 0.0021 0.018 0.15 0.0	ა	別作	定量	0.032	0.014	0.1	0.051	0.056	0.052	0.17	0.59
万田 大田 大田 大田 大田 大田 大田 大田	4	给力士士	検出	0.0096	0.0043	0.03	0.015	0.017	0.016	0.051	0.18
日本子 大田 大田 大田 大田 大田 大田 大田 大	4	民日イヤ	定量	0.032	0.014	0.1	0.051		0.052	0.17	0.59
	5	油甾	検出	0.026	0.0014	0.0012	0.00063	0.0053	0.046	0.0015	0.0039
大和 大和 大和 大和 大和 大和 大和 大和	J	冷木	定量	0.085	0.0048	0.0041	0.0021	0.018	0.15	0.0049	0.013
	6	去壬	検出	0.026		0.0012	0.00063	0.0053	0.046	0.0015	0.0039
大田 大田 大田 大田 大田 大田 大田 大田	Ů	+7	定量	0.085	0.0048	0.0041	0.0021	0.018	0.15	0.0049	0.013
接出 0.0064 0.023 0.0063 0.0042 0.12 0.0091	7	さいたま						0.035		0.01	0.0066
11	′	2017.6								0.033	0.022
接出 0.13 0.15 0.02 0.013 0.15 0.32 0.02 0.003 0.044 0.096 0.003 0.044 0.096 0.003 0.044 0.096 0.003 0.015 0.32 0.004 0.045 0.006 0.0038 0.044 0.096 0.003 0.044 0.096 0.003 0.044 0.096 0.003 0.044 0.096 0.003 0.044 0.096 0.003 0.015 0.032 0.013 0.15 0.32 0.003 0.004 0.012 0.043 0.004 0.001 0.005 0.0009 0.001 0.007 0.00	8	市原								0.099	0.028
10 定量	ŭ	1117/1				0.02				0.33	0.093
日本 日本 日本 日本 日本 日本 日本 日本	9	踡 浦	検出	0.04	0.045	0.006		0.044	0.096	0.099	0.028
10 日本 定量		123 7113								0.33	0.093
大電 0.13 0.15 0.02 0.013 0.15 0.32 0.02 0.013 0.15 0.32 0.02 0.013 0.012 0.043 0.02 0.013 0.026 0.039 0.14 0.001 0.005 0.0009 0.001 0.007	10	宮津								0.099	0.028
11 十条 定量		ш/т								0.33	0.093
接出 0.015 0.2 0.013 0.026 0.039 0.14 0.02 0.007 0	11	千莲								0.049	0.55
12 核用 定量 0.003 0.02 0.003 0.004 0.02 0.02 0.02 13 多摩 検出 0.001 0.005 0.0009 0.001 0.007 0.002 0.002 0.003 0.004 0.012 0.033 0.27 0.003 0.01 <t< td=""><td>•</td><td>1 /</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.16</td><td>1.8</td></t<>	•	1 /								0.16	1.8
接出 0.003 0.02 0.003 0.004 0.02	12	綾瀬	検出							0.01	0.004
13 夕摩 定量 0.003 0.02 0.003 0.004 0.02 0.02 0.02 14 大和 検出 0.069 0.014 0.12 0.0037 0.016 0.081 0.0 定量 0.23 0.045 0.4 0.012 0.053 0.27 0.0 15 横出 0.01 0.02 0.01 0.01 0.01 0.01 0.01 16 川崎 検出 0.088 0.018 0.0039 0.0014 0.008 0.01 0.0 定量 0.29 0.062 0.013 0.0045 0.027 0.034 0.0 17 相模原 検出 0.01<		12/112								0.04	0.01
大和 検出 0.069 0.014 0.12 0.0037 0.016 0.081 0.003 0.004 0.02 0.02 0.003 0.004 0.02 0.003 0.016 0.081 0.003 0.004 0.012 0.053 0.27 0.003 0.014 0.012 0.053 0.27 0.004 0.015 0.035 0.012 0.041 0.014	13	多摩								0.01	0.004
14 大和 定量 0.23 0.045 0.4 0.012 0.053 0.27 0 15 横浜 検出 0.01 0.02 0.01 0.01 0.01 0.01 0.01 16 川崎 検出 0.088 0.018 0.0039 0.0014 0.008 0.01 0.0 17 相模原 6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 18 甲府 検出 0.021 0.13 0.023 0.05 0.12 0.041 10 本田 検出 0.0063 0.038 0.0069 0.015 0.035 0.012 0.041										0.04	0.01
接出 0.23 0.045 0.4 0.012 0.053 0.27 0.053 0.27 0.053 0.27 0.053 0.27 0.054 0.055 0.05	14	大和								0.042	0.034
15 技法 定量 0.02 0.06 0.03 0.01 0.03 0.02 0 16 川崎 検出 0.088 0.018 0.0039 0.0014 0.008 0.01 0.0 17 相模原 検出 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02										0.14	0.11
16 川崎 検出 0.088 0.018 0.0039 0.0014 0.008 0.01 0.0 17 相模原 検出 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.03 0.012 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0	15	横浜	検出							0.01	0.01
10 川崎 定量 0.29 0.062 0.013 0.0045 0.027 0.034 0.01 17 相模原 検出 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 18 甲府 検出 0.0063 0.038 0.0069 0.015 0.035 0.021 0.041 10 本田 検出 0.0063 0.038 0.0069 0.015 0.035 0.012 0.041										0.02	0.02
17 相模原 検出 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.04 0.02 0.03 0.03 0.00 0.015 0.035 0.012 0.012 0.02	16	川崎	検出							0.0079	0.028
17 相撲原 定量 0.01 0.04 0.01 0.01 0.02 0.02 0 18 甲府 検出 0.0063 0.038 0.0069 0.015 0.035 0.012 0.0 定量 0.021 0.13 0.023 0.05 0.12 0.041 10 本田 検出 0.0063 0.038 0.0069 0.015 0.035 0.012 0.0										0.026	0.094
18 甲府 検出 0.0063 0.038 0.0069 0.015 0.035 0.012 0.02 定量 0.021 0.13 0.023 0.05 0.12 0.041 10 本田 検出 0.0063 0.038 0.0069 0.015 0.035 0.012 0.0	17	相模原								0.01	0.01
18 中府 定量 0.021 0.13 0.023 0.05 0.12 0.041 10 表用 検出 0.0063 0.038 0.0069 0.015 0.035 0.012 0.										0.02	0.01
10 丰田 検出 0.0063 0.038 0.0069 0.015 0.035 0.012 0.	18	甲府	快田							0.031 0.1	0.039 0.13
1.0 士田 校田 0.0000 0.000 0.010 0.000 0.012 0.000										0.031	0.039
	19	吉田	完量								0.13
										0.018	0.025
70 長野 -	20	長野									0.083
 										0.007	0.014
	21	富士								0.023	0.048
烩出 0.056 0.035 0.0007 0.005 0.067 0.0082 0.		Mn								0.007	0.014
77 300	22	湖西								0.023	0.048
		±/2								0.052	0.0068
	23	静尚								0.18	0.022
绘 中 0.0036 0.0031 0.0086 0.0004 0.0005 0.0034 0.	<u> </u>	`C1''									0.0032
74 iii/0:	24	浜松								0.045	0.011

表 2-6-1-3 水溶性イオン成分濃度の検出下限値と定量下限値(秋)

番号	地点名		Na ⁺	NH ₄ ⁺	K ⁺	Mg ²⁺	Ca ²⁺	CI ⁻	NO ₃	SO ₄ ²⁻
田力	地点石		$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{g/m}^3)$	$(\mu \text{ g/m}^3)$
1	土浦	検出	0.018	0.0081	0.008	0.0052	0.025	0.0018	0.32	0.005
1	上湘	定量	0.06	0.027	0.027	0.017	0.082	0.0059	1.1	0.017
0	中回	検出	0.043	0.0049	0.0035	0.0069	0.04	0.025	0.019	0.0032
2	真岡	定量	0.14	0.016	0.012	0.023	0.13	0.085	0.063	0.011
	7. 14	検出	0.0096	0.0043	0.03	0.015	0.017	0.016	0.051	0.18
3	前橋	定量	0.032	0.014	0.1	0.051	0.056	0.052	0.17	0.59
4	& \- \-\-	検出	0.0096	0.0043	0.03	0.015	0.017	0.016	0.051	0.18
4	館林	定量	0.032	0.014	0.1	0.051	0.056	0.052	0.17	0.59
_	油出	検出	0.026	0.0014	0.0012	0.00063	0.0053	0.046	0.0015	0.0039
5	鴻巣	定量	0.085	0.0048	0.0041	0.0021	0.018	0.15	0.0049	0.013
	+ -	検出	0.026	0.0014	0.0012	0.00063	0.0053	0.046	0.0015	0.0039
6	幸手	定量	0.085	0.0048	0.0041	0.0021	0.018	0.15	0.0049	0.013
_	+1.1.+	検出	0.0038	0.0019	0.0033	0.0012	0.0073	0.0043	0.0032	0.005
7	さいたま	定量	0.013	0.0062	0.011	0.0038	0.024	0.014	0.011	0.017
8	市原	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
0	川沢	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
9	勝浦	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
9	別分用	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
10	富津	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
10	亩件	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
11	千葉	検出	0.012	0.0055	0.019	0.012	0.017	0.036	0.1	0.07
- ' '	丁未	定量	0.038	0.018	0.063	0.042	0.057	0.12	0.33	0.23
12	綾瀬	検出	0.008	0.003	0.007	0.0006	0.01	0.02	0.02	0.004
12	//火//	定量	0.03	0.01	0.02	0.002	0.05	0.07	0.08	0.01
13	多摩	検出	0.008	0.003	0.007	0.0006	0.01	0.02	0.02	0.004
10	ン手	定量	0.03	0.01	0.02	0.002	0.05	0.07	0.08	0.01
14	大和	検出	0.042	0.018	0.046	0.024	0.016	0.049	0.058	0.012
- 1 -	ノヘイロ	定量	0.14	0.058	0.15	0.081	0.054	0.16	0.19	0.041
15	横浜	検出	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	IX//C	定量	0.03	0.04	0.02	0.01	0.01	0.03	0.02	0.02
16	川崎	検出	0.021	0.0063	0.0038	0.00085	0.0068	0.0042	0.023	0.0063
	7.1	定量	0.071	0.021	0.013	0.0028	0.023	0.014	0.077	0.021
17	相模原	検出	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01
	111/11/11	定量	0.01	0.03	0.02	0.01	0.05	0.02	0.01	0.02
18	甲府	検出	0.053	0.015	0.0096	0.036	0.063	0.0021	0.025	0.036
	1 //3	定量	0.18	0.05	0.032	0.12	0.21	0.0071	0.083	0.12
19	吉田	検出	0.053	0.015	0.0096	0.036		0.0021	0.025	0.036
		定量	0.18		0.032	0.12		0.0071	0.083	0.12
20	長野	検出	0.0039	0.0026	0.0028	0.00097	0.02	0.0083	0.024	0.022
	242,	定量	0.013	0.0087	0.0093	0.0032		0.028		0.073
21	富士	検出	0.048	0.0056	0.005	0.0079		0.01	0.0047	0.019
		定量	0.16	0.019	0.017	0.026		0.034	0.016	0.062
22	湖西	検出	0.048	0.0056	0.005	0.0079		0.01	0.0047	0.019
—		定量	0.16	0.019	0.017	0.026		0.034	0.016	0.062
23	静岡	検出	0.015	0.0011	0.050	0.0022	0.037	0.016	0.10	0.0058
—		定量	0.050	0.0037	0.17	0.0073		0.052	0.33	0.019
24	浜松	検出	0.018	0.026	0.0082	0.0068		0.018	0.1	0.018
	** * ***	定量	0.061	0.088	0.027	0.023	0.21	0.06	0.34	0.06

表 2-6-1-4 水溶性イオン成分濃度の検出下限値と定量下限値(冬)

番号	地点名		Na ⁺	NH ₄ ⁺	K ⁺	$\mathrm{Mg}^{2^{+}}$	Ca ²⁺	Cl	NO ₃	SO ₄ ²⁻
田力	地点石		$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{g/m}^3)$	$(\mu \text{ g/m}^3)$
1	土浦	検出	0.0023	0.0011	0.011	0.0014	0.027	0.0097	0.14	0.0043
1	上湘	定量	0.0075	0.0035	0.035	0.0045	0.091	0.032	0.45	0.014
0	中回	検出	0.028	0.0069	0.004	0.0014	0.059	0.031	0.028	0.0085
2	真岡	定量	0.094	0.023	0.013	0.0046	0.2	0.1	0.092	0.028
0	7. 14	検出	0.0096	0.0043	0.03	0.015	0.017	0.016	0.051	0.18
3	前橋	定量	0.032	0.014	0.1	0.051	0.056	0.052	0.17	0.59
4	& \- \-\-	検出	0.0096	0.0043	0.03	0.015	0.017	0.016	0.051	0.18
4	館林	定量	0.032	0.014	0.1	0.051	0.056	0.052	0.17	0.59
_	油出	検出	0.026	0.0014	0.0012	0.00063	0.0053	0.046	0.0015	0.0039
5	鴻巣	定量	0.085	0.0048	0.0041	0.0021	0.018	0.15	0.0049	0.013
	+ -	検出	0.026	0.0014	0.0012	0.00063	0.0053	0.046	0.0015	0.0039
6	幸手	定量	0.085	0.0048	0.0041	0.0021	0.018	0.15	0.0049	0.013
_	+1.++	検出	0.014	0.0049	0.0018	0.0045	0.057	0.019	0.049	0.029
7	さいたま	定量	0.046	0.016	0.0059	0.015	0.19	0.062	0.16	0.097
_	士店	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
8	市原	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
	勝浦	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
9)	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
10	富津	検出	0.04	0.045	0.006	0.0038	0.044	0.096	0.099	0.028
10	当 净	定量	0.13	0.15	0.02	0.013	0.15	0.32	0.33	0.093
11	イ井	検出	0.014	0.0063	0.019	0.008	0.034	0.0061	0.012	0.0038
11	千葉	定量	0.047	0.021	0.063	0.027	0.11	0.02	0.041	0.013
12	綾瀬	検出	0.002	0.004	0.0008	0.001	0.003	0.005	0.008	0.004
12	液/棋	定量	0.007	0.01	0.003	0.004	0.01	0.02	0.03	0.01
13	多摩	検出	0.002	0.004	0.0008	0.001	0.003	0.005	0.008	0.004
13	多序	定量	0.007	0.01	0.003	0.004	0.01	0.02	0.03	0.01
14	大和	検出	0.021	0.15	0.04	0.0083	0.021	0.037	0.17	0.05
14	八仙	定量	0.07	0.51	0.13	0.028	0.07	0.12	0.56	0.17
15	横浜	検出	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
13	(円/六	定量	0.03	0.01	0.01	0.01	0.01	0.03	0.02	0.01
16	川崎	検出	0.063	0.004	0.0062	0.0015	0.0056	0.0098	0.011	0.014
10) i [MD]	定量	0.21	0.013	0.021	0.0051	0.019	0.033	0.036	0.046
17	相模原	検出	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01
_ ' '	口大水	定量	0.03	0.01	0.03	0.01	0.01	0.05	0.02	0.01
18	甲府	検出	0.021	0.039	0.0089	0.084	0.23	0.0065	0.072	0.027
10	נית ידי	定量	0.071	0.13	0.03	0.28	0.78	0.022	0.24	0.089
19	吉田	検出	0.021	0.039	0.0089	0.084	0.23	0.0065	0.072	0.027
-10	пш	定量	0.071	0.13	0.03	0.28	0.78	0.022	0.24	0.089
20	長野	検出	0.0037	0.0063	0.0021	0.0018		0.0083	0.024	0.022
	八山	定量	0.012	0.021	0.0071	0.0059		0.028		0.073
21	富士	検出	0.0068	0.003	0.0063	0.005		0.0047	0.0074	0.029
<u> </u>	m -	定量	0.023	0.0098	0.021	0.017	0.15	0.016	0.025	0.098
22	湖西	検出	0.0068	0.003	0.0063	0.005		0.0047	0.0074	0.029
<u> </u>	~~·	定量	0.023	0.0098	0.021	0.017	0.15	0.016	0.025	0.098
23	静岡	検出	0.065	0.0012	0.038	0.0039		0.055	0.12	0.032
_ <u>_</u> _	1-3	定量	0.22	0.0040	0.12	0.013		0.18	0.39	0.11
24	浜松	検出	0.014	0.0028	0.0052	0.0073		0.015	0.007	0.0076
	// J=4	定量	0.045	0.0093	0.017	0.024	0.052	0.049	0.023	0.025

2.6.2 炭素成分

表 2-6-2-1 炭素成分濃度の検出下限値と定量下限値(春)

	11h F 77		OC1	OC2	OC3	OC4	Ocpyro	EC1	EC2	EC3	OC	EC	wsoc
番号	地点名		$(\mu{\rm g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu{\rm g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu{\rm g/m}^3)$				
	1.4	検出	0.027	0.21	0.4	0.13	0.054	0.076	0.092	0.1	-	_	0.17
1	土浦	定量	0.088	0.71	1.3	0.43	0.18	0.25	0.31	0.34	-	-	0.56
	古四	検出	0.011	0.031	0.054	0.056	0.18	0.069	0.06	0.056	-	-	0.24
2	真岡	定量	0.036	0.1	0.18	0.19	0.61	0.23	0.2	0.19	-	-	0.8
	74.1£	検出	0.13	0.16	0.21	0.03	0	0.012	0.016	0	-	-	0.14
3	前橋	定量	0.44	0.52	0.7	0.1	0	0.041	0.054	0	-	-	0.48
	& ` ↓ ↓ ↓	検出	0.13	0.16	0.21	0.03	0	0.012	0.016	0	-	-	0.14
4	館林	定量	0.44	0.52	0.7	0.1	0	0.041	0.054	0	-	-	0.48
5	鴻巣	検出	0	0.03	0.041	0	0	0	0	0	-	-	_
Э	馮呆	定量	0	0.1	0.14	0	0	0	0	0	-	-	_
6	幸手	検出	0	0.03	0.041	0	0	0	0	0	-	-	_
U	+7	定量	0	0.1	0.14	0	0	0	0	0	-	-	_
7	さいたま	検出	0.097	0.15	0.13	0.07	0	0		0	_	-	-
,	C 0 72.65	定量	0.32	0.51	0.44	0.23	0	0		0	-	-	-
8	市原	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	-	0.55
<u> </u>	113.1/1	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	_	-	1.8
9	勝浦	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	-	0.55
	1127 7111	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	-	-	1.8
10	富津	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	-	0.55
	шт	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	_	-	1.8
11	千葉	検出	0.04	0.027	0.02	0.0376	0.07	0.015	0.047	0.017		-	-
	1 //	定量	0.14	0.09	0.06	0.125	0.22	0.05	0.16	0.057	_	-	_
12	綾瀬	検出	0.2	0.2	0.2	0.2	0.06	0.06	0.06	0.06	_	-	-
	12.112	定量	0.8	0.8	0.8	0.8	0.2	0.2	0.2	0.2	-	-	-
13	多摩	検出	0.2	0.2	0.2	0.2	0.06	0.06	0.06	0.06	-	_	_
		定量	0.8	0.8	0.8	0.8	0.2	0.2	0.2	0.2	-	-	-
14	大和	検出	0.053	0.061	0.12	0.034	0	0.05	0.042	0.0026	_	-	0.16
		定量	0.18	0.2	0.4	0.11	0	0.17	0.14	0.0085	-	-	0.55
15	横浜	検出	0	0.02	0.04	0	0	0		0		_	
		定量	0 000	0.06	0.11	0 007	0 004	0 004		0 004	_	_	- 0.00
16	川崎	検出	0.026	0.019	0.11	0.037	0.024	0.064	0.062	0.024	_	_	0.39 1.3
		定量 検出	0.086	0.063	0.35 0.05	0.12	0.081	0.21	0.21 0	0.079 0	_	_	- 1.3
17	相模原	定量	0	0.03	0.03	0	0	0		0		_	- -
		検出	0.065	0.12	0.0031	0.032	0.00050	0.014	0.060	0.024	_	_	_
18	甲府	定量	0.003	0.12	0.0031	0.032	0.00030	0.014	0.000	0.024	_	_	_
		検出	0.020	0.085	0.055	0.050	0.00050	0.017	0.039	0.012	_	-	_
19	吉田	定量	0.065	0.27	0.19	0.17	0.0017	0.060	0.13	0.041	_	_	_
00	E #17	検出	0.039	0.033	0.071	0.033	0.068	0.065	0.025	0.025	-	-	0.15
20	長野	定量	0.13	0.11	0.24	0.11	0.23	0.22	0.082	0.082	-	-	0.51
21	富士	検出	0.023	0.077	0.36	0.11	0.00039	0.16	0.058	0.028	_	-	-
21	苗工	定量	0.077	0.25	1.2	0.35	0.0013	0.53	0.19	0.092	1	_	-
22	湖西	検出	0.023	0.068	0.092	0.014	0.00025	0.015	0.053	0.034	-	-	-
22	ᄱᄱ	定量	0.077	0.22	0.31	0.045	0.00082	0.048	0.18	0.12	-	-	-
23	静岡	検出	0.013	0.010	0.13	0.030	0.00050	0.055	0.036	0.024	-	-	0.025
20	月ナルリ	定量	0.043	0.034	0.45	0.10	0.0017	0.18	0.12	0.080	-	-	0.087
24	浜松	検出	0.032	0.035	0.055	0.029	0.0005	0.05	0.036	0.021	-	_	-
	/A1A	定量	0.1	0.12	0.19	0.095	0.0017	0.17	0.12	0.07	_	_	_

表 2-6-2-2 炭素成分濃度の検出下限値と定量下限値(夏)

₩.□	UL - 2		001	OC2	OC3	OC4	Ocpyro	EC1	EC2	EC3	ОС	EC	WSOC
番号	地点名		$(\mu \mathrm{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu {\rm g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu \mathrm{g/m}^3)$
_	1.4	検出	0.088	0.16	0.17	0.041	0.12	0.025	0.13	0.11	-	_	0.15
1	土浦	定量	0.29	0.54	0.56	0.14	0.38	0.083	0.42	0.38	-	-	0.5
	古四	検出	0.085	0.061	0.08	0.016	0.1	0.04	0.043	0.022	-	-	0.26
2	真岡	定量	0.28	0.2	0.27	0.054	0.33	0.13	0.14	0.073	-	-	0.85
_	前橋	検出	0.13	0.16	0.21	0.03	0	0.012	0.016	0	-	-	0.14
3	削備	定量	0.44	0.52	0.7	0.1	0	0.041	0.054	0	-	_	0.48
4	館林	検出	0.13	0.16	0.21	0.03	0	0.012	0.016	0	-	_	0.14
4	比介	定量	0.44	0.52	0.7	0.1	0	0.041	0.054	0	-	_	0.48
5	鴻巣	検出	0	0.029	0.015	0.0067	0	0	0	0	1	-	_
υ	梅未	定量	0	0.096	0.05	0.022	0	0	0	0	-	-	_
6	幸手	検出	0	0.029	0.015	0.0067	0	0	0	0	-	-	_
0	+7	定量	0	0.096	0.05	0.022	0	0	0	0	-	-	_
7	さいたま	検出	0.004	0.024	0.032	0.024	0	0		0	-	-	-
,	C 726	定量	0.013	0.079	0.11	0.08	0	0	0.041	0	-	-	-
8	市原	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	-	0.55
	111777	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	-	-	1.8
9	勝浦	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	-	0.55
	מוזי נכנו	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	-	-	1.8
10	富津	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	-	0.55
	田/干	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	-	-	1.8
11	千葉	検出	0.04	0.041	0.03	0.0277	0.10	0.025	0.059	0.023	-	-	0.11
	1 1	定量	0.13	0.14	0.12	0.092	0.32	0.08	0.20	0.077	-	-	0.37
12	綾瀬	検出	0.9	0.9	0.9	0.9	0.03	0.03	0.03	0.03	-	-	-
	12/12	定量	3	3	3	3	0.09	0.09	0.09	0.09	_	_	-
13	多摩	検出	0.9	0.9	0.9	0.9	0.03	0.03	0.03	0.03	-	-	_
	7.7	定量	3	3	3	3	0.09	0.09	0.09	0.09	-	-	-
14	大和	検出	0.057	0.025	0.074	0	0	0.031	0	0	_	-	0.41
	, , , , ,	定量	0.19	0.085	0.25	0	0	0.1	0	0	-	_	1.4
15	横浜	検出	0	0.03	0.01	0	0	0	0	0	-	-	_
		定量	0	0.1	0.04	0	0	0	0	0	-	-	
16	川崎	検出	0.044	0.13	0.1	0.044	0.027	0.057	0.041	0.032	-	-	0.28
		定量	0.15	0.45	0.34	0.15	0.089	0.19	0.14	0.11	-	-	0.92
17	相模原	検出	0	0.04	0.06	0	0	0		0	-	-	-
		定量	0	0.11	0.17	0	0	0		0	_	-	_
18	甲府	検出	0.039	0.080	0.095	0.060	0.00027	0.060	0.017	0.029	-	-	_
		定量	0.13	0.26	0.32	0.19	0.00090	0.20	0.055	0.095		_	
19	吉田	検出	0.032 0.11	0.039	0.048	0.050 0.17	0.00031	0.036	0.045	0.016 0.055	-	_	_
		定量			0.16		0.0010	0.12	0.15		_	_	
20	長野	検出 定量	0.012 0.039	0.019 0.064	0.11 0.37	0.072 0.24	0.16 0.54	0.11 0.38	0.045 0.15	0.02 0.068	_	_	_
			0.039	0.064	0.37	0.24	0.00029	0.38	0.15	0.068	_	_	_
21	富士	検出	0.016	1.1	0.31	0.082	0.00029	0.053	0.035	0.048	_	_	_
-		<u> </u>	0.053	0.32	0.077	0.28	0.00097	0.17	0.12	0.17	_	_	_
22	湖西	定量	0.053	1.1	0.077	0.053	0.00029	0.053	0.037	0.01		_	
		検出	0.17	0.15	0.23	0.17	0.00097	0.036	0.13	0.033	_	_	0.22
23	静岡	定量	0.020	0.13	0.044	0.016	0.00026	0.036	0.014	0.016			0.22
		<u> </u>	0.090	0.49	0.14	0.055	0.00085	0.12	0.047	0.055			- 0.72
24	浜松	定量	0.033	0.12	0.13	0.00	0.00027	0.018	0.03	0.016		_	-
		化里	0.18	0.41	0.44	0.19	0.0009	0.06	0.17	0.055	_	_	

表 2-6-2-3 炭素成分濃度の検出下限値と定量下限値(秋)

番号	地点名		OC1	OC2	OC3	OC4	Ocpyro	EC1	EC2	EC3	OC	EC	WSOC
			$(\mu \text{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu g/m^3)$	$(\mu \text{ g/m}^3)$	$(\mu \mathrm{g/m}^3)$	$(\mu {\rm g/m}^3)$	$(\mu \text{g/m}^3)$	$(\mu \text{ g/m}^3)$	$(\mu \text{ g/m}^3)$
1	土浦	検出	0.051	0.068	0.17	0.061	0.15	0.064	0.049	0.12	ı	-	0.29
_ '	工畑	定量	0.17	0.23	0.56	0.2	0.51	0.21	0.16	0.39	-	-	0.95
2	真岡	検出	0.009	0.042	0.046	0	0	0	0	0	ı	_	0.12
2	필	定量	0.03	0.14	0.15	0	0	0	0	0	ı	_	0.4
		検出	0.05	0.06	0.07	0.01	0	0.01	0	0	_	-	0.32
3	前橋	定量	0.17	0.2	0.23	0.033	0	0.033	0	0	ı	-	1.1
	& 4.4.	検出	0.13	0.16	0.21	0.03	0	0.012	0.016	0	_	-	0.14
4	館林	定量	0.44	0.52	0.7	0.1	0	0.041	0.054	0	_	-	0.48
_	-6 W	検出	0	0.03	0.041	0	0	0	0	0	_	-	_
5	鴻巣	定量	0	0.1	0.14	0	0	0		0	_	_	_
_		検出	0	0.03	0.041	0	0	0	0	0	Ī	_	_
6	幸手	定量	0	0.1	0.14	0	0	0	0	0	_	-	_
_		検出	0.063	0.048	0.097	0.025	0	0		0	_	-	-
7	さいたま	定量	0.21	0.16	0.32	0.082	0	0		0	_	_	-
_		検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	_	-	0.55
8	市原	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	1	_	1.8
		検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	_	0.55
9	勝浦	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	_	_	1.8
		検出	0.12	0.06	0.055	0.075	0.095	0.065	0.025	0.000	_	_	0.55
10	富津	定量	0.12	0.19	0.18	0.073	0.033	0.003	0.023	0.035	_	_	1.8
		検出	0.12	0.026	0.16	0.0276	0.03	0.022	0.020	0.033	_	_	0.24
11	千葉	定量	0.01	0.020	0.00	0.0270	0.03	0.022	0.020	0.010		_	0.24
		<u>作里</u> 検出	0.04	0.09	0.18	0.092	0.10	0.07		0.032			- 0.94
12	綾瀬	定量	1	0.4	1	1	0.09	0.09	0.09	0.09			
		-		0.4									
13	多摩	検出	0.4	0.4	0.4	0.4	0.09	0.09		0.09	1	_	-
-		定量	0.040	2.254		1	0.3	0.3		0.3	_	_	-
14	大和	検出	0.046	0.051	0.1	0	0	0		0	-	_	0.36
		定量	0.15	0.17	0.33	0	0	0	_	0	_	_	1.2
15	横浜	検出	0	0.01	0.03	0	0	0		0	_	-	_
		定量	0	0.03	0.1	0	0	0		0	-	_	
16	川崎	検出	0.035	0.039	0.17	0.034	0.024	0.046		0.029	-	-	0.58
<u> </u>		定量	0.12	0.13	0.58	0.11	0.081	0.15		0.097	_	_	1.9
17	相模原	検出	0	0.08	0.07	0	0	0		0	-	-	-
<u> </u>		定量	0	0.25	0.24	0	0	0	ŭ	0	_		
18	甲府	検出	0.014	0.035	0.065	0.025	0.00025	0.034	0.041	0.021	-	_	_
<u> </u>		定量	0.047	0.12	0.22	0.085	0.00085	0.11	0.14	0.070			
19	吉田	検出	0.010	0.031	0.047	0.038	0.00039	0.049	0.041	0.021	_	-	_
<u> </u>		定量	0.034	0.10	0.16	0.12	0.0013	0.16		0.070	-	-	-
20	長野	検出	0.029	0.049	0.07	0.046	0.11	0.11	0.027	0.025	-	-	-
		定量	0.097	0.16	0.23	0.15	0.37	0.37	0.091	0.084	_	-	_
21	富士	検出	0.028	0.082	0.031	0.018	0.00023	0.034		0.014	-	-	-
<u> </u>	-	定量	0.092	0.27	0.1	0.058	0.00077	0.11	0.097	0.048	-	-	-
22	湖西	検出	0.028	0.044	0.031	0.018	0.00022	0.034		0.014	-	-	
	PRI II	定量	0.092	0.15	0.1	0.058	0.00072	0.11	0.097	0.048	-	-	_
23	静岡	検出	0.019	0.0095	0.015	0.017	0.00025	0.015	0.041	0.021	-	-	0.15
20	HT IMI	定量	0.065	0.031	0.050	0.055	0.00085	0.050	0.14	0.070	-	-	0.50
24	浜松	検出	0.013	0.05	0.043	0.032	0.00026	0.05	0.041	0.021	-	-	-
24	八十五	定量	0.045	0.17	0.14	0.1	0.00085	0.17	0.14	0.07	Ī	_	_

表 2-6-2-4 炭素成分濃度の検出下限値と定量下限値(冬)

			OC1	OC2	OC3	OC4	Ocpyro	EC1	EC2	EC3	ОС	EC	WSOC
番号	地点名		$(\mu \text{ g/m}^3)$	$(\mu \text{g/m}^3)$	$(\mu \text{ g/m}^3)$								
		検出	0.046	0.14	0.19	0.044	0.031	0.025	0.05	0.023	_	_	0.24
1	土浦	定量	0.15	0.46	0.63	0.15	0.1	0.083	0.17	0.077	_	_	0.82
		検出	0.0073	0.027	0.093	0	0	0	0	0	_	_	0.18
2	真岡	定量	0.024	0.09	0.31	0	0	0	0	0	_	_	0.61
		検出	0.05	0.06	0.07	0.01	0	0.01	0	0	_	_	0.32
3	前橋	定量	0.17	0.2	0.23	0.033	0	0.033	0	0	-	-	1.1
	8 ~ 11	検出	0.13	0.16	0.21	0.03	0	0.012	0.016	0	-	-	0.14
4	館林	定量	0.44	0.52	0.7	0.1	0	0.041	0.054	0	-	-	0.48
_	油色器	検出	0	0.012	0.0067	0	0	0	0	0	_	_	_
5	鴻巣	定量	0	0.042	0.022	0	0	0	0	0	-	_	_
6	幸手	検出	0	0.012	0.0067	0	0	0	0	0	-	-	_
0	辛士	定量	0	0.042	0.022	0	0	0	0	0	-	-	_
7	大宮	検出	0.013	0.044	0.18	0.052	0	0.0023	0.01	0	-	_	_
	八百	定量	0.042	0.15	0.59	0.17	0	0.0076	0.034	0	-	_	-
8	市原	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	ı	_	0.55
0	או נוו	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	-	_	1.8
9	勝浦	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	-	0.55
	וווי זכנו	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	-	-	1.8
10	富津	検出	0.04	0.06	0.055	0.075	0.095	0.065	0.025	0.01	-	-	0.55
	ш/-	定量	0.12	0.19	0.18	0.24	0.31	0.22	0.09	0.035	-	_	1.8
11	千葉	検出	0.02	0.055	0.11	0.0147	0.09	0.035	0.045	0.024	-	-	0.28
	-	定量	0.08	0.18	0.36	0.049	0.30	0.12	0.15	0.078	-	-	0.78
12	綾瀬	検出	0.2	0.2	0.2	0.2	0.05	0.05	0.05	0.05	-	-	-
	ALM X	定量	0.8	0.8	0.8	0.8	0.2	0.2	0.2	0.2	-	_	-
13	多摩	検出	0.2	0.2	0.2	0.2	0.05	0.05	0.05	0.05	-	-	-
		定量	0.8	0.8	0.8	0.8	0.2	0.2	0.2	0.2	-	-	-
14	大和	検出	0.0046	0.02	0.037	0.0036	0	0.0066	0	0	-	_	0.13
	7 (1)	定量	0.015	0.067	0.12	0.012	0	0.022	0	0	-	_	0.44
15	横浜	検出	0	0.03	0.03	0	0	0	0	0	-	-	-
		定量	0	0.07	0.1	0	0	0	0	0	-	-	
16	川崎	検出	0.021	0.024	0.052	0.028	0.034	0.046	0.036	0.024	-	-	0.28
		定量	0.069	0.081	0.17	0.092	0.11	0.15	0.12	0.08	-	-	0.93
17	相模原	検出	0	0.02	0.03	0	0	0	0	0		_	_
-		定量		0.07	0.08	_	0.00031	_	0 043	0.001		_	_
18	甲府	検出 定量	0.020 0.065	0.080 0.26	0.033	0.050 0.16	0.00031	0.050 0.17	0.043 0.14	0.021 0.070		_	
-		<u> </u>	0.065	0.26	0.033	0.16	0.0010	0.17	0.14	0.070			
19	吉田	定量	0.020	0.080	0.033	0.050	0.00031	0.030	0.043	0.021	_	_	_
		検出	0.003	0.023	0.11	0.10	0.0010	0.17	0.14	0.070	_	_	
20	長野	定量	0.043	0.023	0.03	0.094	0.030	0.075	0.03	0.032		_	_
		検出	0.048	0.048	0.053	0.029	0.00021	0.028	0.012	0.0068	_	_	_
21	富士	定量	0.16	0.16	0.18	0.023	0.00072	0.020	0.039	0.022	_	_	_
		検出	0.048	0.063	0.077	0.029	0.00072	0.032	0.041	0.022	_	_	_
22	湖西	定量	0.16	0.000	0.077	0.023	0.00072	0.11	0.14	0.022	_	_	_
	+4 —	検出	0.025	0.055	0.040	0.029	0.00022	0.050	0.043	0.034	_	_	0.077
23	静岡	定量	0.085	0.18	0.13	0.095	0.00075	0.17	0.14	0.11	_	_	0.25
	,	検出	0.02	0.024	0.19	0.043	0.00023	0.05	0.043	0.021	_	_	-
24	浜松	定量	0.07	0.08	0.65	0.14	0.00075	0.17	0.14	0.07	_	_	_
		ᄮᆂ	0.07	0.00	0.00	0.14	0.00070	0.17	0.14	0.07			

2.6.3 金属等の無機元素成分

表 2-6-3-1-1 金属等の無機元素成分濃度の検出下限値と定量下限値(春)

			Na	Al	Si	K	Ca	Sc	Ti	٧
番号	地点名		(ng/m^3)							
	1 3-45	検出	_	28	_	_	_	0.0088	1.8	0.037
1	土浦	定量	_	93	_	_	_	0.029	5.9	0.12
	+	検出	8.5	7.8	_	2	11	0.059	2.5	0.071
2	真岡	定量	28	26	_	6.7	38	0.2	8.4	0.24
	34.1E	検出	21	55	_	8.5	170	0.012	500	0.14
3	前橋	定量	70	180	_	28	560	0.041	1700	0.47
	841 441	検出	21	55	_	8.5	170	0.012	500	0.14
4	館林	定量	70	180	_	28	560	0.041	1700	0.47
-	油出	検出	2.4	2.5	_	5.7	2.1	0.029	0.2	0.072
5	鴻巣	定量	8.1	8.2	_	19	6.9	0.097	0.66	0.24
_	± ±	検出	2.4	2.5	_	5.7	2.1	0.029	0.2	0.072
6	幸手	定量	8.1	8.2	-	19	6.9	0.098	0.66	0.24
7	さいたま	検出	2.2	2.8	8.9	2.6	9.5	0.18	0.17	0.016
/	さいたま	定量	7.3	9.2	30	8.6	32	0.61	0.58	0.053
	+ H	検出	23	17	8.6	3.1	1.3	0.57	3.7	0.4
8	市原	定量	77	55	29	10	4.3	1.9	12	1.3
	14:24	検出	23	17	8.6	3.1	1.3	0.57	3.7	0.4
9	勝浦	定量	77	55	29	10	4.3	1.9	12	1.3
10	宣进	検出	23	17	8.6	3.1	1.3	0.57	3.7	0.4
10	富津	定量	77	55	29	10	4.3	1.9	12	1.3
4.4	て井	検出	3.4	3.4	10	1.5	2.5	3.1	4.1	0.11
11	千葉	定量	11	11	35	5.1	8.4	10	14	0.36
10	6 4. 245	検出	4	6	8	3	10	0.05	1	0.04
12	綾瀬	定量	10	20	30	9	30	0.2	4	0.1
13	多摩	検出	4	6	8	3	10	0.05	1	0.04
13	多序	定量	10	20	30	9	30	0.2	4	0.1
14	大和	検出	7.6	19	-	13	24	0.49	1.1	0.37
14	八和	定量	25	63	_	45	79	1.6	3.5	1.2
15	横浜	検出	15	19	13	2.8	2.2	0.024	0.96	0.84
13	1英/共	定量	15	19	13	2.8	2.2	0.079	0.96	0.84
16	川崎	検出	2.4	1.5	-	1.2	8.9	0.0086	0.81	0.16
10	/1[FP]	定量	8	5.2	_	4	30	0.029	2.7	0.53
17	相模原	検出	2	3	*	0.8	4	0.021	0.11	0.018
L''	ILIXIN	定量	6.6	12	*	2.8	12	0.069	0.38	0.059
18	甲府	検出	3.8	3.4	8.3	3.9	21	0.022	0.070	0.0092
<u> </u>	1 /13	定量	12	12	28	13	69	0.074	0.23	0.031
19	吉田	検出	11	1.3	3.4	3.7		0.0058	0.092	0.0092
	П	定量	35	4.4	12	12	92	0.019	0.30	0.031
20	長野	検出	6.8	1.6	_	1.6		0.0017	0.16	0.0035
	10.11	定量	23	5.2	_	5.3		0.0055	0.54	0.012
21	富士	検出	2.3	1.6	6	1.4		0.032	0.11	0.018
<u> </u>	# -	定量	7.8	5.3	20	4.7	72	0.1	0.37	0.062
22	湖西	検出	10	17	16	9.3	23	0.032	2	0.018
<u> </u>	W.L	定量	33	57	52	32	77	0.1	7	0.062
23	静岡	検出	3.8	1.5	3.5	4.6		0.016	0.27	0.0092
<u> </u>	10.1 Jeni	定量	12	5.0	12	15		0.052	0.92	0.031
24	浜松	検出	3.5	28	-	5.4		0.078	2	0.12
	// IA	定量	12	94	-	18	98	0.26	6.5	0.38

表 2-6-3-1-2 金属等の無機元素成分濃度の検出下限値と定量下限値(春)

亚口	地上左		Cr	Mn	Fe	Со	Ni	Cu	Zn	As
番号	地点名		(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)
4	⊥ :±	検出	0.41	0.21	5.6	0.014	0.55	0.56	5.1	0.028
1	土浦	定量	1.4	0.71	19	0.047	1.8	1.9	17	0.093
2	真岡	検出	0.39	0.47	7.3	0.059	0.52	5.8	2.2	0.12
	共叫	定量	1.3	1.6	24	0.2	1.7	19	7.2	0.39
3	前橋	検出	1.1	0.2	24	0.23	0.85	0.94	4	0.029
3	月リ17向	定量	3.7	0.67	79	0.77	2.8	3.1	13	0.095
4	館林	検出	1.1	0.2	24	0.23	0.85	0.94	4	0.029
	ムロイイト	定量	3.7	0.67	79	0.77	2.8	3.1	13	0.095
5	鴻巣	検出	0.12	0.16	4.3	0.11	0.19	0.21	1.1	0.097
	7.啊.不	定量	0.4	0.53	14	0.36	0.64	0.7	3.8	0.32
6	幸手	検出	0.12	0.16	4.3	0.11	0.19	0.21	1.1	0.097
	Τ,	定量	0.4	0.53	14	0.36	0.64	0.7	3.8	0.32
7	さいたま	検出	0.62	0.062	1.7	0.081	0.029	1.2	0.88	0.014
		定量	2.1	0.21	5.6	0.27	0.097	4.1	2.9	0.046
8	市原	検出	0.76	2.8	3.2	0.036	0.55	1.6	1.8	0.067
		定量	2.5	9.3	11	0.12	1.8	5.3	6	0.22
9	勝浦	検出	0.76	2.8	3.2	0.036	0.55	1.6	1.8	0.067
		定量	2.5	9.3	11	0.12	1.8	5.3	6	0.22
10	富津	検出	0.76	2.8	3.2	0.036	0.55	1.6	1.8	0.067
		定量	2.5	9.3	11	0.12	1.8	5.3	6	0.22
11	千葉	検出 定量	0.18	0.041	1.7	0.05	0.13	0.15 0.5	0.57	0.2
		検出	0.59 1	0.14 0.09	5.8 5	0.17 0.05	0.43 0.5	0.3	1.9 0.4	0.67
12	綾瀬	定量	4	0.09	20	0.05	2	1	1	0.09
		検出	1	0.09	5	0.05	0.5	0.3	0.4	0.09
13	多摩	定量	4	0.09	20	0.03	2	1	1	0.09
		検出	0.39	0.31	2.9	0.14	5	3.6	3.4	0.62
14	大和	定量	1.3	1	9.6	0.48	17	12	11	2.1
		検出	0.35	1.6	5.9	1	0.75	1.1	1.8	0.89
15	横浜	定量	0.35	1.6	5.9	1	0.75	1.1	1.8	0.89
		検出	0.25	0.15	2.4	0.0097	0.27	0.14	0.17	0.038
16	川崎	定量	0.82	0.51	8.1	0.032	0.91	0.48	0.56	0.13
	40.4# CE	検出	0.11	0.04	0.4	0.025	0.014	0.2	0.6	0.04
17	相模原	定量	0.37	0.13	1.5	0.084	0.046	0.68	2	0.12
10	甲府	検出	2.3	0.030	1.4	0.0033	0.43	0.40	13	0.011
18	中府	定量	7.8	0.10	4.6	0.011	1.4	1.3	43	0.036
10	吉田	検出	0.78	0.030	1.4	0.0033	0.43	6.7	16	0.011
19		定量	2.6	0.10	4.6	0.011	1.4	22	53	0.036
20	長野	検出	0.44	0.053	0.97	0.0058	0.016	0.083	0.41	0.0013
20	[X±]	定量	1.5	0.18	3.2	0.019	0.053	0.28	1.4	0.0042
21	富士	検出	0.27	0.038	0.68	0.017	0.083	0.033	4.3	0.022
- 1	шт	定量	0.9	0.13	2.3	0.058	0.28	0.11	15	0.072
22	湖西	検出	0.53	0.038	1.6	0.0067	0.083	0.033	17	0.022
	(7) L	定量	1.8	0.13	5.3	0.022	0.28	0.11	57	0.072
23	静岡	検出	2.1	1.4	1.4	0.0033	3.1	1	18	0.011
	1-3	定量	6.9	4.8	4.8	0.011	10	3.4	62	0.036
24	浜松	検出	0.19	0.058	4	0.0027	0.083	0.2	1.1	0.043
لـــــــــا	(A) M	定量	0.65	0.19	13	0.0088	0.28	0.65	3.8	0.14

表 2-6-3-1-3 金属等の無機元素成分濃度の検出下限値と定量下限値(春)

番号	地点名		Se	Rb	Мо	Sb	Cs	Ва	La	Ce
田力	地点石		(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)
1	上 :±	検出	0.025	-	0.19	0.073	0.0053	0.077	0.0084	0.026
1	土浦	定量	0.082	_	0.62	0.24	0.018	0.26	0.028	0.085
0	古四	検出	0.38	0.067	0.16	0.084	0.049	0.3	0.081	0.077
2	真岡	定量	1.3	0.22	0.54	0.28	0.16	0.99	0.27	0.26
3	前播	検出	0.19	0.063	0.15	87	0.035	0.19	0.012	0.022
3	前橋	定量	0.63	0.21	0.51	290	0.12	0.63	0.039	0.072
4	館林	検出	0.19	0.063	0.15	87	0.035	0.19	0.012	0.022
4	民日刊个	定量	0.63	0.21	0.51	290	0.12	0.63	0.039	0.072
5	鴻巣	検出	0.2	1.4	0.077	0.012	0.079	2.3	0.038	0.018
	冷木	定量	0.67	0.46	0.26	0.12	0.26	7.7	0.13	0.06
6	幸手	検出	0.2	1.4	0.077	0.012	0.079	2.3	0.038	0.018
	+ 1	定量	0.67	0.46	0.26	0.12	0.26	7.7	0.13	0.06
7	さいたま	検出	0.1	0.032	0.16	0.0064	0.0083	0.012	0.034	0.0039
	2, 720	定量	0.34	0.11	0.55	0.021	0.028	0.039	0.11	0.013
8	市原	検出	0.19	0.05	0.098	0.086	0.017	0.073	0.0087	0.014
<u> </u>	11372	定量	0.62	0.17	0.33	0.29	0.056	0.24	0.029	0.047
9	勝浦	検出	0.19	0.05	0.098	0.086	0.017	0.073	0.0087	0.014
	327113	定量	0.62	0.17	0.33	0.29	0.056	0.24	0.029	0.047
10	富津	検出	0.19	0.05	0.098	0.086	0.017	0.073	0.0087	0.014
	ш	定量	0.62	0.17	0.33	0.29	0.056	0.24	0.029	0.047
11	千葉	検出	0.35	0.051	0.073	0.036	0.042	0.087	0.34	0.19
		定量	1.2	0.17	0.24	0.12	0.14	0.29	1.1	0.64
12	綾瀬	検出	0.06	0.05	0.1	0.08	0.03	0.07	0.09	0.06
		定量	0.2	0.2	0.3	0.3	0.1	0.2	0.3	0.2
13	多摩	検出	0.06	0.05	0.1	0.08	0.03	0.07	0.09	0.06
		定量	0.2	0.2	0.3	0.3	0.1	0.2	0.3	0.2
14	大和	検出 定量	1.6	0.4	0.26	0.15	0.26	0.3	0.3	0.23
			5.4	1.3	0.86 1.4	0.51	0.88	10	0.99 12	0.77
15	横浜	検出 定量	0.92 0.92	1.1	1.4	6.6 6.6	9.2 9.2	10 10	12	13 13
		検出	0.025	0.013	0.09	0.011	0.0086	0.051	0.0099	0.0081
16	川崎	定量	0.023	0.044	0.03	0.036	0.0030	0.031	0.0033	0.0031
		検出	0.002	0.044	0.02	0.030	0.023	0.17	0.033	0.027
17	相模原	定量	0.07	0.056	0.065	0.021	0.010	0.17	0.014	0.012
		検出	0.22	0.0092	0.003	0.0083	0.0045	0.022	0.0064	0.00076
18	甲府	定量	0.062	0.031	0.036	0.028	0.015	0.071	0.022	0.0025
		検出	0.019	0.0059	0.012	0.0064	0.0045	0.021	0.00068	0.00076
19	吉田	定量	0.062	0.020	0.038	0.022	0.015	0.068	0.0022	0.0025
25	E 07	検出	0.04	0.0022	0.0043	0.011	0.00093	0.11	0.0014	0.0017
20	長野	定量	0.13	0.0072	0.014	0.035	0.0031	0.38	0.0048	0.0057
0.1	= 上	検出	0.038	0.0083	0.0045	0.0065	0.009	0.032	0.0022	0.0022
21	富士	定量	0.12	0.028	0.015	0.022	0.03	0.11	0.0073	0.007
20	310 TH	検出	0.038	0.0083	0.045	0.0038	0.009	0.023	0.0028	0.0022
22	湖西	定量	0.12	0.028	0.15	0.013	0.03	0.078	0.0092	0.007
23	静岡	検出	0.019	0.0060	0.0029	0.0046	0.0045	0.015	0.00041	0.00076
20	月ナ川川	定量	0.062	0.020	0.010	0.015	0.015	0.052	0.0013	0.0025
24	浜松	検出	0.047	0.0073	0.82	0.017	0.0017	0.16	0.0046	0.0098
24	八竹ム	定量	0.16	0.024	2.7	0.056	0.0056	0.52	0.015	0.033

表 2-6-3-1-4 金属等の無機元素成分濃度の検出下限値と定量下限値(春)

### おから (ng/m²)				_						_	_
	悉号	抽占名		Sm	Hf	W	Та	Th	Pb	Be	Sr
□ 上浦 定量 0.018 0.075 0.27 - 0.028 0.67	田 つ	>E WD		(ng/m^3)							
接世	1	十进	検出	0.0055	0.022	0.082	1	0.0084	0.2	-	-
日本 日本 日本 日本 日本 日本 日本 日本	'	工淵	定量	0.018	0.075	0.27	-	0.028	0.67	-	-
接出	•	古四	検出	0.05	0.2	0.11	0.26	0.1	0.18	0.13	-
日本 日本 日本 日本 日本 日本 日本 日本	2	具间		0.17	0.66	0.37	0.86	0.35	0.59	0.43	_
日本 日本 日本 日本 日本 日本 日本 日本		74.1£	検出	0.0019	0.023	0.084	0.025	0.02	0.55	_	_
##	3	削倘		0.0062	0.077		0.083	0.067	1.8	-	_
日本 日本 定量 0.0062 0.077 0.28 0.083 0.067 1.8 - - -	_	&는 TT	検出	0.0019	0.023	0.084	0.025	0.02	0.55	_	_
□	4	郎休		0.0062	0.077	0.28	0.083	0.067	1.8	-	_
□	_	' 244	検出	0.035	0.02	0.04	0.028	0.079	0.12	_	_
□ マンドゥ 大震量 0.12 0.2 0.13 0.094 0.26 0.41	5	馮果		0.12		0.13	0.094	0.26	0.41	-	_
□ マンドゥ 大震量 0.12 0.2 0.13 0.094 0.26 0.41		+ +								_	_
大和 大和 大和 大和 大和 大和 大和 大	6	辛于								_	_
### 2017にま 定量 0.044 0.022 0.53 0.0074 0.027 0.15	_	 		0.013	0.0066	0.16			0.044	_	-
お雨 検出 0.017 2.8 0.12 1.2 0.016 1.4 - - - 定量 0.058 9.3 0.4 4 0.053 4.7 - - 検出 0.017 2.8 0.12 1.2 0.016 1.4 - - 定量 0.058 9.3 0.4 4 0.053 4.7 - - 定量 0.058 9.3 0.4 4 0.053 4.7 - - 10 富津 次世 0.017 2.8 0.12 1.2 0.016 1.4 - - 元量 0.058 9.3 0.4 4 0.053 4.7 - - 11 干菜 次世 0.008 0.1 3.3 0.26 0.29 0.11 - - 元量 0.27 0.33 11 0.87 0.97 0.35 - 12 検謝 元世 0.06 0.2 0.05 0.06 0.03 0.05 - 12 技術 元世 0.06 0.2 0.05 0.06 0.03 0.05 - 13 多摩 元世 0.06 0.2 0.05 0.06 0.03 0.05 - 元世 0.2 0.5 0.2 0.2 0.1 0.2 - 14 大和 元世 0.37 0.29 0.13 0.11 0.32 0.66 - 15 技術 元世 2.0 0.05 0.04 0.05 3.2 2.3 - 16 川崎 元世 0.016 0.035 0.016 0.031 0.0099 0.054 - 17 相模原 元世 0.053 0.12 0.054 0.1 0.033 0.18 - 18 甲府 定量 0.022 0.0049 0.011 0.0077 0.068 - 18 日府 定量 0.0022 0.0049 0.011 0.0027 0.10 0.031 -	/	さいたま								_	_
日本 日本 日本 日本 日本 日本 日本 日	_	+=								_	_
9 勝浦 検出 0.017 2.8 0.12 1.2 0.016 1.4 - - 10 富津 使出 0.017 2.8 0.12 1.2 0.016 1.4 -	8	巾原		0.058						-	-
By		UNIC 2-42			2.8	0.12	1.2		1.4	_	_
検出 0.017 2.8 0.12 1.2 0.016 1.4 - - 定量 0.058 9.3 0.4 4 0.053 4.7 - 11	9	勝浦								_	_
To 日本 定量	40	- i				0.12	1.2		1.4	_	_
11 千葉 検出 0.08 0.1 3.3 0.26 0.29 0.11	10	畐浑					4		4.7	_	_
Texacol 大変 大変 大変 大変 大変 大変 大変 大	4.4	**			0.1	3.3	0.26		0.11	_	_
接出 0.06 0.2 0.05 0.06 0.03 0.05 - - 定量 0.2 0.5 0.2 0.2 0.1 0.2 - - 13 多摩	11	十枼								_	_
Texasis Research Research	40	4+ + =				0.05				_	_
13 多摩 検出 0.06 0.2 0.05 0.06 0.03 0.05 - - - 定量 0.2 0.5 0.2 0.2 0.1 0.2 - - 14 大和 検出 0.37 0.29 0.13 0.11 0.32 0.66 - - 15 横浜 位成出 20 0.05 0.04 0.05 3.2 2.3 - - 15 横浜 位成出 0.016 0.035 0.016 0.031 0.0099 0.054 - - 16 川崎 検出 0.016 0.035 0.016 0.031 0.0099 0.054 - - 17 相模原 定量 0.053 0.12 0.054 0.1 0.033 0.18 - - 18 甲府 検出 0.04 0.018 0.03 0.03 0.017 0.021 - - 定量 0.13 0.06 0.11 0.11 0.057 0.068 - - 18 甲府 検出 0.0068 0.0015 0.0032 0.00079 0.031 0.0092 - - 19 吉田 検出 0.002 0.0049 0.011 0.0027 0.10 0.031 - - 20 長野 検出 0.0017 0.0087 0.0031 - 0.0012 0.012 - - 定量 0.0023 0.0049 0.013 0.0027 0.00071 0.031 - - 21 富士 検出 0.0027 0.003 0.0068 0.0017 0.0077 0.010 - - 21 富士 検出 0.0027 0.003 0.0068 0.0017 0.0077 0.01 - - 22 湖西 検出 0.0097 0.003 0.045 0.0017 0.0077 0.01 - - 23 静岡 検出 0.0003 0.0015 0.029 0.00079 0.00048 0.042 - - 24 近秋 検出 0.0001 0.41 0.039 0.09 0.024 0.45 - -	12	筱湘								-	_
Table 大和 大和 接出 0.37 0.29 0.13 0.11 0.32 0.66 - -	40	<i>A</i> ===		0.06	0.2	0.05	0.06	0.03	0.05	_	_
14 大和 定量	13	多庠	定量	0.2	0.5	0.2	0.2	0.1	0.2	_	_
14 大和 定量	- 4	_L 1n	検出	0.37	0.29	0.13	0.11	0.32	0.66	_	-
接出 20 0.17 0.12 0.18 3.2 2.3 - - 16	14	入和	定量	1.2	0.97	0.43	0.35	1.1	2.2	_	_
接出 20 0.17 0.12 0.18 3.2 2.3 - - 16	4.5	+# ;-	検出	20	0.05	0.04	0.05	3.2	2.3	_	-
10	15	恞浜	定量	20	0.17	0.12	0.18	3.2	2.3	_	_
10	40	Li Lilet	検出	0.016	0.035	0.016	0.031	0.0099	0.054	_	_
相模原 検出 0.04 0.018 0.03 0.03 0.017 0.021 定量 0.13 0.06 0.11 0.11 0.057 0.068 18	16	川崎		0.053		0.054	0.1	0.033	0.18	_	_
17 相様原 定量	47	+0+#1=	検出	0.04	0.018		0.03	0.017	0.021	_	_
日本 一日 一日 一日 一日 一日 一日 一日		怕悮尽		0.13	0.06					_	_
18 中所 定量	10	p				0.0032	0.00079		0.0092	-	_
古田 検出 0.0022 0.0015 0.0041 0.00079 0.00021 0.0092 - - - 定量 0.0073 0.0049 0.013 0.0027 0.00071 0.031 - - 20 長野 検出 0.0017 0.0087 0.0031 - 0.0012 0.012 - - 定量 0.0058 0.029 0.01 - 0.004 0.04 - - 21 富士 検出 0.0027 0.003 0.0068 0.0017 0.0077 0.01 - - 22 湖西 検出 0.0097 0.003 0.045 0.0017 0.0077 0.01 - - 22 湖西 検出 0.0097 0.003 0.045 0.0017 0.0077 0.01 - - 23 静岡 検出 0.00036 0.0015 0.029 0.00079 0.00048 0.042 - - 24 浜松 検出 0.0001 0.41 0.039 0.09 0.024 0.45 - -	18	中村									
19 口田 定量 0.0073 0.0049 0.013 0.0027 0.00071 0.031 - - - 20 長野 検出 0.0017 0.0087 0.0031 - 0.0012 - - - 21 富士 検出 0.0058 0.029 0.01 - 0.004 - - - 21 富士 検出 0.0027 0.003 0.0688 0.0017 0.0077 0.01 - - 22 湖西 検出 0.0097 0.003 0.045 0.0017 0.0077 0.01 - - 23 静岡 検出 0.0032 0.0098 0.15 0.0055 0.025 0.033 - - 24 近脚 0.00036 0.0015 0.029 0.00079 0.00048 0.042 - - 24 近脚 検出 0.0012 0.0049 0.10 0.0027 0.0016 0.14 - -	10	±m								_	_
接出 0.0017 0.0087 0.0031 - 0.0012 0.012	19	古出								-	-
20 長野 定量 0.0058 0.029 0.01 - 0.004 0.04	22	E 077					_			-	-
21 富士 検出 0.0027 0.003 0.0068 0.0017 0.0077 0.01 - - 22 湖西 検出 0.0097 0.003 0.045 0.0017 0.0077 0.01 - - 23 静岡 検出 0.0003 0.0015 0.009 0.00079 0.00048 0.042 - - 24 近掛 0.0001 0.041 0.003 0.09 0.024 0.45 - -	20	長 野					_			-	-
21 富工 定量 0.0088 0.0098 0.023 0.0055 0.025 0.033 - - 22 湖西 検出 0.0097 0.003 0.045 0.0017 0.0077 0.01 - - 23 静岡 検出 0.00036 0.0015 0.029 0.00079 0.00048 0.042 - - 24 近掛 0.0001 0.41 0.039 0.09 0.024 0.45 - -	64	= -					0.0017			-	-
22 湖西 検出 0.0097 0.003 0.045 0.0017 0.0077 0.01 - - 定量 0.032 0.0098 0.15 0.0055 0.025 0.033 - - 23 静岡 検出 0.00036 0.0015 0.029 0.00079 0.00048 0.042 - - 24 近景 0.0012 0.0049 0.10 0.0027 0.0016 0.14 - - 24 近松 検出 0.0001 0.41 0.039 0.09 0.024 0.45 - -	21	富士									-
22 湖田 定量 0.032 0.0098 0.15 0.0055 0.025 0.033 - - 23 静岡 検出 0.00036 0.0015 0.029 0.00079 0.00048 0.042 - - 24 近景 0.0012 0.0049 0.10 0.0027 0.0016 0.14 - - 24 近外 検出 0.0001 0.41 0.039 0.09 0.024 0.45 - -	00	N0.77									-
23 静岡 検出 0.00036 0.0015 0.029 0.00079 0.00048 0.042 - - 定量 0.0012 0.0049 0.10 0.0027 0.0016 0.14 - - 24 近秋 検出 0.0001 0.41 0.039 0.09 0.024 0.45 - -	22	湖西									-
23 静岡 定量 0.0012 0.0049 0.10 0.0027 0.0016 0.14 - - 24 近秋 検出 0.0001 0.41 0.039 0.09 0.024 0.45 - -	00	#42 1571								-	-
24 近秋 検出 0.0001 0.41 0.039 0.09 0.024 0.45	23	静尚									
	6.4	22.17									-
	24	浜 松	定量			0.13	0.3	0.081	1.5		

表 2-6-3-1-5 金属等の無機元素成分濃度の検出下限値と定量下限値(春)

			Υ	Cd	TI
番号	地点名		(ng/m^3)	(ng/m^3)	(ng/m^3)
		検出			- (i.ig/ iii /
1	土浦	定量	_	_	_
		検出	_	0.1	
2	真岡	定量	_	0.35	
		検出	_	- 0.00	
3	前橋	定量	_	_	_
		検出	_	_	_
4	館林	定量	_	_	_
_	-6 224	検出	_	_	_
5	鴻巣	定量	_	_	_
	+-	検出	_	_	_
6	幸手	定量	_	_	_
_	No. 6 -4-	検出	_	0.014	_
7	さいたま	定量	_	0.048	_
		検出	_	_	_
8	市原	定量	_	_	_
	UNT 2-12	検出	_	_	_
9	勝浦	定量	_	_	_
40	ıl.	検出	_	_	_
10	富津	定量	_	_	_
	ナ 恭	検出	_	_	_
11	千葉	定量	-	_	_
4.0	6± +=	検出	_	_	_
12	綾瀬	定量	_	_	_
10	夕庇	検出	-	_	-
13	多摩	定量	ı	_	-
14	+ 4n	検出	-	_	_
14	大和	定量	1	_	_
15	横浜	検出	-	_	_
15	(円/八	定量	_	_	_
16	川崎	検出	-	_	_
10	川岬	定量	-	_	_
17	相模原	検出	-	_	_
1 /	101天/7	定量	-	_	_
18	甲府	検出	-	_	_
10	ייר די	定量	_	-	_
19	吉田	検出	-	-	_
19	ΠШ	定量	-	_	-
20	長野	検出	-	0.0014	_
	1大主,	定量	-	0.0048	_
21	富士	検出	_	0.01	_
	# -	定量	_	0.033	_
22	湖西	検出	_	0.018	_
	/H) [定量	_	0.063	_
23	静岡	検出	_	_	_
	13 1- Jen)	定量	_	_	_
24	浜松	検出	_	_	_
	7/5/A	定量	_	_	_

表 2-6-3-2-1 金属等の無機元素成分濃度の検出下限値と定量下限値(夏)

	UL		Na	Al	Si	K	Са	Sc	Ti	V
番号	地点名		(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)
	1 14	検出	_	38	_	_	_	0.018	9.4	0.1
1	土浦	定量	_	130	_	_	_	0.059	31	0.34
	古四	検出	8.2	5	_	8.3	14	0.1	1.7	0.056
2	真岡	定量	27	17	-	28	48	0.35	5.6	0.19
2	益括	検出	21	55	-	8.5	170	0.012	500	0.14
3	前橋	定量	70	180	_	28	560	0.041	1700	0.47
4	館林	検出	21	55	_	8.5	170	0.012	500	0.14
4	以后 17个	定量	70	180	_	28	560	0.041	1700	0.47
5	鴻巣	検出	2.4	2.5	_	5.7	2.1	0.029	0.2	0.072
	冷木	定量	8.1	8.2	_	19	6.9	0.097	0.66	0.24
6	幸手	検出	2.4	2.5	_	5.7	2.1	0.029	0.2	0.072
	+7	定量	8.1	8.2	_	19	6.9	0.098	0.66	0.24
7	さいたま	検出	3	5.6	3.3	0.91	15	0.18	0.67	0.011
	C 7201	定量	10	19	7.4	3	49	0.61	2.2	0.038
8	市原	検出	5.1	5.8	8.6	4.1	2.4	0.1	0.67	0.51
	112.001	定量	17	19	29	14	7.9	0.33	2.2	1.7
9	勝浦	検出	5.1	5.8	8.6	4.1	2.4	0.1	0.67	0.51
		定量	17	19	29	14	7.9	0.33	2.2	1.7
10	富津	検出	5.1	5.8	8.6	4.1	2.4	0.1	0.67	0.51
		定量	17	19	29	14	7.9	0.33	2.2	1.7
11	千葉	検出	1.7	4.1	4.3	3.1	10	0.4	1.2	0.034
		定量	5.7	14	14	10	35	1.3	3.9	0.11
12	綾瀬	検出	2	9	4	1	4	0.03	0.7	0.07
		定量	7	30	10	4	10	0.1	2	0.2
13	多摩	検出 定量	2	9	4	1	4	0.03	0.7	0.07
			7	30	10	4	10	0.1	2	0.2
14	大和	検出 定量	40 130	43 140		33 110	66 220	0.26 0.87	0.7 2.3	0.15 0.49
		検出	130	17	8	2.7	2.2	0.023	0.74	0.49
15	横浜	定量	14	17	8	2.7	2.2	0.023	0.74	1
		検出	6.6	0.47	_	1.6	4.5	0.012	0.74	0.12
16	川崎	定量	22	1.6	_	5.3	15	0.012	0.27	0.12
		検出	2.9	2.2	*	1.7	2.7	0.02	0.19	0.027
17	相模原	定量	9.8	7.4	*	5.8	9	0.067	0.64	0.089
	E +	検出	14	7.4	12	12	26	0.0092	0.40	0.024
18	甲府	定量	46	25	39	42	83	0.030	1.3	0.082
40	+	検出	10	7.4	3.0	25	14	0.0092	0.40	0.024
19	吉田	定量	32	25	10	82	48	0.030	1.3	0.082
00	E m7	検出	16	2.5	-	4.3	27	0.0019	3.6	0.0038
20	長野	定量	53	8.5	-	14	91	0.0062	12	0.013
0.1	富士	検出	9.7	4.8	14	13	33	0.025	1.7	0.0087
21	商工	定量	32	16	48	43	110	0.085	5.7	0.028
22	湖西	検出	9.7	20	12	13	33	0.025	1.1	0.0087
	ᄱᄱ	定量	32	68	40	43	110	0.085	3.5	0.028
23	静岡	検出	3.5	7.7	1.9	2.5	14	0.0092	0.41	0.025
	HTIMI	定量	12	26	6.3	8.3	46	0.030	1.3	0.082
24	浜松	検出	11	17	_	11	31	14	2.9	2
	// IA	定量	35	58	-	35	100	48	9.7	6.6

表 2-6-3-2-2 金属等の無機元素成分濃度の検出下限値と定量下限値(夏)

番号	- 山上夕		Cr	Mn	Fe	Co	Ni	Cu	Zn	As
留 写	地点名		(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)
4	土浦	検出	0.84	0.52	17	0.62	7.5	0.22	15	0.077
1	上油	定量	2.8	1.7	58	2.1	25	0.74	49	0.26
2	真岡	検出	0.41	0.27	37	0.092	3.5	0.57	2.8	0.17
	共叫	定量	1.4	0.89	120	0.31	12	1.9	9.4	0.57
3	前橋	検出	1.1	0.2	24	0.23	0.85	0.94	4	0.029
٥	HUITE	定量	3.7	0.67	79	0.77	2.8	3.1	13	0.095
4	館林	検出	1.1	0.2	24	0.23	0.85	0.94	4	0.029
	スロイイト	定量	3.7	0.67	79	0.77	2.8	3.1	13	0.095
5	鴻巣	検出	0.12	0.16	4.3	0.11	0.19	0.21	1.1	0.097
	7 119 21	定量	0.4	0.53	14	0.36	0.64	0.7	3.8	0.32
6	幸手	検出	0.12	0.16	4.3	0.11	0.19	0.21	1.1	0.097
	' '	定量	0.4	0.53	14	0.36	0.64	0.7	3.8	0.32
7	さいたま	検出	0.72	0.062	0.93	0.0065	0.029	0.16	0.53	0.033
	-	定量	2.4	0.21	3.1	0.022	0.097	0.54	1.8	0.11
8	市原	検出	0.99	2.7	4.3	0.022	0.34	1.4	1.4	0.041
		定量	3.3	9	14	0.074	1.1	4.8	4.5	0.14
9	勝浦	検出	0.99	2.7	4.3	0.022	0.34	1.4	1.4	0.041
		定量	3.3	9	14	0.074	1.1	4.8	4.5	0.14
10	富津	検出	0.99	2.7	4.3	0.022	0.34	1.4	1.4	0.041
		定量	3.3	9	14	0.074	1.1	4.8	4.5	0.14
11	千葉	検出 定量	1.8 5.9	0.13 0.44	4.7	0.26 0.85	1	0.88 2.9	0.94 3.1	0.17 0.56
		検出	0.3		16 0.9		3.4 0.1	0.04	0.2	0.36
12	綾瀬	定量	0.3	0.09	3	0.03 0.1	0.1	0.04	0.2	0.2
		検出	0.3	0.09	0.9	0.03	0.3	0.04	0.7	0.3
13	多摩	定量	0.3	0.09	3	0.03	0.1	0.04	0.2	0.5
		検出	0.67	0.35	10	0.43	0.64	3.7	13	0.7
14	大和	定量	2.2	1.2	34	1.4	2.1	12	45	2.3
		検出	0.4	1.4	5.5	0.9	0.86	1.1	1.7	0.89
15	横浜	定量	0.4	1.4	5.5	0.9	0.86	1.1	1.7	0.89
		検出	0.32	0.19	1.6	0.015	0.31	0.2	2.4	0.042
16	川崎	定量	1.1	0.65	5.4	0.049	1	0.65	7.9	0.14
47	+n+# Œ	検出	0.17	0.05	1.2	0.026	0.07	0.11	0.4	0.03
17	相模原	定量	0.56	0.15	4.1	0.085	0.23	0.36	1.4	0.1
10	ш #	検出	0.52	0.037	3.9	0.0014	0.12	0.11	8.0	0.013
18	甲府	定量	1.8	0.12	13	0.0046	0.40	0.37	27	0.043
19	吉田	検出	0.52	0.14	3.9	0.0052	0.18	0.11	8.0	0.013
18	田田	定量	1.8	0.46	13	0.018	0.60	0.37	27	0.043
20	長野	検出	0.72	0.063	1.7	0.0082	0.038	0.93	0.71	0.0027
20	以土	定量	2.4	0.21	5.7	0.027	0.13	3.1	2.4	0.009
21	富士	検出	1.4	0.17	7	0.01	0.067	0.48	5.7	0.027
	#1	定量	4.7	0.58	23	0.035	0.22	1.6	18	0.087
22	湖西	検出	0.6	0.1	0.6	0.01	0.067	0.48	5.3	0.027
	~~·	定量	2	0.33	2	0.035	0.22	1.6	18	0.087
23	静岡	検出	0.51	0.042	3.4	0.0018	0.0020	0.11	5.8	0.013
	1-3	定量	1.7	0.14	12	0.0061	0.0067	0.35	19	0.043
24	浜松	検出	0.45	0.05	0.79	0.074	0.089	1.3	1.3	0.22
	.,,,,	定量	1.5	0.17	2.6	0.25	0.3	4.2	4.4	0.73

表 2-6-3-2-3 金属等の無機元素成分濃度の検出下限値と定量下限値(夏)

			Se	Rb	Мо	Sb	Cs	Ва	l a	Се
番号	地点名		(ng/m³)	(ng/m ³)	(ng/m ³)	(ng/m³)	(ng/m ³)	(ng/m³)	La (ng/m³)	(ng/m³)
		њы		(ng/ m)						
1	土浦	検出 定量	0.02 0.068		0.12 0.4	0.56 1.9	0.0034 0.011	0.58 1.9	0.019 0.062	0.057 0.19
		検出	0.008	0.077	0.23	0.062	0.011			
2	真岡	定量	1.1	0.077	0.23	0.002	0.35	0.21 0.69	0.092 0.31	0.096 0.32
		検出	0.19	0.063	0.75	87	0.035	0.09	0.012	0.022
3	前橋	定量	0.13	0.003	0.13	290	0.033	0.13	0.012	0.022
		検出	0.19	0.063	0.15	87	0.035	0.19	0.012	0.022
4	館林	定量	0.63	0.21	0.51	290	0.12	0.63	0.039	0.072
	-4 11/	検出	0.2	1.4	0.077	0.012	0.079	2.3	0.038	0.018
5	鴻巣	定量	0.67	0.46	0.26	0.12	0.26	7.7	0.13	0.06
	+ +	検出	0.2	1.4	0.077	0.012	0.079	2.3	0.038	0.018
6	幸手	定量	0.67	0.46	0.26	0.12	0.26	7.7	0.13	0.06
7	+1.1+.+	検出	0.1	0.15	0.021	0.0064	0.0083	0.13	0.034	0.0039
7	さいたま	定量	0.34	0.49	0.069	0.021	0.028	0.42	0.11	0.013
8	市原	検出	0.58	0.03	0.068	0.036	0.012	0.044	0.0093	0.01
0	川原	定量	1.9	0.1	0.23	0.12	0.041	0.15	0.031	0.034
9	勝浦	検出	0.58	0.03	0.068	0.036	0.012	0.044	0.0093	0.01
	1377 /HI	定量	1.9	0.1	0.23	0.12	0.041	0.15	0.031	0.034
10	富津	検出	0.58	0.03	0.068	0.036	0.012	0.044	0.0093	0.01
	田/干	定量	1.9	0.1	0.23	0.12	0.041	0.15	0.031	0.034
11	千葉	検出	0.14	0.014	0.45	0.13	0.26	0.13	0.13	0.21
L''	1 *	定量	0.48	0.048	1.5	0.43	0.88	0.45	0.44	0.71
12	綾瀬	検出	0.06	0.09	0.05	0.02	0.03	0.1	0.05	0.02
	12.12	定量	0.2	0.3	0.2	0.08	0.1	0.3	0.2	0.06
13	多摩	検出	0.06	0.09	0.05	0.02	0.03	0.1	0.05	0.02
		定量	0.2	0.3	0.2	0.08	0.1	0.3	0.2	0.06
14	大和	検出	0.66	0.77	0.34	0.17	0.51	0.33	0.51	0.44
		定量	2.2	2.6	1.1	0.55	1.7	1.1	1.7	1.5
15	横浜	検出 定量	0.99 0.99	1.1	1.4 1.4	6.6 6.6	9.4 9.4	10 10	12 12	13 13
		検出	0.99	0.018	0.063	0.013	0.014	0.054	0.017	0.022
16	川崎	定量	0.018	0.018	0.003	0.013	0.014	0.034	0.017	0.022
		検出	0.04	0.039	0.21	0.042	0.048	0.18	0.038	0.072
17	相模原	定量	0.04	0.04	0.03	0.065	0.018	0.13	0.018	0.018
		検出	0.022	0.014	0.12	0.012	0.0060	0.059	0.011	0.012
18	甲府	定量	0.076	0.048	0.38	0.040	0.020	0.20	0.037	0.038
4.0	+	検出	0.022	0.014	0.12	0.010	0.0060	0.059	0.011	0.012
19	吉田	定量	0.076	0.048	0.38	0.033	0.020	0.20	0.037	0.038
-00	E m7	検出	0.058	0.0025	0.0042	0.012	0.0016	0.035	0.0073	0.018
20	長野	定量	0.19	0.0085	0.014	0.039	0.0052	0.12	0.024	
01	富士	検出	0.065	0.028	0.014	0.01	0.012	0.052	0.0045	
21	亩丄	定量	0.22	0.097	0.047	0.035	0.04	0.17	0.015	0.3
22	湖西	検出	0.065	0.028	0.014	0.01	0.012	0.052	0.004	0.092
	ᄱᄭᅜᅼ	定量	0.22	0.097	0.047	0.035	0.04	0.17	0.014	0.3
23	静岡	検出	0.025	0.014	0.12	0.0040	0.0060	0.062	0.012	0.0028
	is i. imi	定量	0.082	0.048	0.39	0.013	0.020	0.21	0.038	0.0092
24	浜松	検出	0.23	0.007	3.5	0.4	0.0017	0.36	0.0034	0.0093
_ '	//\I A	定量	0.75	0.023	12	1.3	0.0056	1.2	0.011	0.031

表 2-6-3-2-4 金属等の無機元素成分濃度の検出下限値と定量下限値(夏)

番号	₩上夕		Sm	Hf	W	Та	Th	Pb	Ве	Sr
留写	地点名		(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)
4	⊥ :±	検出	0.0069	0.027	0.074	-	0.031	2.5	-	-
1	土浦	定量	0.023	0.09	0.25	-	0.1	8.4	_	-
	古回	検出	0.12	0.33	0.12	0.37	0.15	0.18	0.28	-
2	真岡	定量	0.39	1.1	0.41	1.2	0.51	0.59	0.94	-
3	前橋	検出	0.0019	0.023	0.084	0.025	0.02	0.55	-	-
3	削惰	定量	0.0062	0.077	0.28	0.083	0.067	1.8	-	_
4	館林	検出	0.0019	0.023	0.084	0.025	0.02	0.55	-	-
7	ストイイン	定量	0.0062	0.077	0.28	0.083	0.067	1.8	-	_
5	鴻巣	検出	0.035	0.02	0.04	0.028	0.079	0.12	_	_
	冷木	定量	0.12	0.2	0.13	0.094	0.26	0.41	-	_
6	幸手	検出	0.035	0.02	0.04	0.028	0.079	0.12	_	_
	+ 1	定量	0.12	0.2	0.13	0.094	0.26	0.41	-	_
7	さいたま	検出	0.013	0.0066	0.054	0.0022	0.0082	0.044	_	-
	2,726	定量	0.044	0.022	0.18	0.0074	0.027	0.15	_	-
8	市原	検出	0.013	0.16	0.06	0.29	0.01	0.87	-	-
<u> </u>	.1-1/1	定量	0.044	0.54	0.2	0.95	0.035	2.9	_	-
9	勝浦	検出	0.013	0.16	0.06	0.29	0.01	0.87	_	-
	2227113	定量	0.044	0.54	0.2	0.95	0.035	2.9	_	_
10	富津	検出	0.013	0.16	0.06	0.29	0.01	0.87	_	_
	ш.,	定量	0.044	0.54	0.2	0.95	0.035	2.9	-	-
11	千葉	検出	0.26	0.13	1.4	0.15	0.33	0.25	_	
		定量	0.88	0.45	4.7	0.5	1.1	0.82	-	-
12	綾瀬	検出	0.04	0.07	0.04	0.02	0.03	0.05	_	_
		定量	0.1	0.2	0.1	0.07	0.1	0.2	_	-
13	多摩	検出	0.04	0.07	0.04	0.02	0.03	0.05		
		定量	0.1	0.2	0.1	0.07	0.1	0.2	_	_
14	大和	検出	0.33	0.48	0.14	0.04	0.37	0.44	_	
		定量	1.1	1.6	0.48	0.13	1.2	1.5	_	_
15	横浜	検出	20 20	0.026	0.04	0.018	3.3	2.3	_	_
		定量		0.087 0.018	0.14 0.012	0.059	3.3	2.3 0.12		_
16	川崎	検出 定量	0.014 0.045			0.03	0.0078		_	_
		検出	0.045	0.062 0.05	0.039 0.04	0.098 0.03	0.026 0.025	0.39		
17	相模原	定量	0.020	0.05	0.04	0.03	0.023	0.03		
		検出	0.087	0.00092	0.14	0.0014	0.00082	0.072	_	_
18	甲府	定量	0.012	0.00092	0.012	0.0014	0.00082	0.072	_	_
		検出	0.012	0.00092	0.042	0.0014	0.00082	0.072	_	_
19	吉田	定量	0.040	0.0032	0.092	0.0048	0.0008	0.24	_	_
		検出	0.00064	0.0018	0.0068	-	0.0003	0.011	_	_
20	長野	定量	0.0021	0.006	0.023	_	0.001	0.037	_	_
	<u> </u>	検出	0.0057	0.0018	0.025	0.0011	0.018	0.032	_	_
21	富士	定量	0.018	0.006	0.083	0.0038	0.06	0.11	_	_
	ч п	検出	0.0057	0.0018	0.025	0.0015	0.018	0.032	_	_
22	湖西	定量	0.018	0.006	0.083	0.0048	0.06	0.1	_	_
00	±4.1571	検出	0.012	0.0010	0.012	0.0016	0.00092	0.078	-	-
23	静岡	定量	0.042	0.0033	0.041	0.0052	0.0030	0.26	-	_
0.4	に ナハ	検出	0.0017	0.016	0.17	0.039	0.0057	0.094	-	-
24	浜松	定量	0.0056	0.052	0.56	0.13	0.019	0.31	-	_

表 2-6-3-2-5 金属等の無機元素成分濃度の検出下限値と定量下限値(夏)

番号	地点名		Y (ng/m^3)	Cd (ng/m³)	TI (ng/m³)
		14公山	(11g/111 /	(11g/111 /	(11g/111 /
1	土浦	検出			
		定量	_	-	_
2	真岡	検出	_	0.13	_
		定量	_	0.45	_
3	前橋	検出	_	_	_
	נפודי נינו	定量	_	_	_
4	館林	検出	_	_	_
	ムロイイ	定量	_	_	_
5	鴻巣	検出	_	_	_
5	梅未	定量	_	_	_
•	+	検出	-	_	-
6	幸手	定量	_	_	_
	No. 1. 44	検出	_	0.014	_
7	さいたま	定量	_	0.048	_
		検出	_	-	_
8	市原	定量	_	_	_
		検出	_	_	_
9	勝浦	定量			_
		検出	_	_	_
10	富津	定量	_	_	_
			_	_	_
11	千葉	検出			
		定量	_	_	_
12	綾瀬	検出	_	_	_
	12012	定量	_	_	_
13	多摩	検出	_	_	_
	77	定量	_	_	_
14	大和	検出	_	_	_
17	ノヘイロ	定量	_	_	_
15	横浜	検出	_	_	_
10	供供	定量	_	_	_
10	口山太	検出	-	_	-
16	川崎	定量	_	_	_
		検出	_	_	_
17	相模原	定量	_	_	_
	·	検出	_	_	_
18	甲府	定量	_	_	_
		検出	_	_	_
19	吉田	定量	_	_	_
		検出	_	0.0024	_
20	長野	定量			
			_	0.0081	_
21	富士	検出		0.015	
		定量	_	0.048	_
22	湖西	検出	-	0.015	-
		定量	_	0.048	_
23	静岡	検出		_	-
		定量	_	_	_
24	浜松	検出	_	_	_
	// Jan	定量	_	_	_

表 2-6-3-3-1 金属等の無機元素成分濃度の検出下限値と定量下限値(秋)

			Na	Al	Si	K	Ca	Sc	Ti	V
番号	地点名		(ng/m ³)							
		検出	(Hg/ HI /	16	(Hg/ HI /	(Hg/ H1 /	(11g/ 111 /	0.0036	1.9	0.018
1	土浦	定量	_	53	_	_	_	0.012	6.3	0.061
		検出	9.7	13	_	12	16	0.059	2.1	0.1
2	真岡	定量	32	43	_	41	53	0.2	6.8	0.34
_	V 17	検出	21	55	_	8.5	170	0.012	500	0.14
3	前橋	定量	70	180	_	28	560	0.041	1700	0.47
	& 1.1	検出	21	55	_	8.5	170	0.012	500	0.14
4	館林	定量	70	180	_	28	560	0.041	1700	0.47
-	油出	検出	2.4	2.5	_	5.7	2.1	0.029	0.2	0.072
5	鴻巣	定量	8.1	8.2	_	19	6.9	0.096	0.66	0.24
6	幸手	検出	2.4	2.5	-	5.7	2.1	0.029	0.2	0.072
6	辛士	定量	8.1	8.2	_	19	6.9	0.096	0.66	0.24
7	さいたま	検出	2.8	3.5	12	1.7	7	0.18	0.38	0.011
′	C0.724	定量	9.2	12	42	5.6	23	0.61	1.3	0.038
8	市原	検出	15	15	8.6	4.2	2.4	0.079	0.86	0.35
0	אונוי	定量	52	49	29	14	7.9	0.26	2.9	1.2
9	勝浦	検出	15	15	8.6	4.2	2.4	0.079	0.86	0.35
	מוזענו	定量	52	49	29	14	7.9	0.26	2.9	1.2
10	富津	検出	15	15	8.6	4.2	2.4	0.079	0.86	0.35
	ш/т	定量	52	49	29	14	7.9	0.26	2.9	1.2
11	千葉	検出	1.4	2.3	6.6	3.9	5.1	0.14	0.89	0.34
- ' '	1 /	定量	4.7	7.7	22	13	17	0.46	3	1.1
12	綾瀬	検出	3	8	10	2	8	0.2	1	0.07
	12.12	定量	10	30	40	6	30	0.7	5	0.2
13	多摩	検出	3	8	10	2	8	0.2	1	0.07
		定量	10	30	40	6	30	0.7	5	0.2
14	大和	検出	11	13	_	13	41	0.24	1.4	0.53
		定量	38	43	- 7.4	45	140	0.8	4.6	1.8
15	横浜	検出 定量	12 12	17 17	7.4 7.4	2.5	1.7 1.7	0.03	0.71 0.71	0.72 0.72
		検出	2.6	1.6	- 7. 4	2.5 1.8	8.9	0.11 0.023	1.6	0.72
16	川崎	定量	8.6	5.2	_	6	30	0.023	5.3	0.024
		検出	3	1.3	*	1.7	2	0.078	0.25	0.015
17	相模原	定量	10	4.4	*	5.6	6.7	0.023	0.83	0.013
		検出	12	4.4	2.6	8.2	19	0.012	1	0.032
18	甲府	定量	42	15	8.3	28	65	0.042	3.2	0.11
		検出	12	15	2.6	8.2	3.4	0.012	0.29	
19	吉田	定量	42	49	8.3	28	12	0.042	1	0.018
	= ==	検出	65	3	_	6.1	19	0.0019	1.6	0.0026
20	長野	定量	220	10	_	20	65	0.0063	5.3	0.0088
0.1	令上	検出	4.2	11	11	3.8	87	0.12	1	0.02
21	富士	定量	14	37	35	12	280	0.4	3.5	0.065
22	湖西	検出	4.2	20	11	6.7	25	0.12	2.2	0.01
22	加四	定量	14	70	35	22	82	0.4	7.3	0.033
23	静岡	検出	12	8.3	2.5	1	10	0.022	0.92	0.0051
۷۵	月ナ川川	定量	38	29	8.3	3.3	34	0.075	3.1	0.017
24	浜松	検出	9.2	9.4	-	3.6	38	0.059	0.24	
۷4	/ // 1/4	定量	31	31	-	12	130	0.2	0.79	0.34

表 2-6-3-3-2 金属等の無機元素成分濃度の検出下限値と定量下限値(秋)

番号	地点名		Cr	Mn	Fe	Со	Ni	Cu	Zn	As
田力	地点石		(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m ³)
1	土浦	検出	0.49	0.29	12	0.011	1.1	0.85	5.9	0.01
<u>'</u>	上畑	定量	1.6	0.96	40	0.036	3.5	2.8	20	0.034
2	真岡	検出	0.25	0.13	33	0.069	4	3.5	6.4	0.18
	共叫	定量	0.83	0.44	110	0.23	13	12	21	0.59
3	前橋	検出	1.1	0.2	24	0.23	0.85	0.94	4	0.029
٥	門们向	定量	3.7	0.67	79	0.77	2.8	3.1	13	0.095
4	館林	検出	1.1	0.2	24	0.23	0.85	0.94	4	0.029
	ムロイイト	定量	3.7	0.67	79	0.77	2.8	3.1	13	0.095
5	鴻巣	検出	0.12	0.16	4.3	0.11	0.19	0.21	1.1	0.097
	ア両木	定量	0.39	0.53	14	0.36	0.64	0.69	3.8	0.32
6	幸手	検出	0.12	0.16	4.3	0.11	0.19	0.21	1.1	0.097
	Τ,	定量	0.39	0.53	14	0.36	0.64	0.69	3.8	0.32
7	さいたま	検出	0.55	0.12	3.5	0.0065	0.029	0.12	0.22	0.037
<u> </u>	2: /20	定量	1.8	0.41	12	0.022	0.097	0.41	0.75	0.12
8	市原	検出	0.57	0.98	2.7	0.048	0.21	0.56	0.69	0.13
	.1- //3	定量	1.9	3.3	8.9	0.16	0.69	1.9	2.3	0.45
9	勝浦	検出	0.57	0.98	2.7	0.048	0.21	0.56	0.69	0.13
		定量	1.9	3.3	8.9	0.16	0.69	1.9	2.3	0.45
10	富津	検出	0.57	0.98	2.7	0.048	0.21	0.56	0.69	0.13
		定量	1.9	3.3	8.9	0.16	0.69	1.9	2.3	0.45
11	千葉	検出	0.73	0.2	3.3	0.45	0.33	0.55	3.6	0.13
		定量	2.4	0.65	11	1.5	1.1	1.8	12	0.44
12	綾瀬	検出	0.9	0.2	6	0.1	0.9	3	2	0.2
		定量	3	0.7	20	0.3	3	10	8	0.8
13	多摩	検出 定量	0.9	0.2 0.7	6	0.1	0.9	3 10	2 8	0.2
					20 24	0.3			8	0.8
14	大和	検出 定量	0.29 0.98	0.46 1.5	24 81	0.21 0.69	0.15 0.5	6.4 21	27	0.82 2.7
		検出	0.37	1.5	5.6	0.09	0.65	1.1	1.7	0.83
15	横浜	定量	0.37	1.5	5.6	0.94	0.65	1.1	1.7	0.83
		検出	0.094	0.13	1.3	0.016	0.03	0.76	2.8	0.044
16	川崎	定量	0.31	0.45	4.3	0.052	0.66	2.5	9.5	0.15
		検出	0.15	0.03	0.9	0.01	0.08	0.27	0.5	0.03
17	相模原	定量	0.13	0.12	2.9	0.035	0.00	0.27	1.6	0.03
		検出	0.92	0.059	18	0.018	5.0	4.8	1.0	0.0081
18	甲府	定量	2.9	0.20	60	0.058	17	16	41	0.027
		検出	1	0.15		0.0060	0.52	1.6	5.0	
19	吉田	定量	3.2	0.51	10	0.020	1.8	5.4	17	0.036
	E m7	検出	0.35	0.11	1.7	0.0055	0.027	0.043	0.56	0.0027
20	長野	定量	1.2	0.36	5.6	0.018	0.089	0.14	1.9	0.0091
0.1	= 上	検出	3.3	0.15	16	0.0062	0.17	0.33	32	0.012
21	富士	定量	11	0.5	53	0.02	0.57	1.1	100	0.042
20	310 TH	検出	0.55	0.2	16	0.22	0.11	0.2	15	0.02
22	湖西	定量	1.8	0.67	53	0.7	0.37	0.65	48	0.068
23	静岡	検出	0.28	0.00092	0.92	0.0011	0.038	2.0	10	0.010
۷٥	月ず「凹」	定量	0.92	0.0032	3.1	0.0035	0.12	6.6	34	0.034
24	浜松	検出	0.32	0.028	1.7	0.063	0.1	0.71	0.65	0.053
24	八竹ム	定量	1.1	0.094	5.6	0.21	0.34	2.4	2.2	0.18

表 2-6-3-3-3 金属等の無機元素成分濃度の検出下限値と定量下限値(秋)

亚口	业上力		Se	Rb	Мо	Sb	Cs	Ва	La	Се
番号	地点名		(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)
_	1.4	検出	0.03	_	0.12	0.24	0.0045	0.055	0.0077	0.0089
1	土浦	定量	0.1	_	0.42	0.8	0.015	0.18	0.026	0.03
	古四	検出	1.1	0.042	0.59	0.1	0.06	0.46	0.091	0.096
2	真岡	定量	3.8	0.14	2	0.35	0.2	1.5	0.3	0.32
3	前橋	検出	0.19	0.063	0.15	87	0.035	0.19	0.012	0.022
J	別作	定量	0.63	0.21	0.51	290	0.12	0.63	0.039	0.072
4	館林	検出	0.19	0.063	0.15	87	0.035	0.19	0.012	0.022
_	以口们个	定量	0.63	0.21	0.51	290	0.12	0.63	0.039	0.072
5	鴻巣	検出	0.2	1.4	0.077	0.012	0.079	2.3	0.038	0.018
Ů	ア両木	定量	0.67	0.46	0.26	0.12	0.26	7.7	0.13	0.06
6	幸手	検出	0.2	1.4	0.077	0.012	0.079	2.3	0.038	0.018
	Τ,	定量	0.67	0.46	0.26	0.12	0.26	7.7	0.13	0.06
7	さいたま	検出	0.1	0.032	0.052	0.0064	0.0083	0.28	0.034	0.0039
		定量	0.34	0.11	0.17	0.021	0.028	0.92	0.11	0.013
8	市原	検出	0.42	0.062	0.12	0.026	0.017	0.022	0.023	0.021
	-1	定量	1.4	0.21	0.4	0.086	0.057	0.073	0.077	0.07
9	勝浦	検出	0.42	0.062	0.12	0.026	0.017	0.022	0.023	0.021
		定量	1.4	0.21	0.4	0.086	0.057	0.073	0.077	0.07
10	富津	検出	0.42	0.062	0.12	0.026	0.017	0.022	0.023	0.021
		定量	1.4	0.21	0.4	0.086	0.057	0.073	0.077	0.07
11	千葉	検出 定量	0.54	0.24	0.46	0.19	0.082	0.17	0.3	0.35
		検出	1.8 0.3	0.81	1.5	0.63	0.27	0.57	0.1	1.2
12	綾瀬	使 <u>工</u>	0.3	0.09	0.06	0.1 0.5	0.02	0.2 0.7	0.1	0.1
		検出	0.3	0.09	0.06	0.5	0.08 0.02	0.7	0.4 0.1	0.4 0.1
13	多摩	定量	0.3	0.09	0.00	0.1	0.02	0.2	0.1	0.1
		検出	0.92	0.44	0.2	0.5	0.08	0.38	0.18	0.15
14	大和	定量	3.1	1.5	1	2	0.13	1.3	0.10	0.13
		検出	0.98	1.1	1.4	6.6	9.4	1.0	12	13
15	横浜	定量	0.98	1.1	1.4	6.6	9.4	10	12	13
		検出	0.021	0.021	0.044	0.033	0.015	0.21	0.014	0.018
16	川崎	定量	0.069	0.07	0.15	0.11	0.05	0.69	0.048	0.06
47	+n+# r=	検出	0.04	0.03	0.017	0.023	0.011	0.1	0.009	0.019
17	相模原	定量	0.14	0.11	0.057	0.077	0.037	0.32	0.029	0.064
10	甲府	検出	0.022	0.022	0.19	0.056	0.0012	0.016	0.0018	0.0049
18	中府	定量	0.076	0.072	0.64	0.18	0.0042	0.052	0.0057	0.017
19	吉田	検出	0.022	0.017	0.016	0.024	0.00073	0.029	0.0092	0.010
18	田田	定量	0.076	0.054	0.054	0.082	0.0024	0.10	0.032	0.035
20	長野	検出	0.059	0.0032	0.0034	0.0049	0.0016	0.064	0.0057	0.0009
20	以土厂	定量	0.2	0.011	0.011	0.016	0.0053	0.21	0.019	0.003
21	富士	検出	0.045	0.12	0.13	0.053	0.0068	0.087	0.1	0.0075
	H -	定量	0.15	0.38	0.43	0.18	0.023	0.28	0.33	0.025
22	湖西	検出	0.045	0.12	0.13	0.01	0.12	0.11	0.11	0.11
<u> </u>		定量	0.15	0.38	0.43	0.035	0.4	0.37	0.38	0.37
23	静岡	検出	0.022	0.0092	0.015	0.022	0.00092	0.018	0.0057	0.0041
		定量	0.076	0.032	0.052	0.075	0.0032	0.059	0.019	0.013
24	浜松	検出	0.046	0.033	0.71	0.079	0.062	0.23	0.036	0.028
		定量	0.15	0.11	2.4	0.26	0.21	0.75	0.12	0.092

表 2-6-3-3-4 金属等の無機元素成分濃度の検出下限値と定量下限値(秋)

	1		_						_	_
番号	地点名		Sm	Hf	W	Ta	Th	Pb	Be	Sr
щ	-0 M I		(ng/m^3)							
1	土浦	検出	0.0044	0.019	0.029	-	0.09	0.16	-	-
	上州	定量	0.015	0.063	0.096	-	0.3	0.54	-	-
2	真岡	検出	0.12	0.52	0.12	0.31	0.12	0.27	0.22	-
	呉叫	定量	0.38	1.7	0.39	1	0.4	0.89	0.72	-
3	前橋	検出	0.0019	0.023	0.084	0.025	0.02	0.55	-	-
٥	別们同	定量	0.0062	0.077	0.28	0.083	0.067	1.8	-	-
4	館林	検出	0.0019	0.023	0.084	0.025	0.02	0.55	-	-
7	スロイヤ	定量	0.0062	0.077	0.28	0.083	0.067	1.8	-	-
5	鴻巣	検出	0.035	0.02	0.04	0.028	0.079	0.12	_	_
	冷木	定量	0.12	0.2	0.13	0.094	0.26	0.41	_	_
6	幸手	検出	0.035	0.02	0.04	0.028	0.079	0.12	-	_
	+ 1	定量	0.12	0.2	0.13	0.094	0.26	0.41	-	_
7	さいたま	検出	0.013	0.0066	0.16	0.0022	0.0082	0.044	-	_
	CV 726	定量	0.044	0.022	0.54	0.0074	0.027	0.15	-	_
8	市原	検出	0.027	0.025	0.17	1.1	0.02	0.79	-	_
	111775	定量	0.09	0.082	0.58	3.5	0.065	2.6	-	_
9	勝浦	検出	0.027	0.025	0.17	1.1	0.02	0.79	-	_
	מוז מנו	定量	0.09	0.082	0.58	3.5	0.065	2.6	-	_
10	富津	検出	0.027	0.025	0.17	1.1	0.02	0.79	-	_
10	田牛	定量	0.09	0.082	0.58	3.5	0.065	2.6	-	-
11	千葉	検出	0.32	0.27	2.8	0.42	0.16	0.25	-	-
	一木		1.1	0.9		1.4	0.52			-
12	綾瀬			0.04		0.09	0.06		-	_
12	119X 1719.			0.1		0.3	0.2			-
13	多摩			0.04		0.09	0.06		-	_
-10	ン庁			0.1		0.3	0.2		-	_
14	大和								-	-
L.,	7114								-	-
15	横浜									-
	IX//C									-
16	川崎									-
	7.1.1.3									-
17	相模原									_
<u> </u>										_
18	甲府									_
<u> </u>									_	
19	吉田								-	-
						0.0032				-
20	長野					_				-
		定量 1.1 0.9 9.2 1.4 0.52 0.83 - 検出 0.3 0.04 0.2 0.09 0.06 0.05 - 定量 0.9 0.1 0.5 0.3 0.2 0.2 - 検出 0.3 0.04 0.2 0.09 0.06 0.05 - 定量 0.9 0.1 0.5 0.3 0.2 0.2 - 検出 0.22 0.11 0.51 0.19 0.14 0.15 -	_							
21	富士									_
										_
22	湖西									_
<u> </u>										_
23	静岡									_
										-
24	浜松									
		定量	0.18	0.5	0.39	0.13	0.18	0.31	-	-

表 2-6-3-3-5 金属等の無機元素成分濃度の検出下限値と定量下限値(秋)

			Υ	Cd	TI
番号	地点名		(ng/m^3)	(ng/m^3)	(ng/m^3)
4	_L > _L	検出	_	_	_
1	土浦	定量	-	_	1
2	真岡	検出	_	0.17	-
	共画	定量	-	0.58	-
3	前橋	検出	1	_	1
3	別作	定量	1	_	1
4	館林	検出	-	_	_
4	以日 17个	定量	1	_	-
5	鴻巣	検出	_	_	_
	たの木	定量	-	_	_
6	幸手	検出	_	_	_
	+7	定量	_	_	_
7	さいたま	検出	_	0.014	_
	20.124	定量	-	0.048	_
8	市原	検出	_	_	_
- 0	יאו נוו	定量	_	_	_
9	勝浦	検出	-	_	_
	חלי לכנו	定量	_	_	_
10	富津	検出	1	_	-
10	田任	定量	-	_	_
11	千葉	検出	_	_	_
''	1 *	定量	_	_	_
12	綾瀬	検出	_	_	_
12	小女/4只	定量	_	_	_
13	多摩	検出	_	_	_
10	ク手	定量	_	_	_
14	大和	検出		_	_
	7414	定量	1	_	_
15	横浜	検出		_	_
	IX//C	定量	_	_	_
16	川崎	検出	_	_	_
	71[29]	定量	_	_	_
17	相模原	検出	_	_	_
	1112/11	定量	_	_	_
18	甲府	検出	_	_	_
<u> </u>	1 /13	定量	_	_	_
19	吉田	検出	_	_	_
		定量	_	-	_
20	長野	検出		0.0024	_
_ <u>_</u> _	17.11	定量	_	0.0081	_
21	富士	検出		0.063	_
		定量	_	0.22	_
22	湖西	検出	_	0.11	-
	~~· —	定量	_	0.37	_
23	静岡	検出	_	-	_
	171 [74]	定量	_	_	_
24	浜松	検出	_	_	_
	.,,,,,,,,	定量	_	-	-

表 2-6-3-4-1 金属等の無機元素成分濃度の検出下限値と定量下限値(冬)

番号	地点名		Na	Al	Si	K	Ca	Sc	Ti	٧
钳方	地点石		(ng/m^3)							
1	土浦	検出	_	30	-	_	-	0.014	1.9	0.067
_ '	上畑	定量	_	100	_	-	-	0.048	6.2	0.22
2	真岡	検出	2.7	9.8	-	2.6	12	0.14	1.9	0.054
	呉剛	定量	8.9	33	-	8.7	41	0.48	6.5	0.18
3	前橋	検出	21	55	-	8.5	170	0.012	500	0.14
	日リリロ	定量	70	180	_	28	560	0.041	1700	0.47
4	館林	検出	21	55	_	8.5	170	0.012	500	0.14
	יוייםע	定量	70	180	_	28	560	0.041	1700	0.47
5	鴻巣	検出	2.4	2.5	_	5.7	2.1	0.029	0.2	0.072
	7 11/2 2/1	定量	8.1	8.2	_	19	6.9	0.097	0.66	0.24
6	幸手	検出	2.4	2.5	_	5.7	2.1	0.029	0.2	0.072
		定量	8.1	8.2	_	19	6.9	0.098	0.66	0.24
7	さいたま	検出	0.21	0.08	9.6	0.91	4.3	0.18	0.89	0.011
		定量	0.69	0.27	32	3	14	0.61	3	0.038
8	市原	検出	2.7	9.5	4.1	1.9	7.1	0.08	0.85	0.3
		定量	9	32	14	6.3	24	0.27	2.8	1
9	勝浦	検出	2.7	9.5	4.1	1.9	7.1	0.08	0.85	0.3
		定量	9	32	14	6.3	24	0.27	2.8	1
10	富津	検出	2.7	9.5	4.1	1.9	7.1	0.08	0.85	0.3
		定量	9	32	14	6.3	24	0.27	2.8	0.40
11	千葉	検出 定量	4	4.8	8.9	0.75	5 17	0.56	5.5	0.46
		検出	13 30	16 5	30	2.5	80	1.9 0.2	18 0.6	1.5 0.1
12	綾瀬	定量	90	20	9 30	20 60	300	0.2	2	0.1
		検出	30	5	9	20	80	0.7	0.6	0.5
13	多摩	定量	90	20	30	60	300	0.2	2	0.1
		検出	11	18	_	10	27	0.092	0.53	0.37
14	大和	定量	38	59	_	35	91	0.032	1.8	1.2
		検出	8.5	16	7.8	2.3	2.3	0.022	0.8	0.57
15	横浜	定量	8.5	16	7.8	2.3	2.3	0.074	0.8	0.57
		検出	4.9	1.6	_	2.5	9.3	0.015	0.52	0.022
16	川崎	定量	16	5.4	_	8.5	31	0.048	1.7	0.073
	40.4# FE	検出	2	1.2	*	1.1	2.2	0.028	0.22	0.021
17	相模原	定量	6.6	4	*	3.7	7.4	0.095	0.75	0.069
10	甲府	検出	13	13	3.3	1.2	17	0.012	1.2	0.0092
18	中府	定量	45	45	11	4.0	54	0.040	4.0	0.031
19	吉田	検出	12	7.8	19	10	24	0.012	0.69	0.0092
18	口田	定量	42	26	64	34	82	0.040	2.3	0.031
20	長野	検出	13	5.1	_	1.5	9.4	0.0061	3.6	0.0034
	242,	定量	43	17	-	5.2	31	0.02	12	0.011
21	富士	検出	2.3	15	14	1.4	11	0.018	1.4	0.023
		定量	7.7	50	47	4.8	37	0.062	4.5	0.078
22	湖西	検出	2.3	9.2	12	1.4	11	0.018	1.8	0.023
		定量	7.7	30	40	4.8	37	0.062	6.3	0.078
23	静岡	検出	13	2.7	3.3	1.2	17	0.012	0.72	0.0092
-		定量	45	9.2	11	4.0	54	0.040	2.4	0.031
24	浜松	検出	2.8	6.9	_	0.94	9.7	0.021	0.46	0.38
		定量	9.2	23	-	3.1	32	0.071	1.5	1.3

表 2-6-3-4-2 金属等の無機元素成分濃度の検出下限値と定量下限値(冬)

			Cr	Mn	Fe	Co	Ni	Cu	Zn	As
番号	地点名		(ng/m^3)	(ng/m^3)	(ng/m ³)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)	(ng/m^3)
	1.545	検出	0.39	0.89	12	0.074	1.7	0.94	40	0.031
1	土浦	定量	1.3	3	40	0.25	5.5	3.1	130	0.1
	+	検出	0.69	0.18	14	0.14	0.11	0.11	1.4	0.14
2	真岡	定量	2.3	0.62	46	0.46	0.37	0.35	4.7	0.45
	11.1 ₹	検出	1.1	0.2	24	0.23	0.85	0.94	4	0.029
3	前橋	定量	3.7	0.67	79	0.77	2.8	3.1	13	0.095
4	館林	検出	1.1	0.2	24	0.23	0.85	0.94	4	0.029
4	以日 77	定量	3.7	0.67	79	0.77	2.8	3.1	13	0.095
5	鴻巣	検出	0.12	0.16	4.3	0.11	0.19	0.21	1.1	0.097
	P间未	定量	0.4	0.53	14	0.36	0.64	0.7	3.8	0.32
6	幸手	検出	0.12	0.16	4.3	0.11	0.19	0.21	1.1	0.097
	+ 1	定量	0.4	0.53	14	0.36	0.64	0.7	3.8	0.32
7	さいたま	検出	1.6	0.085	7.9	0.0065	0.27	0.05	1.3	0.014
		定量	5.4	0.28	26	0.022	0.89	0.17	4.2	0.046
8	市原	検出	0.61	2.7	2.6	0.022	0.39	1.1	1.3	0.13
	.,,,,,	定量	2	9	8.5	0.074	1.3	3.6	4.2	0.42
9	勝浦	検出	0.61	2.7	2.6	0.022	0.39	1.1	1.3	0.13
		定量	2	9	8.5	0.074	1.3	3.6	4.2	0.42
10	富津	検出	0.61	2.7	2.6	0.022	0.39	1.1	1.3	0.13
		定量	2	9	8.5	0.074	1.3	3.6	4.2	0.42
11	千葉	検出 定量	0.41	0.46	2.6	0.42	0.63	7.2	1.1	0.47
			1.4	1.5	8.7 7	1.4	2.1	24	3.7	1.6
12	綾瀬	検出 定量	0.6 2	0.1		0.08	0.5 2	0.4	20 70	0.2
		検出	0.6	0.4 0.1	20	0.3 0.08	0.5	0.4	20	0.6
13	多摩	定量	2	0.1	7 20	0.08	2	1	70	0.6
		検出	0.11	0.4	2.2	0.3	0.29	7	5.4	0.45
14	大和	定量	0.11	0.27	7.4	0.69	0.23	23	18	1.5
		検出	0.32	1.6	5.1	0.88	0.58	1.2	1.8	0.8
15	横浜	定量	0.32	1.6	5.1	0.88	0.58	1.2	1.8	0.8
		検出	0.18	0.26	7.1	0.015	0.31	0.72	0.57	0.045
16	川崎	定量	0.6	0.86	24	0.05	1	2.4	1.9	0.15
	1-1#	検出	0.28	0.06	1	0.007	0.06	0.26	0.5	0.016
17	相模原	定量	0.92	0.19	3.3	0.022	0.19	0.87	1.8	0.054
10		検出	0.17	0.040	2.3	0.028	0.36	0.14	7.3	0.015
18	甲府	定量	0.57	0.13	7.8	0.092	1.2	0.48	24	0.051
19	吉田	検出	1.8	0.040	2.3	0.028	0.36	0.12	7.3	0.015
19	田田	定量	6.2	0.13	7.8	0.092	1.2	0.42	24	0.051
20	長野	検出	0.21	2.1	3.6	0.0018	0.12	0.051	1.1	0.001
20	汉 却	定量	0.7	6.9	12	0.0061	0.39	0.17	3.5	0.0034
21	富士	検出	1.6	0.12	28	0.017	1.2	0.45	7	0.02
	# *	定量	5.2	0.4	95	0.057	4.2	1.5	23	0.068
22	湖西	検出	1.6	0.12	5.2	0.017	1.2	0.3	7	0.02
	771	定量	5.2	0.4	17	0.057	4.2	1	23	0.068
23	静岡	検出	0.17	0.040	2.3	0.028	0.36	0.30	7.3	0.015
	122 1-3	定量	0.57	0.13	7.8	0.092	1.2	1	24	0.051
24	浜松	検出	0.1	0.019	0.57	0.017	0.12	0.47	2.2	0.11
	,	定量	0.34	0.065	1.9	0.058	0.42	1.6	7.3	0.36

表 2-6-3-4-3 金属等の無機元素成分濃度の検出下限値と定量下限値(冬)

			Se	Rb	Мо	Sb	Cs	Ва	l a	Ce
番号	地点名		(ng/m³)	(ng/m ³)	(ng/m ³)	(ng/m³)	(ng/m ³)	(ng/m³)	La (ng/m³)	(ng/m ³)
		њы		(ng/ m)						
1	土浦	検出 定量	0.03		0.42 1.4	0.62 2.1	0.0067	0.16	0.024	0.038
		検出	0.099 0.51	0.031	0.87	0.11	0.022	0.55 0.2	0.08 0.06	0.13
2	真岡	定量	1.7	0.031	2.9	0.11	0.061 0.2	0.65	0.00	0.067 0.22
		検出	0.19	0.063	0.15	87	0.035	0.03	0.012	0.022
3	前橋	定量	0.13	0.003	0.13	290	0.033	0.13	0.012	0.022
		検出	0.19	0.063	0.15	87	0.035	0.19	0.012	0.022
4	館林	定量	0.63	0.21	0.51	290	0.12	0.63	0.039	0.072
	~~ ·	検出	0.2	1.4	0.077	0.012	0.079	2.3	0.038	0.018
5	鴻巣	定量	0.67	0.46	0.26	0.12	0.26	7.7	0.13	0.06
	+ +	検出	0.2	1.4	0.077	0.012	0.079	2.3	0.038	0.018
6	幸手	定量	0.67	0.46	0.26	0.12	0.26	7.7	0.13	0.06
7	*!*- *	検出	0.1	0.032	0.021	0.0064	0.0083	0.012	0.034	0.0039
7	さいたま	定量	0.34	0.11	0.069	0.021	0.028	0.039	0.11	0.013
8	市原	検出	0.51	0.12	0.091	0.018	0.019	0.07	0.017	0.028
0	川原	定量	1.7	0.41	0.3	0.059	0.062	0.23	0.058	0.092
9	勝浦	検出	0.51	0.12	0.091	0.018	0.019	0.07	0.017	0.028
J	1377 /HI	定量	1.7	0.41	0.3	0.059	0.062	0.23	0.058	0.092
10	富津	検出	0.51	0.12	0.091	0.018	0.019	0.07	0.017	0.028
-10	田/干	定量	1.7	0.41	0.3	0.059	0.062	0.23	0.058	0.092
11	千葉	検出	1.4	0.55	0.7	0.38	0.37	0.37	0.31	0.31
	1 *	定量	4.7	1.8	2.3	1.3	1.2	1.2	1	1
12	綾瀬	検出	0.2	0.1	0.2	0.09	0.1	0.2	0.08	0.06
	12.12	定量	0.5	0.4	0.6	0.3	0.4	0.8	0.3	0.2
13	多摩	検出	0.2	0.1	0.2	0.09	0.1	0.2	0.08	0.06
		定量	0.5	0.4	0.6	0.3	0.4	0.8	0.3	0.2
14	大和	検出 定量	0.76 2.5	0.2	0.056	0.12	0.17	0.31	0.11	0.011
		検出	2.5 1.1	0.68 1.1	0.19 1.3	0.39 6.5	0.58 9.2	1 10	0.38 11	0.038
15	横浜	定量	1.1	1.1	1.3	6.5	9.2	10	11	13 13
		検出	0.011	0.027	0.02	0.008	0.015	0.19	0.016	0.02
16	川崎	定量	0.037	0.027	0.067	0.027	0.015	0.64	0.053	0.065
		検出	0.06	0.025	0.029	0.022	0.019	0.14	0.014	0.012
17	相模原	定量	0.19	0.083	0.098	0.073	0.065	0.47	0.048	0.039
10	m	検出	0.038	0.013	0.038	0.016	0.012	0.29	0.24	0.0043
18	甲府	定量	0.12	0.044	0.12	0.052	0.038	1	0.81	0.014
10	±m	検出	0.038	0.013		0.016	0.012	0.29	0.24	0.0043
19	吉田	定量	0.12	0.044	0.061	0.052	0.038	1	0.81	0.014
20	長野	検出	0.04	0.006	0.0079	0.027	0.0077	0.032	0.0013	0.001
20	区 到	定量	0.13	0.02	0.026	0.091	0.026	0.11	0.0044	0.0034
21	富士	検出	0.043	0.018	0.011	0.027	0.0042	0.95	0.0063	0.0053
	田上	定量	0.15	0.063	0.037	0.09	0.014	3.2	0.022	0.018
22	湖西	検出	0.043	0.018	0.011	0.027	0.0042	0.22	0.0028	
	(M) [2]	定量	0.15	0.063	0.037	0.09	0.014	0.73	0.0095	
23	静岡	検出	0.038	0.013	0.010	0.016	0.012	0.29	0.24	
		定量	0.12	0.044	0.034	0.052	0.038	1	0.81	0.014
24	浜松	検出	0.14	0.011	0.28	0.028	0.013	0.074	0.024	
	,,,,,,	定量	0.48	0.038	0.93	0.093	0.044	0.25	0.079	0.07

表 2-6-3-4-4 金属等の無機元素成分濃度の検出下限値と定量下限値(冬)

			Sm	Пŧ	W	Та	Th	Pb	Do	Sr
1 土浦 検出 定量		Hf			Th		Be 3			
		14.11	(ng/m ³)	(ng/m ³)	(ng/m³)	(ng/m ³)	(ng/m ³)	(ng/m ³)	(ng/m^3)	(ng/m ³)
1	土浦		0.01	0.0096	0.16	_	0.0061	0.65	_	_
			0.034	0.032	0.55	-	0.02	2.2	-	
2	真岡		0.089	0.11	0.11	0.086	0.1	0.12	0.14	
		定量	0.3	0.37	0.29	0.36	0.33	0.39	0.45	_
3	前橋	検出	0.0019	0.023	0.084	0.025	0.02	0.55	_	
		定量	0.0062	0.077	0.28	0.083	0.067	1.8	_	
4	館林	検出 定量	0.0019 0.0062	0.023 0.077	0.084 0.28	0.025 0.083	0.02 0.067	0.55 1.8	_	
		検出	0.0082	0.077	0.28	0.063	0.007	0.12	_	
5	鴻巣	定量	0.033	0.02	0.04	0.028	0.079	0.12	_	
		検出	0.12	0.02	0.13	0.094	0.20	0.41	_	
6	幸手	定量	0.033	0.02	0.04	0.028	0.079	0.12	_	
		検出	0.12	0.0066	0.0084	0.0022	0.0082	0.41		
7	さいたま	定量	0.013	0.0066	0.0084	0.0022	0.0082	0.044	-	
		検出	0.044	0.022	0.028	0.0074	0.027	1.5	_	
8	市原	定量	0.027	0.044	0.027	0.13	0.024	1.5 5	_	
		検出	0.03	0.13	0.091	0.46	0.024	1.5	_	
9	勝浦	定量	0.027	0.044	0.027	0.13	0.024	5	_	_
		検出	0.027	0.044	0.027	0.46	0.024	1.5	_	_
10	富津	定量	0.027	0.15	0.027	0.13	0.024	5	_	_
		検出	0.49	0.13	0.26	0.48	0.00	0.43	_	_
11	千葉	定量	1.6	0.23	0.20	0.23	0.23	1.4	_	_
		検出	0.2	0.1	0.06	0.05	0.07	0.08	_	_
12	綾瀬	定量	0.5	0.4	0.2	0.00	0.07	0.3	_	_
		検出	0.2	0.1	0.06	0.05	0.07	0.08	_	_
13	多摩	定量	0.5	0.4	0.2	0.2	0.07	0.3	_	_
		検出	0.14	0.16	0.1	0.034	0.28	0.1	_	_
14	大和	定量	0.47	0.53	0.34	0.11	0.93	0.34	_	_
	144	検出	19	0.013	0.03	0.015	3.3	2.1	_	_
15	横浜	定量	19	0.044	0.11	0.05	3.3	2.1	_	_
		検出	0.014	0.029	0.0099	0.028	0.014	0.05	-	_
16	川崎	定量	0.046	0.096	0.033	0.095	0.047	0.17	_	_
	101#.05	検出	0.022	0.014	0.04	0.013	0.013	0.022	-	-
17	相模原	定量	0.075	0.048	0.13	0.044	0.044	0.073	-	_
10	ш.÷-	検出	0.00072	0.0014	0.040	0.0012	0.017	0.023	-	_
18	甲府	定量	0.0024	0.0046	0.13	0.0042	0.055	0.079	-	-
10	±m	検出	0.0018	0.0014	0.012	0.0012	0.0032	0.023	_	_
19	吉田	定量	0.0058	0.0046	0.039	0.0042	0.011	0.079	-	-
-00	⋿ ⊞₹	検出	0.00076	0.02	0.1	_	0.001	0.026	-	-
20	長野	定量	0.0025	0.067	0.35		0.0034	0.086	-	-
21	富士	検出	0.0057	0.0032	0.043	0.04	0.00098	0.048	-	_
21	亩丄	定量	0.018	0.01	0.15	0.13	0.0033	0.16	-	_
22	湖西	検出	0.00097	0.0055	0.01	0.04	0.0011	0.01	-	_
22	加四	定量	0.0032	0.018	0.035	0.13	0.0037	0.035	-	_
23	静岡	検出	0.0018	0.0014	0.043	0.0012	0.0032	0.023	-	_
۷۵	月ず「凹」	定量	0.0058	0.0046	0.14	0.0042	0.011	0.079	-	-
24	浜松	検出	0.017	0.065	0.54	0.025	0.021	0.11	_	-
24	八竹ム	定量	0.056	0.22	1.8	0.083	0.07	0.37	-	-

表 2-6-3-4-5 金属等の無機元素成分濃度の検出下限値と定量下限値(冬)

			Υ	Cd	TI
番号	地点名		(ng/m^3)	(ng/m^3)	(ng/m^3)
	1 242	検出	_	_	_
1	土浦	定量	_	_	_
	+	検出	_	0.096	_
2	真岡	定量	_	0.32	_
_	 +5-	検出	_	_	_
3	前橋	定量	-	_	_
4	& 	検出	-	-	_
4	館林	定量	ı	_	_
5	鴻巣	検出	1	_	_
5	梅未	定量	1	_	_
6	幸手	検出	_	_	_
0	干丁	定量	_	_	_
7	さいたま	検出	-	0.014	_
,	20.124	定量	-	0.048	_
8	市原	検出	-	-	_
0	יאו נוו	定量	_	_	_
9	勝浦	検出	_	_	_
	מוז מנו	定量	_	_	_
10	富津	検出	_	_	_
-10	田/十	定量	_	_	_
11	千葉	検出	_	_	_
	- / /	定量	_	_	_
12	綾瀬	検出	_	_	_
	12/12	定量	_	_	_
13	多摩	検出	_	_	_
		定量	_	_	_
14	大和	検出	_	_	_
		定量	_	_	_
15	横浜	検出	_	_	_
		定量	_	_	_
16	川崎	検出		_	_
		定量	-	_	_
17	相模原	検出	_	_	_
		定量		_	
18	甲府	検出	_	_	_
		定量 検出			
19	吉田				
		<u>定量</u> 検出	_	- 0.0017	_
20	長野	定量	_	0.0017	_
		検出	_	0.0030	_
21	富士	定量	_	0.035	_
		検出	_	0.033	_
22	湖西	定量	_	0.6	_
		検出	_	-	_
23	静岡	定量	_	_	_
		検出	_	_	_
24	浜松	定量	_	_	_
		~丰			

Siの検出下限値及び定量下限値について

* 蛍光X線にて測定時にサンプルごとにブランクフィルターとのバックグラウンド補正を行なっているため、 検出下限値及び定量下限値が表2-6-3-5に示すとおり、サンプルごとに算出されている。

表2-6-3-5 PM2.5成分分析 平成27年度調査Si検出下限値及び定量下限値

	0001	1412.0192737373171	ド成27年度調査Si検出トリ	
調査時期		調査日	Si 検出下限値(ng/m³)	Si 定量下限値(ng/m³)
1771			相模原市役所	相模原市役所
	任	5/7 ~ 5/8	9.1	9.1
	任	5/8 ~ 5/9	7.8	7.8
	任	5/9 ~ 5/10	7.2	7.2
	任	5/10~5/11	13	13
		5/11~5/12	9.2	9.2
	٦	5/12~5/13	6.6	6.6
		5/13~5/14	11	11
春季		5/14~5/15	13	13
		5/15~5/16	9.8	9.8
		5/16~5/17	8.1	8.1
		5/17~5/18	9.5	9.5
ŀ	任	5/18~5/19	8.2	8.2
			6.2	6.2
	任	5/19~5/20		·······
	<u>任</u>	5/20~5/21	6.5	6.5
	任	7/22~7/23	4.5	4.5
	任	7/23~7/24	4.0	4.0
	任	7/24~7/25	4.6	4.6
	任	7/25~7/26	5.0	5.0
	任	7/26~7/27	5.5	5.5
	コ	7/27 ~ 7/28	5.2	5.2
百禾	コ	7/28~7/29	5.4	5.4
夏季	⊐	7/29~7/30	5.5	5.5
	コ	7/30~7/31	5.6	5.6
	٦	7/31~8/1	6.3	6.3
		8/1~8/2	6.0	6.0
	=	8/2~8/3	6.6	6.6
	 任	8/3~8/4	7.3	7.3
	任	8/4~8/5	6.7	6.7
	- 	10/21~10/22	6.4	6.4
•	<u>-</u> 任	10/22~10/23	5.8	5.8
		~~~~~		
	任	10/23~10/24	5.5	5.5
	任	10/24~10/25	6.6	6.6
ŀ	<u>任</u>	10/25~10/26	5.9	5.9
		10/26~10/27	5.3	5.3
秋季		10/27~10/28	5.2	5.2
,,,		10/28~10/29	6.5	6.5
	コ	10/29~10/30	7.0	7.0
		10/30~10/31	6.8	6.8
	コ	10/31~11/1	4.8	4.8
	コ	11/1~11/2	5.0	5.0
	任	11/2~11/3	4.3	4.3
	任	11/3~11/4	4.3	4.3
	任	1/20~1/21	4.0	4.0
	任	1/21~1/22	4.5	4.5
	<u>任</u>	1/22~1/23	4.8	4.8
	任	1/23~1/24	5.0	5.0
	<u>년</u>	1/24~1/25	4.6	4.6
ŀ	<u> </u>	1/25~1/26	4.6	4.6
		1/26~1/27	4.6	4.6
冬季		1/27~1/28	4.6	4.6
				000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000
-		1/28~1/29	5.6	5.6
		1/29~1/30	3.2	3.2
		1/30~1/31	3.5	3.5
		1/31~2/1	4.1	4.1
	任	2/1~2/2	4.2	4.2
	任	2/2~2/3	4.1	4.1

## 3 調査期間中の常時監視データ

3.1 常時監視各項目の日平均値それぞれの期間の午前11時から翌日の午前10時までの算術平均値を記載しており、一は「欠測」、斜線は「未測定」をあらわす。

表3-1-1 SO ₂ (p	opb)																							
期間	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
刑间	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日	2	1	2	. 2	2	3	2	4		3	3		2	3	5	i –	6	2	0	- 1	2	2		1
5月8~9日	1	1	3	2	2	3	2	5		4	5		2	3	4	-	6	2	1	1	2	1		1
5月9~10日	- 1	1	2	2	2	2	1	4		2	3		1	3	2	-	6	1	1	0	2	1		1
5月10~11日	0	0	2	. 1	1	1	0	4		3	2		1	2	2	-	5	1	1	0	2	1		1
5月11~12日	1	1	2	2	1	2	1	3		2	3		1	2	2	-	5	2	1	1	2	1		- 1
5月12~13日	1	0	2	1	- 1	1	- 1	2		0	3		1	2	1	-	5	- 1	0	- 1	1	1		0
5月13~14日	2	1	1	2	2	2	- 1	6		3	7		2			-	6		1	1	3	2		2
5月14~15日	3	2	1	3		3	3	7		3	5		2			-	6		1	- 1	3	3		2
5月15~16日	1			3		3	2			2	3		2	3	3	-	6		0	1	2	1		0
5月16~17日	1	1	_	_		2	1	2		1	2		1	3		-	6		0		2	1		0
5月17~18日	1	1				2	1	1		- 1	2		1	3		-	6		1	1	2	1		1
5月18~19日	0			2		1	1	1		0	2		1	2		_	5		0	0	2	1		1
5月19~20日	0			1		1	0	5		1	3		1	3			6		0			2		0
5月20~21日	0	_				1	1			3	2		1	3		1	6		0		_	2		1
7月22~23日	1	_		1		1	0			1			1	2			4					1	_	0
7月23~24日	1		_			+ ;	1			2	·		1				5		0		_	2		0
7月23~24日 7月24~25日		0				2	1	6		3	2		1	2			5		1	0		2		1
7月25~26日	2			2		3	3			4	3		1	1	4		5		0	_		2		<del>                                     </del>
	1	1	_			3	3			5	·		2		_		5		2			1		- '
7月26~27日 7月27~28日	1	1	_	2		2	3		_	3			2			_	5		0			1		0
	!	1	_			2				3	2		-				5		0	_			_	<u> </u>
7月28~29日		_		2		_	2				- !		3	_						0		_		<del></del>
7月29~30日	0			1		_	2			4	1		2			_	5		2			1		<u> </u>
7月30~31日	1	0		1	_	2	2			3	2		1	2		5	5		1	0		1		<u> </u>
7月31~8月1日	1		_	2		2	2		_	2	3	/	1	2			5	2	1	0				<u> </u>
8月1~2日	2			2		3	2	6		2	3		1	2		4	5	1	2	0	2	2		1
8月2~3日	1	1		2		2	. 2			1	4		1	2			5		1	1	2	2		1
8月3~4日	2			2		3	2	5		1	3		1	2			5		0	_	2	1		0
8月4~5日	2	_	<del></del>	1		2	1	6		2	4		1	2			5	_	1	2		1		0
10月21~22日	0	_	_	_		2	1	2		1	1		1	3			4	_	0	_		2		1
10月22~23日	1	1	2	2	1	2	1	3		5	1		1	4			4	2	1	0		2		1
10月23~24日	0	0	1	1	1	2	. 1	1		2	2		1	3	4	3	4	2	0	0	3	1		1
10月24~25日	1	1	1	1	1	2	1	4		3	2		1	3	2	. 2	4	1	0	0	2	2		1 1
10月25~26日	0	1	1	1	1	2	0	1		2	1		1	2	1	1	4	1	0	0	1	1		0
10月26~27日	- 1	1	1	1	1	2	1	2		2	2		1	3	3	3	4	1	0	1	2	1		1
10月27~28日	1	1	2	. 2	2	2	1	2		- 1	1		1	4	2	. 2	3	1	0	1	2	1		0
10月28~29日	- 1	0	1	2	1	2	1	3		3	1		1	4	4	2	4	1	1	0	2	1		0
10月29~30日	0	0	2	. 1	1	2	1	2		1	1		2	5	5	2	5	1	0	- 1	3	1		1
10月30~31日	1	1	2	2	1	2	1	3		3	2		1	4	4	3	4	1	1	1	2	1		1
10月31~11月1日	0	0	2	. 1	- 1	2	1	2		2	- 1		- 1	3	3	1	4	1	0	0	1	1		0
11月1~2日	0			1	1	2	1	- 1		4	- 1		1			2	4	1	0	- 1	1	1		1
11月2~3日	0	0	2	. 2	2	2	1	1		3	1		1	4			4	1	0		1	1		0
11月3~4日	0					2	- 1	2		5	- 1		1	4			3	- 1	1	_	2	1		1
1月20~21日	0					1	1			4			1	_			2	_	_	_		1		0
1月21~22日	1	_				1	1			7			1							1		_		0
1月22~23日	0	_	_			1	1			7			2				2		-	1	_	1	_	0
1月23~24日	1		_			1	1			3			2				3		-	1	_	1		1
1月24~25日	1	_	_			- 1	1	2		1			1						-	1		1	_	<del>-</del>
1月25~26日	1		_					_	_	2			1							1		1	_	0
1月25~26日	1	_	-					_	_	4			1				2			1			$\sim$	<del>- '</del>
		_								_												2		<del>                                     </del>
1月27~28日	1	_								2	2		1							1	_	2		<del>  1</del>
1月28~29日	1					2	1	4		4	3	$\leftarrow$	2				3		_	2	_	2		1
1月29~30日	1					1	0			3	1		1				2		-	1	1	1	_	0
1月30~31日	1					1	0			3	1		1	2			2	2	-	1	1	1		0
1月31~2月1日	1					2				4			2				-		-	2	_			1
2月1~2日	1	_				1	1	2		4	1		1				3		-	0		2		1
2月2~3日	0	1 1		1									) 2	2	4	. –	2		-	0	l 2	1 1		

表3-1-2 NO (ppb)

表3-1-2 NO (pp		100 1 100	74 F (B)	- W - T - III					B						144 >			1 70.00	1.70.00	E m7 .8	to must	to must	+4 m	N= 10 -
期間	茨城県 土浦	栃木県		群馬県	埼玉県 鴻巣	埼玉県 幸手	さいたま市	千葉県		千葉県	十葉市 十葉	東京都綾瀬			横浜市			山梨県 甲府	山梨県	長野県	静岡県	静岡県	静岡市	
5月7~8日	工浦 1	真岡	削橋 0	館林	海果 2	辛于	さいたま	市原 5	勝浦	富津	十条	桜湖 4	多摩	<u>大和</u>	横浜	川崎 5		中府	吉田 1	長野 0	富士	湖西	静岡	浜松 1
5月8~9日	1	0	-	0	1	1	1	2			0		1	1		_		1	1	_			1	1
5月9~10日	0		0	0	-	1	1	2			_		0	1	_	1	0	1	1				1	1
5月10~11日	1	0	0	0		1	0	1	0				0	1	-	1	0	1	0			-	1	1
5月11~12日	Ö		0	1	1	1	1	2					1	2		2	0	1	1	Ö		1	1	1
5月12~13日	1		1	1	1	1	0	2				2	1	2		1	_	1	0			1	1	1
5月13~14日	2		1	2	2	3	2	2					1	8		1	0	2	0			1	1	2
5月14~15日	1	0	0	1	1	1	0	1	0	1	- 1	- 1	1	4	2	1	2	1	1	0	5	1	1	1
5月15~16日	0	0	0	0	1	1	- 1	3	0	1	- 1	4	1	3	1	2	1	1	1	0	6	1	2	1
5月16~17日	1	0	0	0	0	0	1	1	0	2	0	1	0	1	2	1	0	1	1	0	5	1	1	1
5月17~18日	1	0	0	1	1	1	0	0	0	1	0	2	0	1	3	1	1	1	0	0	4	1	1	1
5月18~19日	0	0	0	0	0	0	1	2	0	0	1	1	0	2	. 1	2	1	1	1	0	7	1	1	1
5月19~20日	1	0		1	- 1	1	1	3				4	1	4		2	3	2	- 1	0		2	1	4
5月20~21日	0	0	1	0	0	1	0	1	0	1	0	1	0	1	1	1	0	1	1	0	6	1	1	1
7月22~23日	2	1	1	2	2	1	1	10					2	5		4		2	1	1				2
7月23~24日	8	1	1	1	1	3	4	11					4	11			7	3	2	2				3
7月24~25日	2		2	1	1	1	1	3					1	15				1	1	1			3	2
7月25~26日	1	0	1	0		0	1	3		4		_	1	2	_	9		1	1	1			1	2
7月26~27日	0	0	1	0	0	1	0	2				1	1	1		_		1	0				_	1
7月27~28日	1	1	1	1	1	0	2	4				3	2	6		5		1	1	1			4	2
7月28~29日	1		2	0	1	1	1	2				_		1		2		1	1				_	1
7月29~30日	2		1	1	1	1	1	2				1	1	2		5		1	1	1				1
7月30~31日	2	1	1	1	1	4	_	3				J		2				1	1	1				1
7月31~8月1日	1	1	1	1	0	0	_	2					1	1				1	0	0				1
8月1~2日	1	0	1	0	0	0	0	2				2	0	1		3			0	_	_		2	0
8月2~3日 8月3~4日	2	-	1	2	1	5		3				3	1	5		4			- 0	1				- 0
8月4~5日	3	2	1		2	9		7		2		_	1	5				1	0					1
10月21~22日	2		3	6		10		7						8				2	1			1		3
10月22~23日	0			1	2	2		2				2	1	3				1	1	0	_	1		1
10月23~24日	4	0	2	1	3	3	1	7		2			1	4		9		1	1	1		2	_	2
10月24~25日	1	0		0	2	0	0	3	0				0	1		1	0	1	0	0	-	1		0
10月25~26日	4	0	0	0	2	1	0	3	0	1	2		1	3	2	1	2	1	0	0	-	1	1	1
10月26~27日	5	1	1	3	3	4	6	10	1	2	8	10	3	9	8	12	5	4	1	1	-	3	1	2
10月27~28日	2	1	1	2	3	2	2	4	0	1	2	4	2	3	2	2	2	3	1	0	-	1	2	2
10月28~29日	0	0	1	1	2	1	2	2	0	1	1	1	0	2	. 3	2	1	1	0	0	-	1	3	1
10月29~30日	2	1	1	2	3	3	4	3	1	2	7	5	8	13	6	5	9	2	1	1	-	1	2	1
10月30~31日	1	0	1	1	2	2	2	4	0	2	2	3	1	4	5	4	1	2	1	1	-	1	1	1
10月31~11月1日	1	0	2	1	2	1	2	1	0			0	1	3	2	7	2	1	1	0	-	1	1	1
11月1~2日	1	1	1	1	3	1	2	2				0	1	4		1	1	1	1	0		1	1	1
11月2~3日	2	2	3	11	10	10	9	5					5	11		9		3	2			1	_	1
11月3~4日	6	1	1	3	3	6	3	10	_				3	8				3	1	0	-	4	_	2
1月20~21日	8		2	1	4	1	2	7	_				5	5				6				1		3
1月21~22日	12		2	1	2	1	1	6		3			7	5		2		6				1	_	3
1月22~23日	6		2	2	0	1	0	4					2	3				3			_	1		2
1月23~24日	1	1	2	1	1	1	2	3					4	8				2				1		1
1月24~25日	1	_		0	1	1		4						15				2				1		1
1月25~26日	14		1	4	2	4	- 7	21		3			8	8		17		8					2	3
1月26~27日	20		2	10	17			20					6	11				13					_	5
1月27~28日	13		1	3		8		23		3			5	13				18						2
1月28~29日	10		1	8	4	7	9	25		6			4	12				15	2	-			3	3
1月29~30日	1 2	1 1	2	2	2	1	1 1	1 2			4	2	1 2	4		2		7	1	4	9			5
1月30~31日	1	1	2	2	2	3	1		0	1 2	7	_	2		_			3 5	1 2				1	3
1月31~2月1日	2	1 3	1	2	1	2	3	3	1 0			10	2	4		6	1	5 4	2	1 2			1	1
2月1~2日 2月2~3日	8			2	1	3	1	5	•					3			3	3	2				2	- 6
<u> </u>	1 8	. 3	1	- 2		3		ວ	U	. 3	13	4	2	J	ט וי			J 3	1 2	1 2	10	1		

表3-1-3 NO₂ (ppb)

表3-1-3 NO ₂ (pp	ob)																							
期間	茨城県 土浦	栃木県 真岡	群馬県 前橋	群馬県 館林	埼玉県 鴻巣	埼玉県 幸手	さいたま市 さいたま	千葉県 市原	千葉県 勝浦	千葉県 富津	千葉市 千葉	東京都綾瀬	東京都多摩	神奈川県 大和	横浜市 横浜	川崎市 川崎	相模原市 相模原	山梨県 甲府	山梨県 吉田	長野県 長野	静岡県富士	静岡県湖西	静岡市 静岡	浜松市 浜松
5月7~8日	12	8	8	16	23	22	27	22	2	11	11	33	19	19	23	33	19	9	6	3	21	8	9	7
5月8~9日	8	6	10	12	13	13	18	19	2	10	14	26	16	20	15	21	18	8	7	3	18	8	9	8
5月9~10日	8	6	6	8	10	6	14	19	2	8	9	17	12	11	10	17	13	9	8	4	14	9	6	8
5月10~11日	6	4	2	5	4	5	5	12	2	8	7	14	6	6		11	8	5	5	2	16	6	5	5
5月11~12日	7	8	10	11	13	10	13	11	1	7	5	15	10	15	9	14	- 11	8	5	3	19	6	10	7
5月12~13日	6	7	8		12	6		9	1	2			9	11		14	8	8	3	2	18	5		6
5月13~14日	16	7	7		17			20	3	11			14	28		17	11	10	6		23	14		13
5月14~15日	11	9	10		21	19		22	3				19	28			23	12	8	4	23	14		11
5月15~16日	7	6	12		15			17	3	9			17	17		21	19	9	5		15	6		4
5月16~17日	7	5	5			6		11	3	18			12	14		21	12	6	6	2	16	7		5
5月17~18日	5	4	4	8	11	8		5	2	9	5	17	9	12		18	9	6	4	2	16	5	4	5
5月18~19日	5	4	6	9	8	5	11	12	1	4	9	13	8	17	10	17	7	8	4	3	19	5	5	7
5月19~20日	8	6	12	10	10	7		20	1	10	13		19	20		23	21	9	6	3	21	17	9	15
5月20~21日	4	4	4	7	6	4	7	9	1	15	6	11	9	12	12	18	- 11	7	6	2	18	7	6	5
7月22~23日	8	6	6	7	7	5	5	11	1	6			6	9		9	6	5	2	3	7	4	4	4
7月23~24日	15	6	4		9	13		19	2	13			13	16	-		12	7	4		16	9		10
7月24~25日	10	4	5		9	9	14	20	3	12			16	30		38	16	6	5		15	10		8
7月25~26日	8	4	3		12	12	22	16	3	14			14	17		37	10	5	4	4	8	7	5	6
7月26~27日	6	4	5	7	8	9	11	15	4	14	6		12	14		20	10	6	4	3	10	5	5	4
7月27~28日	5	4	7	9	10	7	14	14	2	9	8	18	15	17		23	14	6	5	5	10	5	6	6
7月28~29日	8	2	6	7	8	7	10	11	2	14	7	10	15	20	23	23	12	6	7	5	20	7	8	8
7月29~30日	7	2	5	8	10	8	13	9	2	13	6	14	13	18		20	12	6	6	4	18	7	8	9
7月30~31日	9	2	6	10	11	11	16	12	2	12	7	24	13	16		23	- 11	6	5	4	16	8	6	9
7月31~8月1日	9	3	7	10	11	14	11	17	1	6			11	16	11	20	9	7	5	4	14	7	7	7
8月1~2日	8	3	4			10		11	2	5			11	11			6	7	4		9	4	4	4
8月2~3日	9	5	3	7	7	7	8	9	1	3	9	15	9	12	7	17	9	7	4	3	8	3	5	4
8月3~4日	8	4	6	12	12	13	11	11	1	4	9	23	12	17	10	20	- 11	8	4	6	11	4	5	5
8月4~5日	9	7	8	9	- 11	10	10	9	- 1	5	8	20	10	13	6	13	9	8	5	4	12	4	5	5
10月21~22日	12	7	12	14	14	13	19	15	3	10	11	22	20	24	29	29	19	13	8	5	-	12	10	17
10月22~23日	7	4	7	10	7	9	12	16	2	14	9	14	13	18	21	20	17	11	- 11	4	-	11	9	9
10月23~24日	11	3	11	11	10	12	15	15	1	8	15	20	20	22	26	31	20	11	8	6	-	9	8	10
10月24~25日	11	5	4	7	8	9	11	16	2	9	6	23	11	11	7	13	10	8	5	2	-	6	6	3
10月25~26日	10	3	1	4	2	5	5	11	4	9	7	15	9	10	7	7	12	5	5	3	-	5	4	4
10月26~27日	16	8	8	17	17	22	27	20	3	9	17	32	23	29	28	33	23	17	7	5	-	11	8	10
10月27~28日	9	9	12	20	14	17	17	12	2	5	8	23	11	14	10	20	- 11	14	4	3	-	8	9	10
10月28~29日	6	4	4	9	7	8	11	14	2	10	7	13	10	14	18	19	13	8	7	4	-	4	11	3
10月29~30日	13	7	7	15	15	16	20	15	3	9	16	22	22	26	23	26	22	9	8	7	-	7	9	5
10月30~31日	9	7	2	14	11	18	17	23	5	14	16	26	14	19	22	25	18	10	8	5	-	5	8	5
10月31~11月1日	7	5	6	9	9	10	11	12	3	10	7	0	14	14	15	19	14	8	9	3	-	5	8	4
11月1~2日	12	7	6	9	13	12	18	13	2	13	10	0	17	17	20	23	13	10	8	4	-	7	7	6
11月2~3日	14	10	8	18	17	21	23	20	7	20	14	22	23	24	21	26	24	14	10	14	-	13	10	9
11月3~4日	11	6	2	9	9	12	11	15	3	12	13	21	11	12	12	14	11	8	6	5	-	10	6	9
1月20~21日	14	10	7	8	13	8	14	15	6	13	10	27	17	18	16	17	20	11	9	10	-	10	9	12
1月21~22日	18	14	3	10	12	11	12	19	9	20	13	23	17	17	15	14	20	20	19	16	-	8	11	15
1月22~23日	18	11	4	7	7	8	8	15	6	18	15	19	16	16	14	12	20	12	14	9	-	6	12	11
1月23~24日	7	7	8	11	11	9	14	17	5	15	11	15	22	23	21	26	23	14	13	11	-	8	6	8
1月24~25日	6	8	5	5	8	5	11	12	3	6	9	17	6	12	13	14	6	6	3	7	-	4	1	5
1月25~26日	20	11	3	13	15	16	19	25	7	11	26	31	24	27	27	33	17	18	10	11	27	9	12	17
1月26~27日	29	18	10	22	27	29	36	26	7	15	31	45	28	28	38	46	19	25	16	21	32	19	13	23
1月27~28日	31	20	6	19	23	23	30	30	9	13	36	46	24	28	33	43	18	28	14	23	30	10	14	11
1月28~29日	22	17	7	24	23	27	33	39	10	23	29	52	29	32	39	55	23	33	18	24	30	18	17	17
1月29~30日	7	8	12	18	19	10	13	14	2	16	6	16	16	16	19	19	16	32	12	15	28	18	16	20
1月30~31日	9	9	8	12	15	13	16	16	3	14	10	20	16	16	21	23	13	13	7	16	20	12	8	16
1月31~2月1日	10	8	4	14	15	17	21	19	4	15	13	32	18	22	25	31	15	14	13	6	18	10	6	10
2月1~2日	14	11	3	16	16	16	17	17	4	15	17	20	18	22	22	24	22	17	15	9	24	18	10	25
2月2~3日	16	13	3	10	9	11	10	16	5	17	18	19	13	12	18	-	15	9	10	8	23	5	9	7

表3-1-4 NO_v (ppb)

表3-1-4 NO _X (p _l	pb)																							
期間	茨城県 土浦	栃木県 真岡	群馬県 前橋	群馬県 館林	埼玉県 鴻巣	埼玉県 幸手	さいたま市 さいたま	千葉県 市原	千葉県 勝浦	千葉県 富津	千葉市 千葉	東京都綾瀬	東京都多摩	神奈川県	横浜市横浜	川崎市川崎	相模原市 相模原	山梨県 甲府	山梨県吉田	長野県 長野	静岡県富士	静岡県湖西	静岡市 静岡	浜松市 浜松
5月7~8日	13	8	8	17	25	24	29	27	2	12	12	36	20	22	27	38	21	11	6	3	28	9	10	8
5月8~9日	9	6	10	12	14	14	18	20	2	11	14	27	17	21	17	22	19	9	8	3	23	9	10	9
5月9~10日	8	7	6	8	10	6	15	21	2	9	9	19	13	12	11	18	13	10	9	4	18	10	7	9
5月10~11日	6	4	2	5	5	6	5	13	2	9	8	16	7	7	8	13	8	6	6	2	21	7	6	6
5月11~12日	7	9	10	11	15	11	14	13	1	8	5	16	11	17	10	16	- 11	9	6	3	26	7	11	8
5月12~13日	7	7	8	13	13	6	9	11	1	2	7	17	10	14	5	16	9	9	3	2	26	6	6	7
5月13~14日	18	7	8	18	20	21	22	22	3	11	16	31	15	36	8	19	11	11	7	4	26	15	11	15
5月14~15日	12	9	11	23	23	19	23	23	3	13	14	31	20	32	21	30	25	14	9	4	27	16	13	13
5月15~16日	8	6	12	13	16	12	20	21	3	10	10	30	18	20	12	23	20	10	6	5	21	7	9	4
5月16~17日	8	5	6	10	11	6	13	12	3	20	6	13	13	15	26	22	12	8	7	2	20	8	9	6
5月17~18日	6	5	4	8	12	9	9	6	2	10	5	18	9	14	16	20	10	7	5	2	19	6	6	6
5月18~19日	6	5	6	10	8	5	12	14	1	4	10	14	8	19	11	19	8	10	5	3	26	6	6	8
5月19~20日	9	7	14	11	10	8	15	23	1	10	14	26	20	24	18	25	24	11	7	3	30	18	10	19
5月20~21日	5	4	5	7	7	4	8	10	1	16	7	- 11	9	13	13	19	- 11	8	6	2	23	8	7	5
7月22~23日	10	6	7	9	9	6	7	20	1	9	9	12	9	14	6	13	7	7	3	5	16	5	5	5
7月23~24日	23	7	6	10	11	16	19	30	3	17	20	30	17	27		30	20	11	6	9	26	11	8	13
7月24~25日	12	4	7	11	10	10		23	3	14	16	25	18	45	35	47	19	8	6	6	24	11	10	10
7月25~26日	9	5	3	8	13	12	23	19	3	17	10	29	15	20		47	11	5	4	5	12	8	7	8
7月26~27日	6	4	6	7	8	9	11	17	5	16	7	15	12	15	15	22	10	6	4	4	18	6	7	5
7月27~28日	5	4	8	9	10	8	16	18	3	- 11	9	21	17	22	14	28	17	7	6	6	21	6	10	8
7月28~29日	9	2	7	8	8	8	10	13	2	15	8	10	16	22	30	25	13	7	8	6	27	8	10	9
7月29~30日	9	3	6	9	- 11	9	14	11	2	15	6	15	14	19	14	24	13	7	6	5	24	8	9	11
7月30~31日	11	3	7	11	12	14	17	15	3	16	9	27	14	18	14	27	13	7	6	5	23	9	8	10
7月31~8月1日	9	4	8	10	- 11	18	11	19	1	7	10	26	12	17	14	23	10	8	5	5	20	8	9	8
8月1~2日	8	4	4	7	8	10	10	12	2	6	9	25	11	12	13	19	6	8	5	3	12	5	5	4
8月2~3日	10	6	4	7	8	8	8	11	1	4			9	13		20	9	8	4	3	13	4	6	4
8月3~4日	10	4	7	13	15	18	12	15	2	5		26	13	22	13	24	13	10	5	6	22	5	9	6
8月4~5日	11	8	9	10	13	18	11	16	1	7	12	23	12	18	9	18	10	9	5	4	23	6	8	7
10月21~22日	15	9	15	20	20	23	24	22	3	12	14	34	24	32	38	42	25	16	10	6	-	13	11	20
10月22~23日	7	4	8	10	9		12	18	2	16			14	21		24	18	12	- 11		-	12	11	10
10月23~24日	15	3	12			16		22	2	10		25	21	26		40	24	12	9	_	-	10	9	11
10月24~25日	12	5	5	7	9	9	11	19	2	10			11	12		14	10	8	5	3	-	7	7	4
10月25~26日	14	4	1		4	5	5	14	4	10			10	12		8	15	6	5	3	-	7	6	4
10月26~27日	21	8	8		20			30	4	10			26	38		45	28	21	7		-	14	9	12
10月27~28日	- 11	10	13		17			16	2	6			13	16		22	13	17	5		-	9		11
10月28~29日	7	4	4		9	_		16	2				10	17		20	13	9	7		-	5		4
10月29~30日	15	9	8		18			18	3	10			30	38		31	30	11	10		-	8		6
10月30~31日	10	7	2		13			27	5				15	22		29	19	12	9			6		6
10月31~11月1日	8	5	8		11			13	3	11		0	16	17		26	17	9	10		-	6		5
11月1~2日	13	8	7		15	13		15	2	15		0	17	21		25	14	12	9		-	8		7
11月2~3日	16	12	11		27	32		25	8	23			28	35		35	32	18	12		-	14		10
11月3~4日	16	7	3					25	4		<del>-</del>	27	14	20			14	11	8	<del>-</del>	-	14		11
1月20~21日	23	13	9					22	6				22	23			24	17	12			12		15
1月21~22日	30	19	5		14	13		25	9	23		32	24	21		16	29	26	22		-	9	13	18
1月22~23日	25	13	5		8	9	·	19	6	21		22	18	19		14	22	15	16		-	7	15	13
1月23~24日	8	8	10			10		19	5	17		18	26	31		31	26	17	15		-	9	-	9
1月24~25日	7	11	7	_	_	6		15	3	_			7	27		18	6	9	3		-	5	-	5
1月25~26日	34	14	5					46	7	14		43	32	34		50	19	26	12		37	11		20
1月26~27日	49	23	12		44	46		46	9			84	34	40		72	22	38	19		47	20	14	28
1月27~28日	44	25	7		28	31	41	53	10			89	29	41		65	19	46	17		43	11		12
1月28~29日	32	19	8		27	35		64	10				32	44		91	25	47	20	31	41	19		20
1月29~30日	8	9	14		21	11	14	16	2	18		18	17	20		21	16	39	13	19	36	20		25
1月30~31日	12	10	10		17	16		18	3	15		24	18	20		26	13	16	9		24	14		18
1月31~2月1日	12	9	5		15			22	5	17		42	20	30		37	16	19	15		28	11		11
2月1~2日	16	14	5		18			20	4	17		23	20	26		27	25	21	17		37	19		31
2月2~3日	23	16	4	12	10	14	12	21	5	20	31	23	15	16	24	-	16	12	- 11	10	33	6	11	9

表3-1-5 O_X (ppb)

表3-1-5 O _X (ppb		七十四	#¥ FF 18	粉匠旧	林工用	块工用	Acres de la compansión	イ故旧	イ故旧	イ故旧	イ益士	*= ##	*==#	A4	## 15 +	matt	40#年十	.1.30.0	.1.400	E 87 IB	林四周	±4 [□□   □	*4 107 +	ミナハナ
期間	茨城県 土浦	栃木県 真岡	群馬県 前橋	群馬県 館林	埼玉県 鴻巣	埼玉県 幸手	さいたま市 さいたま	千葉県 市原	千葉県 勝浦	千葉県 富津	千葉市 千葉	東京都綾瀬	東京都多摩	神奈川県 大和	横浜市横浜	川崎市 川崎	相模原市 相模原	山梨県 甲府	山梨県 吉田	長野県 長野	静岡県 富士	静岡県湖西	静岡市 静岡	浜松市 浜松
5月7~8日	45	53	##### 53	46	36	33	36	37	1397 /FFE	曲/手 45	<u>丁未</u>	被棋	多序 41	35		39	44	46	<u>аш</u> 46	54	田工 37	53	35	46
5月8~9日	44	53	61	59	54	45	52	48	51	54			55	44		52	53	57	57		44	55	37	48
5月9~10日	48	48	50	53	41	44	40	41	47	54			44	41		45	46	42	42		41	48	32	39
5月10~11日	44	48	49	48	46	42	49	51	55	57			48	48		53	48	49	51	40		52	46	44
5月11~12日	48	50	47	49	44	47	48	50	56	53	53		49	42	50	50	48	54	53	56	43	54	38	43
5月12~13日	37	42	50	41	40	38	39	42	46	47	47		34	32	43	37	33	41	51	53	33	50	40	42
5月13~14日	47	47	50	44	42	41	44	58	67	63	64		50	39	64	60	50	48	54	56	45	56	51	49
5月14~15日	61	69	62	57	54	50	55	57	68	61			49	44		52	49	61	57	56	47	53	50	47
5月15~16日	42	59	66	58	47	42	38	33	35	35			36	30		30	35	42	41	46		28	27	25
5月16~17日	37	47	53	51	46		44	44	31	34			49	38		42	49	38	41	47		53	26	44
5月17~18日	46	50	49	47	43	42	49	48	41	44			48	42		49	48	51	47	45		50	42	45
5月18~19日	42	55	50	51	62 -	47	44	39	42	46			42	33 17		40	44	51	49		39	52	39	41
5月19~20日 5月20~21日	31 49	37 60	30 60	34 59		33 52	31 56	24 49	30 43	31 47			27 64	49		21 52	23 58	27 61	30 58			28 64	25 56	20 57
7月22~23日	14	20	34	23	19	19	14	7	11	8		_	14	8		10	14	14	18			13	13	11
7月22~23日 7月23~24日	14	28	18	28	28	20	13	10	15	9			11	9		12	η4	14	13			16	12	13
7月24~25日	31	28	21	33	37	31	32	43	22	27			31	24		26	28	36	22			21	28	17
7月25~26日	82	44	32	56	51	56	40	33	23	16			47	33		28	41	38	23		18	25	37	23
7月26~27日	50	41	46	53	63	48	64	67	38	50			64	57		78	58	38	35		23	23	32	20
7月27~28日	40	30	44	45	47	38	44	30	24	23			36	24		28	34	31	30		19	27	21	20
7月28~29日	43	40	30	48	49	47	43	33	18	33			54	49	36	41	60	47	39	26	40	41	39	34
7月29~30日	33	30	49	41	40	34	33	31	18	26	31		45	34	40	41	46	55	43	38	55	53	44	55
7月30~31日	27	30	42	42	41	32	37	32	18	19			34	28		36	34	40	34		39	58	31	57
7月31~8月1日	44	46	58	64	63	50	56	41	43	46			43	35		41	39	46	35			62	33	56
8月1~2日	46	50	54	54	53	47	53	44	36	38			44	37		43	40	36	34		41	56	34	52
8月2~3日	41	35	41	44	46	49	45	34	26	32			40	27		29	35	36	34			44	32	40
8月3~4日	23	43	48	44	38	41	37	25	21	27			33	22		23	29	34	35		22	29	24 22	27
8月4~5日 10月21~22日	29	35 23	44 17	40 17		40 21	34 19	15 24	11 27	13 25			28 15	15 12		15 18	26 16	35 30	34 25			20 40	29	19 35
10月21~22日	32	27	34	33	32		30	30	38	35			33	28		33	31	43	36		29	49	29	43
10月23~24日	25	29	20	26	26		24	20	20	23			19	16		18	16	34	22		25	35	27	35
10月24~25日	37	43	43	51	45		44	38	42	41			40	37		42	38	42	46		35	52	36	51
10月25~26日	25	29	38	38	37	36	37	33	35	35			28	26		37	25	31	34		36	36	29	34
10月26~27日	23	26	31	28	27	24	20	22	21	29			21	15		22	19	22	32		23	26	28	31
10月27~28日	31	34	38	37	37	26	31	30	39	37	32		30	26	32	29	29	26	36	38	23	38	23	30
10月28~29日	34	32	31	36	35	32	36	39	41	41			37	31		36	32	32	37		26	43	23	39
10月29~30日	15	14	27	13	18	16	16	17	19	18			9	8		14	10	29	20		17	42	24	42
10月30~31日	29	28	38	24	30	24	28	22	23	23			32	25		26	27	33	29		21	44	33	42
10月31~11月1日	20	16	26	14	19		21	26	30	25			17	16		20	17	30	22		18	33	18	30
11月1~2日	21	22	29	26		24	20	28	28	25		_	21	19		22	22	29	23		-	36	25	32
11月2~3日 11月3~4日	10 16	12 23	15 32	23	8 25	10 21	8 26	15 24	20 21	15 25			23			12 29	22	13 24	19 26			26 24	10 18	27 26
1月20~21日	19	33	27	30	25		24	27	31	23			23	19		21	19	27	31	-		28	19	25
1月20~21日	15	28	35	30	26		28	24	29	22			19	21		27	19	18	22			33	15	27
1月22~23日	16	31	37	33	32	30	33	28	32	26			24	23		31	22	28	26		23	35	18	30
1月23~24日	23	35	28	24	24	25	21	21	28	22			14	12		14	14	23	26			34	27	31
1月24~25日	29	36	33	37			29	32	34	33			34	29		27	36	34	38			37	36	34
1月25~26日	16	32	36	27	25	23	23	17	21	23			18	16		14	25	22	34		19	35	19	28
1月26~27日	12	29	30	18	15	12	11	15	20	19	9		15	15	9	9	24	14	25	17	17	29	22	24
1月27~28日	8	29	37	24	22	19	18	14	21	21	10		19	18	15	- 11	28	17	27	16	18	41	19	37
1月28~29日	21	37	36	20	23	16	17	10	22	16			17	16		8	25	19	28			34	18	31
1月29~30日	28	40	18	15	16	22	23	27	36	24			22	19		21	23	12	23	20	14	19	22	12
1月30~31日	20	32	22	17		15	19	21	29	23			15	14		16	19	23	24	20	16	25	20	16
1月31~2月1日	26	40	34	20	24	18	21	21	20	23			19	14		15	21	22	22	36		37	20	33
2月1~2日	16	35	34	23	24	20	23	24	31	23			20	16		18	17	24	18	29		24	13	17
2月2~3日	20	35	36	31	32	28	31	28	30	28	24		30	27	27	-	28	31	26	27	22	39	17	34

表3-1-6 SPM (μα/m³)

表3-1-6 SPM(L	<i>t</i> g/m³)																							
期間	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市		千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県		浜松市
	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日	32	31	12		30	33	30	28	23	29	35	32	25	34		26	30	25	10	21	36	32	21	22
5月8~9日	42	38	18	33	43	42	33	24	16	27	31	30	31	31	26	18	34	25	23	19	30	42	18	28
5月9~10日	32	33	18	25	33	33	42	31	19	24	38	31	36	33	26	22	31	28	28	19	32	48	20	32
5月10~11日	19	18	13	15	13	14	12	15	21	24	18	17	10	22	23	14	24	18	13	12	34	29	18	17
5月11~12日	17	20	7	17	16	17	14	14	14	22	21	17	11	21	19	11	21	21	12	12	24	28	14	14
5月12~13日	28	21	13	20	26	21	22	18	33	34	28	24	14	29	30	19	22	16	8	10	34	35	13	22
5月13~14日	31	23	11	26	23	27	21	29	38	39	42	32	18	38	34	24	28	28	18	20	44	46	22	33
5月14~15日	35	38	18	40	39	38	36	36	39	44	47	38	0	43	45	31	36	38	22	21	45	53	26	37
5月15~16日	44	47	38	42	56	46	46	22	20	26	28	33	34	33	30	21	42	36	22	26	12	30	20	20
5月16~17日	35	35	16	32	36	37	42	35	26	38	37	35	40	38	51	28	34	26	30	17	17	55	26	33
5月17~18日	28	27	10	24	26	25	23	21	22	26	28	28	20	30	33	22	29	30	25	20	16	44	21	31
5月18~19日	23	23	13	21	24	22	28	22	18	25	26	25	18	26	25	16	28	22	15	16	12	46	15	26
5月19~20日	27	23	17	21	27	24	28	21	16	24	28	26	27	28	29	17	25	19	11	11	19	50	21	40
5月20~21日	22	23	9	19	18	17	20	17	16	25	24	18	19	26	26	17	27	26	19	18	20	56	25	34
7月22~23日	25	20	12		-	11	12	18	16	27		12	10	14		9	23	11	6	8		24	9	24
7月23~24日	30	21	3		-	17	15	22	20	29		17	15	19		13	23	16	7	8	31	29	11	18
7月24~25日	36	21	8		-	27	29	38	28	34		34	28	36		34	32	31	28	16	38	35	27	33
7月25~26日	75	59	15		-	43	50	38	29	34		44	41	42		39	47	36	23	23	37	37	36	34
7月26~27日	41	40	31		-	37	50	51	42	52		50	44	45		48	50	35	33	23	40	34	27	30
7月27~28日	54	44	22		44	48	47	33	31	37		36	38	32		27	43	29	28	18	47	31	24	33
7月28~29日	59	65	16		45	45	51	42	29	42		41	49	44		35	54	40	46	22	52	31	37	31
7月29~30日	43	40			37	33	35	33	27	40		32	45	39		31	48	47	42	31	65	43	43	61
7月30~31日	44	43	25		44	41	47	43	27	40		38	44	41	60	38	44	36	39	41	59	58	41	75
7月30~31日	59	59			61	60	64	66	49	53		53	55	52		53	58	58	49	44	74	63	68	82
8月1~2日	74	110	30		50	60	55	69	50	53		57	43	50		50	42	41	42	34	70	64	48	81
8月2~3日	54	59	18		31	43	31	51	45	48		38	40	53		50	49	49	46	29	70	55	67	75
	51						47						51					49		29	60			58
8月3~4日 8月4~5日	42	69 43	31		50 43	54 40	38	45 23	38 15	45 24		44 30	40	46 31		42 17	51 40	38	39 30			45 34	43 38	39
							_													34	56			
10月21~22日	25	24			34	29	23	19	20	22		22	21	29		16	24	37	33	31	43	48	32	37
10月22~23日	19	24	27		26	24	20	20	23	27		19	23	30		17	24	35	29	12	44	46	29	36
10月23~24日	23	22	28		36	32	22	23	16	22		20	27	23		19	25	31	22	19	38	37	24	26
10月24~25日	36	44			38	36	32	26	24	35		30	27	23		23	26	28	21	24	44	38	27	29
10月25~26日	18	16	3	14	12	13	11	8	13	19		13	8	9		6	15	9	6	9		24	14	8
10月26~27日	27	28	13		45		28	18	18	22		25	18	19		20	22	17	13	14	25	32	13	17
10月27~28日	20	25	28		41	30	22	16	22	21		20	15	13		13	18	15	10	9	24	28	11	11
10月28~29日	19	16			18	17	16	19	20	25		18	15	16		14	18	15	11	12	26	29	16	10
10月29~30日	22	22	11		23	27	18	15	14	22		17	16	19		16	25	20	16	12	27	34	17	17
10月30~31日	24	21	6		19	25	16	21	24	28		18	15	16		16	22	16	19	14	28	43	15	17
10月31~11月1日	17	16			24	21	14	11	12	18		13	14	13		9	19	16	20	8	22	38	11	10
11月1~2日	23	27	17		45	34	24	16	13	22		20	17	16		17	17	17	17	15	23	41	11	14
11月2~3日	20	16				27	24	18	12	20		19	16	11		15	18	16	5	19	20	30	6	6
11月3~4日	16	12					7	10	10	17		10	3	6			14	9	5	7		22	8	8
1月20~21日	11	11				7	6	4	5			8	5			5	8	7	2	5	12	10	2	5
1月21~22日	13	12				6	6	4	7	15		6	7	4	8	4	7	9	5	8		11	3	2
1月22~23日	12	12	1	·		6	5	4	7	14		6	7	4	9	6	9	6	4	4	16	10	6	2
1月23~24日	15	18	9		13	18	14	15	15	20	24	16	18	16		20	21	17	11	10	21	19	5	10
1月24~25日	13	10		-		6	6	4	7	13		6	5	4	·	6	6	7	3	5		13	3	5
1月25~26日	17	14	1	10	8	11	10	9	10	13	19	11	9	6	10	11	8	11	2	8	18	15	4	7
1月26~27日	25	21	4	16	16	20	17	12	14	16	31	22	12	10	19	19	12	12	6	13	19	23	5	14
1月27~28日	29	29	8	19	13	18	15	18	18	16	32	20	12	10	14	15	11	15	4	20	22	24	10	18
1月28~29日	27	32	11	30	21	30	23	26	23	27	32	30	19	17	23	30	20	21	12	27	31	32	15	20
1月29~30日	13	12	9	12	17	11	9	8	6	15	9	8	9	8	11	7	15	27	8	9	19	19	6	7
1月30~31日	18	15	8	10	12	14	10	11	11	17	16	13	12	11	13	12	11	11	4	12	22	16	6	8
1月31~2月1日	20	20	7		16	21	17	15	16	19		21	14	15	23	21	14	13	12	10	27	23	6	14
2月1~2日	20	16	2		14		11	11	13	18		12	12	12		14	14	14	15	7		31	14	21
2月2~3日	15	13		8			6	7	9	15		7	6	4		-	11	8	4	6	22	11	7	5

表3-1-7 PM2.5 (μg/m³)

表3-1-7 PM2.5	$(\mu g/m^3)$																							
期間	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市			山梨県	山梨県	長野県	静岡県	静岡県		浜松市
	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日	17.8	17.5	17.0	22.5	23.8	23.5	21.1	22.0	16.6	15.5	21.9	28.7	20.3	22.3	22.8	23.8	18.5	16.7	6.3	15.9	22.1	13.7	19.9	13.5
5月8~9日	21.5	23.9	20.6	26.4	24.3	25.0	19.7	17.6	12.7	13.3	20.1	26.0	24.0	20.8	18.8	17.1	21.4	14.6	13.3	14.8	12.5	22.3	16.1	19.0
5月9~10日	20.1	19.7	16.3	19.5	19.9	19.7	20.1	23.4	13.4	14.0	22.0	29.2	26.8	22.1	20.0	21.8	24.5	20.8	14.8	13.3	13.0	18.6	16.5	16.5
5月10~11日	7.7	8.7	25.9	10.9	5.4	8.0	7.5	12.9	14.8	11.4	8.5	15.7	10.7	12.6	13.5	15.0	12.4	10.4	7.8	7.5	18.2	7.9	16.8	12.9
5月11~12日	8.1	9.0	16.3	13.4	11.7	11.8	11.4	9.1	7.0	6.5	8.1	14.5	10.5	12.2	10.6	10.2	10.3	11.7	7.5	12.3	9.8	8.9	11.4	10.8
5月12~13日	9.6	9.1	13.1	15.5	16.3	11.9	9.7	14.0	13.3	11.5	10.3	14.8	8.6	10.5	14.2	11.5	10.4	8.4	2.3	7.4	11.5	10.2	6.6	10.0
5月13~14日	17.1	9.0	15.8	20.3	17.5	19.0	17.9	26.0	22.5 25.8	23.3	23.8	26.9	17.0	23.2	22.8	25.6	16.8	16.2	10.4	14.9	24.8	28.5	21.9	21.9
5月14~15日	21.9 23.5	27.4 27.6	21.9	30.6	29.5	27.5	24.9	30.5	12.6	25.9	26.9 14.4	30.9	0.0	28.4	29.3	28.2	24.2	24.9	13.3	16.4 18.8	27.0 17.5	29.7	22.6	23.8
5月15~16日 5月16~17日	19.5	27.6	17.8	31.3 24.2	26.3 24.4	26.1 22.3	25.3 21.3	14.4 26.6	19.7	12.1 21.8	23.2	25.8 28.3	29.0 30.3	27.3	16.6 32.5	25.8	26.4 26.2	20.5 15.8	12.5	11.8	26.6	8.7 21.6	17.0 19.2	9.3 22.3
5月17~18日	15.7	17.8	14.6	18.3	15.8	16.8	16.9	17.0	16.0	14.2	15.0	23.7	16.4	19.0	21.1	19.2	19.3	20.0	14.3	16.2	19.1	21.0	18.2	21.0
5月18~19日	10.0	13.5	12.7	16.0	1	13.5	17.6	11.0	9.3	10.3	11.5	18.0	16.2	14.5	14.7	13.6	15.2	11.4	7.0	13.8	14.2	15.1	12.4	14.3
5月19~20日	9.4	12.5	12.7	15.5	17.2	13.7	12.0	14.5	9.6	9.2	13.5	18.6	16.6	16.0	14.7	13.9	16.5	8.5	2.4	6.0	15.7	16.4	14.3	12.3
5月20~21日	9.5	14.8	9.9			10.0	10.1	10.1	11.2	12.1	14.4	15.6	16.1	15.0	16.5		17.3	13.8	10.0	13.8	17.0	16.4	19.1	19.3
7月22~23日	5.6	9.2	9.5	7.2	2.5	6.2	5.9	6.0	5.5	5.7	6.9	7.3	5.2	4.5	7.8	5.6	8.5	2.1	-0.5	12.7	8.0	4.8	4.5	6.5
7月23~24日	8.0	10.5	3.3	11.1	10.6	12.4	9.3	17.2	9.3	9.1	13.9	11.3	7.6	9.7	11.7	8.3	11.5	6.4	1.0	3.8	9.5	7.7	6.3	7.7
7月24~25日	12.6	10.5	8.3	12.4	11.9	17.0	13.9	22.0	18.8	15.5	30.6	24.5	17.2	22.4	24.3	22.1	19.6	17.3	14.3	7.8	15.8	11.7	17.7	10.8
7月25~26日	36.4	29.0	14.6	26.7	26.0	32.5	26.8	22.4	19.6	15.0	33.2	30.0	27.8	29.3	29.0	26.2	29.3	21.3	11.5	13.9	13.0	11.0	24.9	13.5
7月26~27日	22.9	24.0	25.6	25.6	29.2	29.8	30.1	32.8	30.0	30.8	27.5	37.5	31.0	31.3	38.0	35.4	35.3	21.4	19.1	17.2	13.5	8.4	17.3	10.6
7月27~28日	20.4	21.8	22.5	22.0		25.6	22.8	15.4	14.5	13.4	20.5	23.5	24.0	19.4	18.8	18.7	30.1	15.3	13.8	12.6	11.7	11.3	12.4	12.4
7月28~29日	27.5	30.3	15.5	23.5	28.4	30.3	28.4	29.8	18.1	22.5	26.0	31.3	31.8	32.4	31.8	26.1	34.8	23.1	22.0	12.1	24.4	12.7	24.7	16.6
7月29~30日	17.8	18.9	19.2	19.6	21.8	22.3	21.1	16.1	16.0	17.8	21.1	22.7	28.2	25.3	21.8	22.6	30.5	31.0	24.8	17.4	26.8	23.7	29.3	27.3
7月30~31日	17.8	20.0	22.6	23.5	24.1	26.6	26.0	26.4	15.6	20.5	28.9	27.1	26.0	29.3	31.1	26.8	30.0	21.5	21.5	22.3	26.4	29.4	26.3	31.9
7月31~8月1日	28.3	28.1	31.0	31.3	35.0	35.7	32.2	36.4	31.3	31.3	40.9	39.3	34.8	37.3	40.7	35.5	36.1	39.2	28.1	29.5	37.8	35.6	38.0	38.8
8月1~2日	37.3	42.7	30.8	28.0	32.2	36.9	33.6	39.3	32.4	29.2	43.4	41.0	28.5	35.5	41.4	34.0	31.7	28.5	26.5	23.1	30.8	38.8	30.9	38.3
8月2~3日	27.5	30.4	19.6	22.2	18.6	27.1	20.6	33.8	27.0	28.4	37.8	28.3	26.3	34.7	36.9	34.8	29.4	32.1	28.9	20.5	35.0	31.8	40.0	33.8
8月3~4日	29.2	36.2	31.4	29.6	31.3	35.3	29.5	31.9	25.5	23.3	31.9	33.5	32.9	33.5	33.0	30.0	34.9	30.9	25.7	18.6	23.8	25.5	27.4	25.6
8月4~5日	17.0	23.3	32.7	26.2	25.2	24.9	22.9	12.4	6.3	7.5	11.2	21.2	23.6	19.7	14.6	13.1	26.3	24.9	17.9	24.0	21.0	17.4	24.1	19.2
10月21~22日	13.5	13.3	26.1	24.2	18.2	17.3	14.9	15.3	11.0	9.9	13.4	18.0	16.1	17.0	17.9	14.4	20.6	30.0	18.9	27.4	25.7	31.4	24.0	17.5
10月22~23日	10.5	15.6	22.2	18.2	16.8	15.9	13.6	16.1	12.9	14.7	-	16.3	16.2	17.1	19.1	14.9	20.5	28.0	15.5	10.7	25.3	28.1	24.8	16.4
10月23~24日	14.1	15.4	24.4	22.0	23.8	18.3	16.6	17.6	10.3	10.1	21.3	18.7	20.0	19.4	20.1	16.6	19.7	25.0	12.6	15.6	20.0	17.8	20.8	13.0
10月24~25日	20.3	30.0	22.4	32.3	23.9	23.7	21.4	20.0	15.8	17.0	19.3	26.7	20.9	20.4	21.3	19.9	24.1	21.6	13.2	21.5	27.2	23.3	24.6	17.3
10月25~26日	7.3	7.6	4.0	10.2	5.9	16.7	7.2	6.1	7.1	5.1	7.0	12.5	8.3	6.3	6.7	7.4	12.9	5.8	3.5	6.4	3.4	3.5	12.2	7.1
10月26~27日	16.8	19.0	13.7	30.1	33.7	37.5	20.9	17.4	11.5	9.6	18.8	24.2	15.4	18.4	16.4	18.7	17.8	15.5	7.1	12.8	7.6	12.1	16.0	10.8
10月27~28日	8.3	11.0	25.0	33.2	30.0	22.0	16.7	9.4	7.3	3.9	10.3	16.6	10.0	8.0	11.1	10.0	16.7	9.9	3.8	9.3	17.3	10.0	-	8.3
10月28~29日	9.1	5.0 12.5	5.8 10.7	11.1 19.1	10.5 15.4	8.2 19.5	10.4 13.8	13.7 14.1	11.3 7.8	10.2 8.2	12.2 16.1	14.5 15.8	10.1	11.1 14.7	13.9 17.5	12.2 13.6	13.8 19.4	7.6 13.0	4.8 8.0	6.9 8.5	14.0 12.5	5.1 13.1	4.4	9.0 12.1
10月29~30日	11.9	13.3	7.3	19.1	11.3	18.3	12.0	17.3	18.0	16.3	17.6	18.0	13.9	13.3	16.0	14.6	20.0	13.0	11.6	10.6	16.7	12.2	12.4	13.0
10月30~31日	8.2	9.5	11.6	18.0	16.5	14.8	11.2	10.3	7.4	7.5	9.1	12.4	13.9	12.3	10.0	8.4	14.5	12.1	12.1	5.8	11.4	6.4	10.8	7.1
11月1~2日	11.9	20.3	18.3	25.3	34.2	26.8	18.6	13.4	8.6	11.9	16.6	18.9	16.1	16.0	15.8	15.6	12.6	15.0	8.5	14.3	13.2	12.6	11.6	9.3
11月2~3日	7.8	8.9	7.3	17.4	14.3	16.3	12.5	12.8	7.7	6.1	11.1	16.8	10.1	8.5	12.1	13.3	7.3	10.9	1.3	14.6	7.2	7.8	4.5	4.8
11月3~4日	7.8	3.3	1.4		3.0	6.8	3.9	9.0	6.0	6.0	12.4	9.8	5.0	3.9	3.3	4.8	7.7	4.6	2.0	3.7	6.0	6.6	8.8	7.3
1月20~21日	3.4	4.1	2.4			4.4	2.9	4.0	1.0	1.2	0.5	6.8	3.3	3.6	2.7	3.3	2.1	4.4	0.0	4.1	2.9	4.1	3.4	3.7
1月21~22日	6.8	6.5	2.7			5.3	4.4	4.7	3.7	2.6	3.8	6.2	4.9	4.0	3.8	4.0	3.4	7.4	-	11.8	8.2	4.9	5.8	3.3
1月22~23日	4.4	5.3	3.7	5.0		3.8	4.0	4.0	4.4	4.0	5.9	5.5	5.0	4.0	2.9	4.9	3.9	5.2	-	5.5	9.3	2.4	7.2	1.9
1月23~24日	10.5	11.8	15.0	17.4	11.7	13.5	12.3	16.4	9.7	10.4	15.2	19.3	18.9	14.6	15.4	21.3	12.8	17.0	-	9.9	8.1	13.8	6.3	7.1
1月24~25日	4.3	4.0	3.2	4.5	2.8	2.9	3.5	6.3	4.5	2.1	2.0	7.3	3.3	2.1	4.0	5.1	2.8	4.1	-	2.9	4.0	4.3	3.4	5.0
1月25~26日	9.5	7.2	5.5	8.2	7.3	9.5	8.4	8.2	-	5.1	10.7	11.6	6.8	7.2	7.5	11.7	5.5	8.4	-	10.5	7.2	12.3	6.0	6.0
1月26~27日	19.3	15.8	8.0	14.8	12.7	14.5	14.0	14.3	-	7.7	20.5	23.5	11.4	11.6	12.3	21.2	9.0	12.4	5.3	12.1	8.7	17.7	9.7	9.8
1月27~28日	19.2	22.0	11.2	16.7	12.5	14.3	11.7	18.3	9.9	9.1	22.7	21.4	9.3	11.0	9.7	16.3	6.9	13.8	3.4	19.0	13.5	19.5	14.0	14.0
1月28~29日	21.0	24.2	15.3	26.2	19.6	25.6	19.3	27.7	14.0	17.5	22.7	32.5	16.4	19.1	20.6	28.8	12.2	20.3	8.9	24.9	20.3	26.5	18.5	14.9
1月29~30日	3.3	4.9	11.4	10.9	9.7	6.1	6.4	5.3	0.5	3.8	0.4	10.8	10.4	5.6	5.7	7.1	5.6	25.3	4.5	6.7	8.5	7.8	3.8	5.0
1月30~31日	9.7	8.0	10.7	8.3	7.7	10.3	8.6	12.9	5.0	9.1	8.0	17.0	13.5	10.8	11.6	12.4	8.1	7.3	3.2	9.2	8.0	7.0	7.0	5.2
1月31~2月1日	14.8	14.7	9.5	16.4	13.2	16.3	13.9	15.7	10.0	11.8	13.2	25.7	14.0	14.6	17.8	21.3	10.3	10.8	8.9	10.4	9.8	19.5	9.7	12.5
2月1~2日	14.9	11.0	5.5	14.0	8.5	11.7	7.9	10.8	9.0	8.5	12.0	14.8	12.8	11.2	11.5	14.1	10.1	12.3	9.9	5.3	8.0	26.0	14.8	15.4
2月2~3日	5.6	6.0	3.2	6.3	4.3	4.7	6.5	6.4	4.4	4.2	5.1	7.9	4.5	4.5	6.6	-	3.3	5.6	3.4	5.0	9.5	1.1	10.7	5.5

表3-1-8 NMHC (ppmC)

表3-1-8 NMHC (	(ppmC)																							
期間	茨城県			群馬県	埼玉県		さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日		0.08	0.09	0.15	0.24	0.25	_	0.18	0.09	0.09	$\overline{}$	$\overline{}$	0.21	0.26	-	0.25	0.27	0.11		0.10	0.15			0.09
5月8~9日	$\overline{}$	0.06	0.10	0.12	0.16	0.19	-	0.20	0.09	0.11	-	-	0.17	0.21	-	0.17	0.21	0.11		0.08	0.12			0.15
5月9~10日	$\overline{}$	0.06	0.08	0.10	0.12	0.13		0.16	0.10	0.07	-	-	0.15		-	0.14	0.18	0.12		0.08	0.10	_		0.09
5月10~11日		0.04	0.05	0.07	0.02	0.07	_	0.16	0.10	0.10	_	$\overline{}$	0.07	0.09		0.09	0.06	0.06		0.03	0.09			0.06
5月11~12日		0.06	0.09	0.10		0.12	-	0.12	0.08	0.07		/	0.04	0.12	-	0.09	0.04	0.10		0.04	0.11			0.09
5月12~13日		0.03	0.09	0.13	0.11	0.13		0.12	0.09	0.06	-		0.05	0.15		0.09	0.10	0.10		0.04	0.17			0.07
5月13~14日		0.06	0.10	0.16	0.15	0.30		0.14	0.11	0.08			0.07	0.22	_	0.17	0.12	0.11		0.06	0.32			0.10
5月14~15日		0.08	0.11	0.20		0.25		0.23	0.11	0.12			0.13	0.26		0.23	0.15	0.16		0.08	0.17			0.10
5月15~16日		0.04	0.14	0.15		0.24		0.16	0.10	0.14			0.16	0.21		0.15	0.14	0.12		0.10	0.09			0.09
5月16~17日		0.05	0.09	0.12	0.13	0.19		0.13	0.13	0.18	/		0.14	0.26	_	0.22	0.15	0.10		0.07	0.17			0.07
5月17~18日		0.03	0.07	0.10		0.18	-	0.07	0.10	0.14			0.09	0.16		0.14	0.18	0.10		0.07	0.11			0.09
5月18~19日		0.03	0.08	0.10		0.14		0.13	0.09	0.13			0.07	0.17		0.11	0.17	0.09		0.08	0.25			0.07
5月19~20日		0.06	0.11	0.12	0.12	0.21	$\sim$	0.18	0.10	0.11		$\overline{}$	0.13	0.32	-	0.20	0.27	0.13		0.09	0.20			0.09
5月20~21日		0.04	0.07	0.09	0.06	0.15		0.11	0.10	0.14			0.08	0.18		0.14	0.18	0.10		0.07	0.14			0.08
7月22~23日		0.07	0.13	0.13	0.05	0.14	$\overline{}$	0.16	0.08	0.06	$\overline{}$	$\overline{}$	0.06	0.19	-	0.09	0.13	0.09		0.08	0.18			0.07
7月23~24日		0.08	0.10	0.16	0.11	0.25	_	0.19	0.08	0.04	_		0.40	0.31		0.20	0.21	0.10		0.12	0.21			0.07
7月24~25日		0.07	0.11	0.21	0.15	0.30	$\overline{}$	0.22	0.13	0.03	_	-	0.21	0.45	-	0.29	0.24	0.11		0.11	0.09			0.22
7月25~26日		0.12	0.11	0.21	0.18	0.44	$\overline{}$	0.27	0.13	0.03			0.21	0.37		0.32	0.18	0.10		0.11	0.05			0.07
7月26~27日	$\overline{}$	0.06	0.14	0.16	0.09	0.30	_	0.16	0.16	0.05	-	-	0.18	0.30	-	0.23	0.15	0.11		0.10	0.07			0.06
7月27~28日		0.07	0.12	0.16	0.13	0.21	$\overline{}$	0.44	0.10	0.02	-	-	0.19		$\overline{}$	0.22	0.18	0.10		0.10	0.05			0.06
7月28~29日		0.06	0.12	0.15		0.21	$\sim$	0.14	0.11	0.05	-	-	0.20	0.35	-	0.20	0.18	0.12		0.11	0.16			0.08
7月29~30日		0.06	0.12	0.14	0.12	0.23	-	0.13	0.11	0.03		-	0.17	0.29	-	0.23	0.16	0.11		0.10	0.12			0.09
7月30~31日		0.07	0.13	0.16	0.14	0.27	$\overline{}$	0.16	0.11	0.06	-	-	0.16	0.27	$\overline{}$	0.21	0.15	0.10		0.12	0.20			0.09
7月31~8月1日		0.08	0.14	0.18	0.15	0.35		0.68	0.09	0.06		-	0.13	0.25		0.16	0.14	0.10		0.13	0.12			0.09
8月1~2日	$\overline{}$	0.08	0.12	0.16	0.12	0.23		0.55	0.09	0.06	-	-	0.13	0.26	-	0.18	0.13	0.11		0.10	0.09			0.08
8月2~3日		0.07	0.09	0.13	0.07	0.24	$\sim$	0.52	0.08	0.06	_		0.11	0.23	-	0.14	0.16	0.10		0.09	0.10			0.07
8月3~4日		0.07	0.12	-	0.15	0.34	$\sim$	0.73	0.08	0.06	-	-	0.13	0.25	-	0.17	0.16	0.11		0.11	0.13			0.10
8月4~5日		0.09	0.13	0.17	0.14	0.30		0.92	0.08	0.05			0.11	0.25		0.14	0.15	0.10		0.11	0.14			0.11
10月21~22日		0.06	0.12	0.17	0.20	0.24	$\overline{}$	0.16	0.10	0.12	$\overline{}$	$\overline{}$	0.16	0.31	$\overline{}$	0.29	0.12	0.14		0.10	0.28			0.04
10月22~23日		0.06	0.09	0.08	0.09	0.17	-	0.12	0.09	0.12	-	-	0.10		-	0.17	0.09	0.12		0.09	0.21			0.04
10月23~24日		0.07	0.12	0.14	0.15	0.22	-	0.14	0.10	0.11	-	-	0.13	0.34	$\overline{}$	0.29	0.13	0.14		0.10	0.33			0.04
10月24~25日		0.09	0.08	0.11	0.13	0.19	$\overline{}$	0.21	0.11	0.06	-	$\overline{}$	0.12	0.16	$\overline{}$	0.15	0.10	0.11		0.08	0.15			0.02
10月25~26日		0.05	0.04	0.04	0.01	0.07	-	-	0.12	0.07	-		0.08	0.10	-	0.05	-	0.05		0.07	0.09			0.01
10月26~27日		0.09	0.09	0.18	0.25	0.25		0.13	0.11	0.09			0.12	0.33	$\overline{}$	0.28	0.23	0.16		0.08	0.21			0.04
10月27~28日		0.07	0.12	0.25	0.21	0.20		0.13	0.08	0.05			0.07	0.16	$\overline{}$	0.12	0.14	0.15		0.08	0.25			0.04
10月28~29日	-	0.05	0.09	0.09	0.11	0.13	-	0.18	0.10	0.08	-	-	0.07	0.26	-	0.14	0.15	0.09		0.09	0.17			0.02
10月29~30日		0.07	0.09	0.16	0.23	0.18	$\overline{}$	0.15	0.11	0.09			0.17	0.38	$\overline{}$	0.21	0.22	0.12		0.10	0.25			0.02
10月30~31日		0.07	0.06	0.15		0.20	-	0.21	0.13	0.11	-	-	0.11	0.19	-	0.17	0.19	0.11	$\leftarrow$	0.10	0.23			0.02
10月31~11月1日		0.06	0.08	0.13	0.13	0.12		0.18	0.08	0.08		-	0.11	0.19	-	0.16	0.16	0.09		0.07	0.16			0.02
11月1~2日		0.08	0.08	0.12	0.19	0.14	$\overline{}$	0.17	0.09	0.09	-	-	0.12	0.19	$\overline{}$	0.19	0.13	0.10		0.09	0.12			0.04
11月2~3日		0.09	0.10	0.26	0.31	0.27	-	0.22	0.14	0.11			0.15	0.30	-	0.28	0.21	0.15	$\leftarrow$	0.16	0.21			0.05
11月3~4日		0.07	0.06	0.13		0.16		0.16	0.10	0.10			0.08	0.18		0.12	0.11	0.09		0.09	0.19			0.04
1月20~21日		0.08	0.08	0.08	0.10	0.08	$\overline{}$	0.16	0.08	0.07			0.08		$\overline{}$	0.15	0.10	0.10		0.11	0.23			0.01
1月21~22日		0.11	0.06	0.12	0.10	0.10	-	0.13	0.11	0.08	-	-	0.09	0.12	-	0.10	0.12	0.16		0.15	0.16			0.01
1月22~23日		0.09	0.06	-	0.07	0.06	-	0.10	0.09	0.11	-	-	0.09	0.11	-	0.11	0.11	0.10		0.11	0.21			0.01
1月23~24日		0.03	0.09		0.11	0.11		0.15	0.09	0.13			0.14	0.19	$\overline{}$	0.21	0.15	0.12		0.10	0.13			0.01
1月24~25日		0.04	0.06	- 0.12	0.05	0.04		0.16	0.07	0.08	-		0.06	0.08	$\overline{}$	0.11	0.06	0.06	$\leftarrow$	0.05	0.08			0.01
1月25~26日		0.07	0.06	0.13	0.14	0.14	-	0.16	0.09	0.13	-	-	0.13	0.21	-	0.23	0.12	0.14		0.09	0.18			0.02
1月26~27日		0.10	0.10	0.22	0.29	0.29	-	0.21	0.09	0.14			0.15	0.20	-	0.37	0.14	0.20	$\leftarrow$	0.15	0.24			0.02
1月27~28日		0.12	0.07	0.18	0.16	0.22	-	0.28	0.12	0.13	-	-	0.13	0.28	-	0.38	0.13	0.27		0.20	0.23			0.03
1月28~29日		0.09	0.08	0.21	0.21	0.28	-	0.32	0.13	0.17	-	-	0.17	0.25	-	0.62	0.15	0.27		0.19	0.24			0.03
1月29~30日		0.04	0.11	0.14	0.19	0.10	$\overline{}$	0.19	0.07	0.09	-	-	0.11	0.13	-	0.12	0.13	0.24		0.13	0.23			0.04
1月30~31日		0.06	0.09	0.11	0.17	0.18		0.19	0.07	0.10		-	0.14	0.15	-	0.18	0.13	0.15		0.13	0.17			0.03
1月31~2月1日		0.05	0.07	0.13	0.12	0.16	-	0.18	0.09	0.11	-	-	0.13	0.20	-	0.22	0.13	0.14		0.08	0.16			0.02
2月1~2日		0.06	0.06	0.12	0.13	0.13	$\overline{}$	0.15	0.08	0.10	-	-	0.13		-	0.17	0.17	0.13		0.09	0.17			0.05
2月2~3日		0.06	0.06	0.09	0.08	0.09		0.13	0.08	0.09			0.05	0.11		-	0.12	0.09		0.09	0.20			0.04

表3-1-9 CH₄ (ppmC)

表3-1-9 CH ₄ (pp																							
期間	茨城県		群馬県	群馬県	埼玉県	埼玉県 さいたま市		千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	土浦	真岡	前橋	館林	鴻巣	幸手 さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日		1.97	1.94		1.98	1.99	2.06	1.93	1.94			1.85	1.91	-	1.99	1.96	1.95	-	1.88	1.90			1.87
5月8~9日		1.95	1.96		1.94	1.96	2.03	1.96		-		1.91	1.89		1.93	1.95	1.94		1.86	1.89			1.88
5月9~10日		1.93	1.92		1.93	1.94	2.03	1.95	1.94			1.91	1.89	-	1.93	1.96	1.95	-	1.89	1.90			1.88
5月10~11日		1.93	1.92		1.90	1.94	2.03	2.01	1.98	-		1.82	1.89	-	1.96	1.94	1.98	-	1.93	1.90			1.89
5月11~12日		1.93	1.97		1.93	1.94	2.00	1.95	1.96	-		1.90	1.90		1.94	1.93	1.96		1.89	1.89			1.88
5月12~13日		1.86	1.91	1.92	1.90	1.88	1.91	1.94	1.90			1.89	1.86	-	1.89	1.91	1.87	-	1.82	1.88			1.86
5月13~14日		1.98	1.91	1.96	1.93	1.97	1.96	1.99	1.94	-		1.92	1.96		1.97	1.93	1.89	-	1.87	1.96			1.91
5月14~15日		1.99	1.98		1.95	1.99	1.98	2.01	1.96			1.86	1.95	-	2.00	1.94	1.90		1.88	1.92			1.91
5月15~16日		1.92	1.99		1.94	1.98	1.91	1.91	1.88			1.92	1.88	$\overline{}$	1.90	1.91	1.83	-	1.84	1.83			1.80
5月16~17日		1.94	1.94		1.95	1.97	2.03	2.05	2.04	-		1.87	1.96	-	2.02	1.95	1.84	-	1.96	1.90			1.90
5月17~18日		1.97	1.93	1.92	1.92	1.97	1.98	1.97	1.97	-		1.89	1.93	-	1.95	1.91	1.88	-	1.88	1.91			1.90
5月18~19日		1.88	1.90		1.88	1.91	1.94	1.92	1.92	-		1.87	1.90	$\overline{}$	1.92	1.89	1.89	-	1.83	1.88			1.87
5月19~20日		1.89	1.96		1.89	1.93	1.95	1.91	1.92	-		1.91	1.94	-	1.94	1.92	1.89	-	1.84	1.88			1.90
5月20~21日		1.88	1.89		1.89	1.92	2.02	1.96	1.95			1.90	1.91		1.93	1.92	1.88		1.84	1.89			1.87
7月22~23日		1.83	1.93		1.79	1.79	1.83	1.82		-		1.77	1.82	$\overline{}$	1.81	1.78	1.80	-	1.76	1.75			1.74
7月23~24日		1.97	1.99		1.93	1.99	1.85	1.86	1.83	-		1.79	1.86	-	1.86	1.80	1.82	-	1.78	1.79			1.79
7月24~25日		1.94	2.09		1.95	2.05	2.02	2.06	1.93	-		1.80	1.91	-	1.90	1.84	1.83	-	1.77	1.78			1.76
7月25~26日		2.11	1.99	2.16	2.03	2.15	1.91	2.06	1.93	-		1.86	1.88	-	1.91	1.82	1.82	-	1.78	1.77			1.79
7月26~27日		1.98	2.14		1.98	2.08	2.05	2.10	2.07	-		1.87	1.88	-	1.93	1.86	1.84	-	1.78	1.80			1.76
7月27~28日		1.87	2.10		1.93	1.94	1.88	1.90	1.82	-		1.87	1.86	-	1.84	1.86	1.78	-	1.77	1.75			1.75
7月28~29日		1.99	2.09	1.94	1.91	1.97	1.97	2.17	1.95			1.88	1.89	-	1.91	1.88	1.88	-	1.80	1.81			1.81
7月29~30日		2.08	1.98		1.94	2.00	2.01	2.07	1.91			1.80	1.87	-	1.89	1.87	1.89	-	1.82	1.80			1.87
7月30~31日		2.10	2.15		1.99	2.11	2.04	2.07	1.97	-		1.78	1.87		1.88	1.84	1.93	-	1.85	1.85			1.89
7月31~8月1日		2.14	2.20		1.96	2.23	1.97	1.96	1.96	-		1.86	1.90	-	1.91	1.85	1.94	-	1.88	1.87			1.92
8月1~2日		2.09	2.00		1.95	2.11	1.95	1.95	1.91			1.86	1.90	-	1.92	1.85	1.95		1.84	1.85			1.86
8月2~3日		2.12	1.97		1.92	2.04	1.95	1.94				1.85	1.88	_	1.90	1.86	1.94		1.82	1.83			1.81
8月3~4日		2.05	2.04		2.02	2.10	1.93	1.93	1.90			1.86	1.93	-	1.89	1.86	1.93	-	1.81	1.85			1.81
8月4~5日		2.02	2.12		1.94	2.12	1.88	1.88	1.85			1.83	1.90		1.85	1.84	1.88		1.82	1.84			1.81
10月21~22日		1.96	2.04		1.96	1.90	2.03	2.05		-		1.93	2.03	_	2.03	1.94	1.96	-	1.90	1.97			1.91
10月22~23日		1.93	1.96		1.91	1.84	1.99	2.08	2.01	-		1.76	1.96		1.98	1.93	1.96		1.89	1.93			1.90
10月23~24日		1.97	2.05		1.93	1.89	2.06	2.05				1.94	2.00	_	2.06	1.96	1.94	-	1.89	1.95			1.90
10月24~25日		1.94	1.96		1.94	1.86	1.99	1.98	1.95			1.94	1.96	_	1.97	1.97	1.93	-	1.88	1.95			1.90
10月25~26日		1.95	1.93	1.91	1.90	1.88	-	1.97	1.96	-		1.91	1.94		1.94	-	1.94	-	1.91	1.89			1.88
10月26~27日		1.97	1.99	1.98	1.94	1.95	2.01	2.00	1.99			1.93	2.00		2.01	1.96	1.95		1.89	1.91			1.88
10月27~28日		1.88	1.98		1.92	1.86	1.93	1.94	1.90	-		1.89	1.90		1.91	1.89	1.88		1.84	1.90			1.85
10月28~29日		1.87	1.95		1.90	1.82	1.97	2.00	1.95	-		1.83	1.94		1.96	1.92	1.88	-	1.90	1.92			1.87
10月29~30日		1.96	1.97	1.98	1.94	1.87	2.01	2.03	2.00	_		1.86	2.00		2.00	1.99	1.89		1.92	1.95			1.88
10月30~31日		1.94	1.95		1.92	1.90	2.01	2.01	2.02	-		1.92	1.96		1.99	1.94	1.92		1.96	1.95			1.90
10月31~11月1日		1.98	1.98	1.97	1.96	1.90	2.04	2.00	2.02	-		1.94	1.98	-	2.03	1.95	1.94	-	1.95	1.97			1.89
11月1~2日		1.99	2.02		1.97	1.91	2.05	2.03	2.04	$\overline{}$		1.94	2.05		2.03	1.95	1.95	-	1.93	1.94			1.89
11月2~3日		1.96	1.97	2.03	1.96	1.85	2.03	1.97	2.00	-		1.94	1.97	-	2.00	1.94	1.93	-	1.93	1.90			1.86
11月3~4日		1.98	1.94		1.90	1.88	2.02	2.00				1.82	1.96		1.97	1.90	1.94		1.94	1.91			1.87
1月20~21日		1.97	1.98		1.95	1.93	2.01	1.95		$\overline{}$		1.95	1.99		1.99	1.94	2.02		1.94	1.93			1.91
1月21~22日		1.96	1.97	1.97	1.94	1.96	1.99	1.97	2.02	-		1.79	1.97	-	1.98	1.96	2.04	-	1.97	1.93			1.91
1月22~23日		1.99	1.98	-	1.93	1.96	1.98	1.97	2.04			1.93	1.97	-	1.97	1.95	2.04	-	1.97	1.92			1.91
1月23~24日		1.94	2.01		1.95	1.96	1.99	1.99		-		1.98	2.00		2.04	1.99	2.01	-	1.95	1.92			1.91
1月24~25日		1.95	1.98		1.94	1.93	1.97	1.94	1.97	-		1.93	1.99	-	1.98	1.95	2.00	-	1.94	1.94			1.91
1月25~26日	-	2.04	1.99		1.97	2.00	2.02	1.96	2.01	-		1.97	2.02	-	2.05	1.95	2.03	-	1.99	1.99			1.92
1月26~27日		2.06	2.01	2.05	2.01	2.06	2.05	1.96	2.04	-		1.96	2.05	-	2.11	1.95	1.99		2.00	1.97			1.92
1月27~28日		2.05	1.97		1.96	2.01	2.05	1.96		-		1.78	2.08	-	2.07	1.93	2.02	-	2.02	1.95			1.90
1月28~29日	-	1.99	2.00		1.98	2.01	2.08	1.98		-		1.91	2.03	-	2.12	1.94	2.00	-	2.02	1.94			1.92
1月29~30日		1.94	2.01	2.01	1.97	1.97	2.01	1.97	2.03	-		1.98	1.98	-	1.99	1.95	1.99	_	1.99	1.94			1.91
1月30~31日		2.03	2.02		1.99	2.02	2.02	1.99	2.04	-		2.00	2.00	-	2.01	1.96	1.96	-	2.01	1.94			1.93
1月31~2月1日	-	1.99	2.01	2.03	1.99	2.03	2.05	1.98	2.04	-		2.00	2.01	-	2.04	1.96	1.96	-	1.96	1.96			1.93
2月1~2日		2.02	1.99	2.01	1.97	2.00	2.02	2.05	2.02	-		2.01	2.00	-	2.00	1.98	1.98	-	1.95	1.95			1.97
2月2~3日		2.00	1.98	1.98	1.94	1.97	2.01	1.97	2.04			1.15	1.97		- 1	1.95	1.97		1.98	1.96			1.90

表3-1-10 THC (ppmC)

表3-1-10 THC(	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
期間	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日		2.05	2.02	2.11	2.22	2.24		2.24	2.02	2.03	$\overline{}$	$\overline{}$	2.06	2.17		2.25	2.22	2.06		1.97	2.05			1.96
5月8~9日		2.01	2.06	2.05	2.10	2.15		2.24	2.05	2.04	-	-	2.08	2.10		2.10	2.16	2.05		1.95	2.01		-	2.03
5月9~10日		1.99	2.00	2.03	2.06	2.07	$\overline{}$	2.18	2.06	2.01	-	-	2.06	2.09		2.08	2.14	2.08		1.97	2.01		-	1.97
5月10~11日 5月11~12日		1.96	1.97 2.05	1.98	1.92 2.03	2.01	$\overline{}$	2.19	2.11	2.09	$\overline{}$	$\overline{}$	1.89	1.98		2.05	2.00 1.97	2.04		1.96 1.93	1.99		$\overline{}$	1.95 1.97
5月12~13日		1.90	2.00	2.05	2.03	2.00	$\overline{}$	2.13	2.03	1.95	$\overline{}$	$\overline{}$	1.94	2.02		1.98	2.00	1.97		1.86	2.04		-	1.93
5月13~14日		2.04	2.01	2.12	2.08	2.27		2.10	2.10	2.02	$\overline{}$	$\overline{}$	1.99	2.18		2.15	2.05	2.00		1.93	2.28			2.01
5月14~15日		2.07	2.09	2.17	2.14	2.24		2.20	2.12	2.08			1.99	2.21		2.23	2.09	2.06		1.96	2.09			2.01
5月15~16日		1.96	2.13	2.09	2.12	2.22		2.07	2.01	2.02			2.08	2.10		2.05	2.05	1.95		1.93	1.92			1.89
5月16~17日		1.98	2.03	2.06	2.08	2.16		2.16	2.18	2.21			2.01	2.21		2.24	2.10	1.94		2.03	2.07		/	1.97
5月17~18日		2.00	2.00	2.02	1.98	2.16	$\overline{}$	2.04	2.07	2.11			1.98	2.09		2.10	2.09	1.98		1.95	2.02		$\overline{}$	1.98
5月18~19日		1.92	1.98	2.00	1.96	2.05	$\overline{}$	2.07	2.01	2.05	$\overline{}$	$\overline{}$	1.94	2.07		2.03	2.05	1.98		1.91	2.13		-	1.95
5月19~20日 5月20~21日		1.95	2.07 1.96	2.03 1.99	2.02 1.94	2.14	$\overline{}$	2.13	2.01	2.03	$\overline{}$	-	2.04 1.98	2.26		2.15 2.07	2.19 2.10	2.02 1.98		1.93	2.08		-	2.00 1.95
7月22~23日		1.90	2.06	1.98	1.84	1.93		1.99	1.89	1.87			1.84	2.00	_	1.90	1.92	1.88		1.84	1.93			1.81
7月23~24日		2.05	2.09	2.17	2.03	2.24	$\overline{}$	2.04	1.94	1.87	$\overline{}$	$\overline{}$	2.20	2.17		2.06	2.01	1.91		1.90	2.00			1.85
7月24~25日		2.01	2.21	2.32	2.10	2.35	$\overline{}$	2.24	2.19	1.95	$\overline{}$	$\overline{}$	2.01	2.35		2.19	2.07	1.93		1.88	1.87		$\overline{}$	1.98
7月25~26日		2.24	2.10	2.37	2.21	2.58		2.18	2.19	1.96			2.07	2.24		2.23	2.00	1.92		1.89	1.82			1.86
7月26~27日		2.04	2.28	2.22	2.07	2.37		2.21	2.26	2.12	$\overline{}$	$\overline{}$	2.05	2.18		2.15	2.00	1.95		1.88	1.87			1.82
7月27~28日		1.94	2.22	2.14	2.06	2.14		2.32	1.99	1.84			2.05	2.15		2.06	2.04	1.89		1.87	1.80		/	1.81
7月28~29日		2.05	2.20	2.09	2.02	2.18		2.11	2.28	2.00	_	_	2.08	2.24		2.10	2.06	1.99		1.91	1.98		$\overline{}$	1.88
7月29~30日		2.14	2.10	2.07	2.06	2.23	$\overline{}$	2.13	2.18	1.94	-	-	1.97	2.15		2.12	2.03	1.99		1.91	1.92		-	1.95
7月30~31日 7月31~8月1日		2.17	2.28	2.19 2.18	2.14	2.38 2.58		2.20	2.18	2.03	-	-	1.94	2.14		2.08	1.98	2.02		1.97 2.01	2.05 1.99		$\overline{}$	1.98
8月1~2日		2.22	2.33	2.18	2.11	2.34	$\overline{}$	2.50	2.03	1.97	-	-	1.99	2.13		2.07	1.99	2.04		1.94	1.99		-	1.94
8月2~3日		2.17	2.07	2.11	1.98	2.28	$\overline{}$	2.47	2.02	1.97	$\overline{}$	-	1.96	2.11		2.04	2.02	2.04		1.91	1.93		-	1.89
8月3~4日		2.12	2.16	-	2.17	2.44		2.65	2.01	1.97	$\overline{}$	$\overline{}$	1.98	2.18		2.06	2.02	2.03		1.92	1.98			1.92
8月4~5日		2.12	2.24	2.11	2.08	2.41		2.80	1.96	1.91			1.94	2.14		1.99	1.99	1.98		1.94	1.98			1.93
10月21~22日		2.03	2.16	2.17	2.16	2.14		2.18	2.16	2.11		_	2.09	2.34		2.32	2.05	2.10		2.00	2.25			1.96
10月22~23日		1.99	2.05	2.01	2.00	2.01		2.11	2.17	2.13	$\overline{}$	$\overline{}$	1.86	2.16		2.15	2.03	2.08		1.98	2.14			1.94
10月23~24日		2.04	2.17	2.12	2.08	2.10	$\sim$	2.20	2.15	2.14	$\sim$	$\sim$	2.07	2.34	_	2.35	2.09	2.08		1.99	2.28		-	1.94
10月24~25日		2.03	2.04	2.06 1.95	2.07	2.05 1.95	$\overline{}$	2.20	2.09	2.01	$\overline{}$	-	2.06	2.11		2.12	2.07	2.03 1.99		1.96	2.10		-	1.93
10月25~26日		2.01	1.97	2.16	1.91 2.19	2.20	-	2.15	2.09	2.04	-	-	1.98 2.06	2.04		2.00	2.19	2.12		1.98 1.97	1.98		-	1.90
10月27~28日		1.96	2.10	2.25	2.13	2.06	$\overline{}$	2.06	2.02	1.95	$\overline{}$	$\overline{}$	1.96	2.06	_	2.03	2.04	2.03		1.92	2.15		$\overline{}$	1.89
10月28~29日		1.92	2.03	2.02	2.01	1.95	$\overline{}$	2.14	2.10	2.03	$\overline{}$	$\overline{}$	1.90	2.20	_	2.10	2.07	1.97		1.98	2.09		$\overline{}$	1.89
10月29~30日		2.03	2.05	2.14	2.17	2.05		2.15	2.15	2.09			2.03	2.38		2.21	2.21	2.01		2.02	2.20			1.91
10月30~31日		2.01	2.01	2.11	2.05	2.09		2.22	2.14	2.13			2.02	2.15		2.16	2.12	2.03		2.05	2.17			1.92
10月31~11月1日		2.03	2.06	2.10	2.09	2.02		2.22	2.00	2.10	-		2.04	2.17		2.19	2.11	2.03		2.02	2.13		$\overline{}$	1.91
11月1~2日		2.07	2.10	2.10	2.15	2.05	$\sim$	2.22	2.12	2.13	$\sim$	$\sim$	2.06	2.23		2.22	2.07	2.05		2.02	2.06		$\overline{}$	1.93
11月2~3日		2.05	2.07	2.29	2.27	2.11	$\overline{}$	2.24	2.11	2.11	-	-	2.09	2.26		2.28	2.15	2.08		2.09	2.11		-	1.91
11月3~4日 1月20~21日		2.05	2.00	2.08	2.00	2.04		2.19	2.10 2.03	2.13			1.90 2.03	2.15		2.09	2.01	2.03		2.03	2.10			1.91
1月21~22日		2.04	2.00	2.09	2.04	2.01	$\overline{}$	2.11	2.03	2.10	$\overline{}$	$\overline{}$	1.88	2.13		2.08	2.08	2.13		2.12	2.13		$\overline{}$	1.92
1月22~23日		2.08	2.04	-	2.00	2.02		2.07	2.06	2.16	$\overline{}$	$\overline{}$	2.02	2.07		2.08	2.06	2.14		2.07	2.13		$\overline{}$	1.92
1月23~24日		1.98	2.09	-	2.06	2.06	$\overline{}$	2.13	2.08	2.14	$\overline{}$	$\overline{}$	2.12	2.18		2.25	2.13	2.13		2.05	2.05		$\overline{}$	1.92
1月24~25日		1.99	2.05	-	1.99	1.97		2.13	2.01	2.06	_	_	1.99	2.06		2.10	2.02	2.06		1.99	2.01			1.92
1月25~26日		2.11	2.04	2.14	2.11	2.13		2.18	2.06	2.14	$\overline{}$	$\overline{}$	2.10	2.23		2.28	2.06	2.17		2.08	2.17			1.94
1月26~27日		2.16	2.11	2.27	2.30	2.35		2.25	2.05	2.19			2.11	2.26		2.48	2.09	2.19		2.15	2.21			1.94
1月27~28日		2.17	2.04	2.17	2.12	2.23		2.33	2.08	2.14	$\sim$	$\sim$	1.91	2.35		2.45	2.06	2.29		2.22	2.18		-	1.93
1月28~29日		2.08	2.08	2.24	2.19	2.30		2.39	2.11	2.21			2.08	2.28		2.74	2.09	2.28		2.21	2.18			1.94
1月29~30日 1月30~31日		1.98	2.12	2.15 2.12	2.17	2.08	$\overline{}$	2.20	2.04	2.13	-	-	2.09	2.11		2.11	2.08	2.23		2.12	2.16		$\overline{}$	1.95 1.96
1月30~31日 1月31~2月1日		2.09	2.11	2.12	2.16	2.21		2.21	2.05	2.14			2.14	2.15		2.19	2.09	2.11		2.13	2.11		-	1.96
2月1~2月1日		2.04	2.09	2.16	2.11	2.19		2.24	2.07	2.15	-	-	2.14	2.21		2.26	2.10	2.11		2.05	2.12		-	2.02
2月2~3日		2.07	2.03	2.13	2.02	2.14	$\overline{}$	2.14	2.13	2.12	$\overline{}$	$\overline{}$	1.20	2.10		- 2.17	2.14	2.05		2.04	2.16		$\overline{}$	1.94
-/15 - 0 H		2.00	2.04	2.00	2.02	2.00	_	2.14	2.00	2.13			1.20	2.07			2.07	2.00		2.07	2.10			1.34

表3-1-11 CO (ppm)

表3-1-11 CO(p																							
期間	茨城県		群馬県		埼玉県	埼玉県	さいたま市		千葉県	千葉県		東京都					山梨県		長野県	静岡県	静岡県	静岡市	浜松市
	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩 大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日			0.0										0.2		0.3	0.3							
5月8~9日			0.0										0.2		0.1	0.3							
5月9~10日			0.0										0.2		0.2	0.3							
5月10~11日			0.0										0.1		0.2	0.2							
5月11~12日			0.0										0.1		0.1	0.2							
5月12~13日			0.0										0.1		0.1	0.2							
5月13~14日			0.2	2									0.2		0.2	0.2							
5月14~15日			0.1										0.3		0.2	0.3							
5月15~16日			0.2										0.2		0.2	0.3							
5月16~17日			0.2										0.3		0.3	0.4							
5月17~18日			0.1										0.2		0.2	0.2							
5月18~19日			0.1										0.1		0.1	0.2							
5月19~20日			0.1										0.2		0.2								
5月20~21日			0.1										0.2		0.2	0.3							
7月22~23日			0.0										0.0		0.0								
7月23~24日			0.0										0.0		0.0	0.1							
7月24~25日			0.0										0.1		0.1								
7月25~26日			0.0										0.2		0.4	0.4							
7月26~27日			0.1										0.2		0.4	0.4							
7月27~28日			0.1										0.0		0.1	0.3							
7月28~29日			0.0										0.2		0.2	0.4							
7月29~30日			0.1										0.2		0.1	0.3							
7月30~31日			0.1										0.2		0.2	0.3							
7月30~31日			0.1										0.2		0.1								
8月1~2日			0.1										0.2		0.1	0.3							
8月2~3日			0.0										0.1		0.1	0.3							
8月3~4日			0.1										0.1		0.1	0.3							
8月4~5日			0.1										0.1		0.0								
10月21~22日			0.1										0.1		0.3								
10月22~23日			0.1										0.2		0.3								
10月23~24日			0.1										0.2		0.2	0.4							
10月24~25日			0.1										0.3		0.3	0.4							
10月25~26日			0.0										0.1		0.1	0.3							
10月26~27日			0.1										0.1		0.1	0.2							
10月27~28日			0.2										0.1		0.1	0.2							
10月28~29日			0.1										0.1		0.1	0.2							
10月29~30日			0.1										0.3		0.2	0.4							
10月30~31日			0.1										0.0		0.2	0.4							
10月31~11月1日			0.2										0.2		0.1	0.3							
11月1~2日			0.2										0.3		0.3	0.3							
11月2~3日			0.3										0.3		0.3	0.5							
11月3~4日			0.1										0.0		0.1	0.3							
1月20~21日			0.2										0.2		0.2	0.3							
1月21~22日			0.2										0.2		0.1	0.4							
1月22~23日			0.2										0.2		0.1	0.4							
1月23~24日			0.2										0.3		0.2								
1月24~25日			0.2										0.3		0.2	0.3							
1月25~26日			0.2										0.2		0.2	0.3							
1月26~27日			0.3										0.3		0.5	0.4							
1月27~28日			0.1										0.3		0.3	0.4							
1月28~29日			0.1										0.3		0.4								
1月29~30日			0.1										0.3		0.8								
1月30~31日			0.2										0.2		0.2	0.4							
1月30~31日			0.2										0.2		0.2	0.4							
2月1~2月1日			0.1										0.3		0.3	0.4							
2月1~2日			0.1										0.2		- 0.2	0.4							
77.43H			J 0.1							_	_		0.2			0.3							

表3-1-12 風向(最多風向)

表3-1-12 風向(			74 FF 18	74 FT 18						- + · · ·					146 75			1 70 0	1 70.00	E	+4 m .=	** TO 18	***	V= 10 -
期間	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
502 00	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日 5月8~9日	ENE	N N	W	SSE SE	SE SE	SSE SE	SE CALM	SE	SSE	SW	SSE	NE SSE	NNW	NNE S	SW	WSW	SSE	WNW	SSW	NNE NNE	SSE S	W	ESE NW	WSW SSW
5月8~9日	ENE	N	W	NW	NW	SE F	CALM	WNW	SSW	SW	ENE	ENE	CALM	S	NNW	CALM	SOE	CALM	SSW	ENE	SSW	WNW	NW	WNW
5月10~11日	CALM	N	N	NW	NNW	NNW	NW	NE	WNW	ENE	ENE	NNE	NNW	NNE	NNE	F	NNE	W	SSW	ENE	SSE	NW	ESE	WNW
5月11~12日	S	SSE	F	S	S	S	SE	S	SW	SSW	SSW	S	S	SSW	SSW	WSW	S	W	S	WSW	SW	SE	NW	SE
5月12~13日	SW	SSE	WNW	NW	SSW	S	SE	SSW	SSW	S	WSW	S	SSE	SSW	SW	W	S	F	S	w	SSW	WNW	NW	ESE
5月13~14日	w	N	W	SSE	WNW	SSE	CALM	SSW	SW	S	WSW	s	S	SW	SW	WSW	SSW	CALM	S	w	NNW	WNW	WNW	W
5月14~15日	SSW	SSE	NNW	SSE	SE	SE	SE	SSW	SW	S	WSW	SSE	SSE	SSE	SW	E	SSE	W	NNE	NNE	SSE	SW	CALM	WSW
5月15~16日	E	NNW	E	SE	N	SE	CALM	SSW		S	WSW	S	CALM	SSW	SW	W	s	WNW	NNE	ENE	SSW	SSE	ENE	SW
5月16~17日	ESE	N	WNW	NW	SE	NNW	CALM	ESE		ENE	ENE	NNE	N	NNE	NNE	E	N	WNW	NNE	E	CALM	WNW	ESE	W
5月17~18日	SSE	N	WNW	NW	NW	N	CALM	SE	CALM	SSE	SW	S	S	SSW	SW	CALM	S	WNW	NNE	NE	S	CALM	WNW	Е
5月18~19日	CALM	SE	E	SSE	SSE	SSE	SE	SSE	SE	SW	S	S	S	S	SSW	WSW	S	CALM	NNE	WSW	SW	SE	SE	ESE
5月19~20日	ENE	NNW	ESE	NW	ENE	E	CALM	SW	SW	S	E	NNE	NNW	NNE	SW	CALM	N	CALM	ESE	ENE	CALM	W	CALM	SW
5月20~21日	E	N	NW	SE	NW	ESE		NNE	NW	SW	ESE	ENE	SSE	NE	NNE	E	S	W	E	NE	SSE	WNW	WNW	WNW
7月22~23日	SW	SSE	E	SE	S	SSW	SE	SW	SW	SSW	WSW	S	S	SSW	SW	WSW	S	CALM	SW	WSW	SSW	SW	WNW	SSW
7月23~24日	SW	S	WNW	CALM	N	S	CALM	SW	SSW	SSW	WSW	S	SSE	SSW	SW	CALM	SSE	WNW	NW	E	SSE	WNW	WNW	W
7月24~25日	CALM	N	WNW	ESE	NE	SE	CALM	SSE	CALM	S	SE		WNW	SSW	ESE	CALM	S	W	WSW	ENE	S	SW	W	SW
7月25~26日	ESE	NNW	WNW	CALM	NE	ESE	SE	S	CALM	S	SW	S	W	NNW	SW		WNW	CALM	SSW	SSW	S	SW	NW	WSW
7月26~27日	E	N	E	ESE	NE	ESE	CALM	SE	CALM	SSW	SSE	SSE	S	SSW	SW	CALM	S	CALM	SSW	S	SSW	SW	NW	WSW
7月27~28日	ENE	NNE	ESE	SE	ESE	ESE	ESE	SSW	SW	S	SW	SSE	NNW	NNE	SW	WSW	N	WNW	S	NE	S	SW	NW	WSW
7月28~29日	ESE	N	W	NW SE	NNE	N	CALM SE	E	CALM	ENE	ESE SE	NNE	NNW	NNE	ESE	ESE	S	CALM	S	ENE	SSE	WNW	WNW	WNW
7月29~30日 7月30~31日	ESE ESE	N ESE	ESE	SE	ESE NE	ESE ENE	CALM	SSE	CALM	SW	SSE	E SSE	SSE	SW	WSW	WSW WSW	5	W CALM	5	NNE	S	SSE W	WNW	CALM
7月30~31日	S	SSE	E	SSE	ESE	SSE	SE	WSW	SSE	SW	SW	SSE	SSE	S	SW	WSW	0	CALM	0	NNE	SSW	SSE	WNW	CALM
8月1~2日	0	SSE	WNW	NW	NE	SSE	CALM	S S S S S S S S S S S S S S S S S S S	SW	S	SW	SSE	S	NNW	SW		W	CALM	9	WSW	SSW	S	W	SW
8月2~3日	CALM	NNW	WNW	NW	NW	N	CALM	WSW	SSW	S	W	SSE	SE	SW	SW		SSE	W	9	WSW	SSW	SSW	ESE	CALM
8月3~4日	S	SSE	ESE	ENE	S	SSE	CALM	S	SSW	SSW	SW	SSE	SSE	SSW	SW	WSW	S	WNW	SSW	SSW	SSW	SSW	WNW	SSW
8月4~5日	SW	SSE	E	NNW	S	SSE	CALM	W	S	S	SW	S	S	S	SW		S	CALM	S	SW	SSW	SSE	NW	SSW
10月21~22日	ENE	ESE	E	CALM	CALM	CALM		NE	WNW	ENE	E		_	ENE	NE		WNW	CALM	SSW	WSW	SE	CALM	ENE	CALM
10月22~23日	ENE	N	ESE	ESE	ESE	N	CALM	ENE	WNW	ENE	ENE		E	NNE	NNE	ENE	NNW	CALM	S	E	ESE	SSE	w	E
10月23~24日	CALM	N	WSW	CALM	CALM	ESE	CALM	E	CALM	E	CALM	ENE	W	WNW	ESE	CALM	WNW	CALM	WSW	SSW	SE	CALM	NW	CALM
10月24~25日	WNW	NNW	NW	NW	NW	NW	NW	SSW	NW	NNW	N	NW	NNW	NNE	SW	SSW	N	W	SSW	NNE	NNW	WNW	NW	WNW
10月25~26日	WNW	NNW	W	NW	NW	NW	NW	NNW	NW	NNW	N	NNW	NNW	NNE	N	ENE	NW	W	NNE	ENE	NNW	NW	NW	WNW
10月26~27日	E	N	WNW	NW	NW	N	CALM	SSE	CALM	E	WSW	S	С	S	ESE	CALM	WNW	CALM	NNE	WSW	NNW	CALM	NW	NE
10月27~28日	SSW	SSE	W	NW	S	S	CALM	S	SSW	S	WSW	S	S	S	SSW	WSW	S	CALM	E	W	SSW	NE	NW	NNE
10月28~29日	E	NNE	NNW	NW	WNW	NNE	CALM	ENE	WNW	N	E	N	NNW	NNE	NNE	ENE	N	W	NE	ENE	SSE	NW	NW	WNW
10月29~30日	ENE	NNE	WNW	CALM	NW	N		NE		ENE	ENE	N	W	N	ESE		WNW	CALM	SE	SW	NNW	WNW	WNW	WNW
10月30~31日	NE	N	WNW	CALM	W	S	CALM	ENE	CALM	ENE	E	NNE	NNW	NNE	N		NW	E	SE	NNE	NNW	NW	W	WNW
10月31~11月1日	NNE	N	W	CALM	NW	N		NE	WNW	ENE	NE	NNE	N	NNE	NE	1	N	CALM	SE	NNE	NNW	NW	WNW	WNW
11月1~2日	CALM	N	W	NNW	NNW	N	CALM	ESE	CALM	ENE	ESE	NNW	NW	N	N		WNW	CALM	SE	WSW	NNW	NE	NW	ENE
11月2~3日	WNW	NNW	W	CALM	NW	NNW	CALM	N	CALM	NNW	N	N		N	NNW		NW	CALM	SE	SW	NNW	WNW	W	WNW
11月3~4日	NW		WNW	NW	NW	N	_	NNE	CALM	ENE	NE	N		NNE	NNE		WNW	CALM	SE		NNW		NW	NE
1月20~21日	WNW	NNE S	-	NW NW	NW	WNW		NW	WNW	NNW	NNW	NW	NW	N	N N		WNW N	CALM	SW	SW NNE	WNN	NW	NW	WNW
1月21~22日			_		NW	NW				NNW	NNE N	NNW		NNE		į			SSE		NNW		NW	
1月22~23日 1月23~24日	WNW	NNW CALM	_	NW NW	NW ESE	NNW		N NE	NW NW	ENE	N	NNW	N ENE	NE	NNE N		NNE NNW	CALM W	0	ENE	NNW	NW WNW	WNW	WNW
1月23~24日	WNW	SSE	-	NW	NW	NW		NW NW	WSW	ENE WSW	NNW	_	W	WNW	WNW		W	W	SSE	WSW	NW WNW	WNW	W	WNW
1月25~26日	W	N N	WNW	NW	WNW	WNW		WNW	CALM	ENE	NNW		W	NNW	NNW		WNW	CALM	SSE	SW	NNW	WNW	NW	WNW
1月26~27日	WNW	N	WNW	NW	NW	N	CALM	SSE	CALM	F	NW		WSW	NNW	SW		WNW	CALM	S	W	NNW	WNW	WNW	W
1月27~28日	W	NNW	W	NW	NW	WSW		W	CALM	ENE	WNW		WSW	NNW	SSW		WNW	CALM	s		NNW	NW	NW	WNW
1月28~29日	NE	N	WNW	NW	WNW	N	CALM	SE	CALM	ENE	WNW	N	WSW	N	NNW		W	CALM	SSW	NE	NNW	W	w	W
1月29~30日	NE	N	-	NW	NW	NNE		NE	NW	N	ENE	NE	N	NNE	NNE		NNW	CALM	s	-	NNW	NE	ESE	E
1月30~31日	CALM	N	W	NNW	CALM	N		NNE	NW	NE	NE	N	NW	NNE	NNE	CALM	N	E	SSW	NNE	ESE	CALM	CALM	CALM
1月31~2月1日	NE	N	WNW	NE	S	N		NNE		ENE	s	NNW	NW	N	NNE		NW	CALM	s	ENE	NNW	WNW	W	WNW
2月1~2日	CALM	NNE	WNW	NW	NW	NW	CALM	NE	WNW	ENE	NNE	NNW	NNW	NNE	NNE	ENE	N	E	SSW	NNE	NNW	WNW	CALM	WNW
2月2~3日	CALM	N	W	NW	NW	NNW		NNE	NW	N	NNE	NNW	N	NNE	NNE		NNE	W	SW		NNW	NW	NW	WNW
,																								

表3-1-13 風速 (m/s)

表3-1-13 風速	(m/s)																							
期間	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日	1.0	2.0	2.1	1.0	1.2	1.4	5.6	2.2	0.7	1.6	1.7	1.2	0.8	2.2		0.8	3.0	0.9	0.9	2.4	1.8	1.7	1.4	1.2
5月8~9日	1.5	2.0	1.6	1.2	1.6	1.8	5.6	2.3	0.9	1.7	1.7	2.0	1.0	2.4	2.5	1.1	3.1	1.0	1.0	2.2	2.2	1.6	2.0	1.3
5月9~10日	1.0	1.7	2.2	1.4	1.6	2.2	6.7	1.9	0.7	1.7	1.8	2.1	0.7	1.8	2.4	0.6	2.1	0.6	0.6	2.9	2.2	2.4	1.1	1.4
5月10~11日	1.3	3.0	4.5	1.9	3.2	2.8	6.7	3.1	1.3	2.5		3.3	1.4	3.4		1.1	3.9	1.2	1.2	4.3	2.9	4.3	2.1	2.9
5月11~12日	2.5	2.7	1.9	1.4	1.7	2.3	8.3	4.0	1.3	2.7	2.8	3.8	1.2	4.8		1.6	5.3	1.0	1.0		2.5	2.5	1.7	1.6
5月12~13日	4.0	3.2	2.8	1.0	1.9	3.4	8.5	8.2	2.4	4.9	6.3	3.9	1.6	4.5		1.7	6.0	1.0	1.0	3.8	3.2	4.5	1.8	3.0
5月13~14日	1.8	2.3	3.3	1.1	1.5	2.1	6.2	5.8	1.3	3.0		2.1	1.0	3.1		1.3	3.6	1.2	1.2			2.5	3.1	1.9
5月14~15日	1.6	2.1	1.5	1.2	1.3	1.9	8.0	4.3	1.1	2.6		2.1	0.9	2.4		1.1	2.4	0.8	0.8	2.2	2.9	2.4	2.1	1.6
5月15~16日	1.5	2.4	1.9	1.2	1.7	2.2	5.8	4.5	1.3	2.7		2.5	0.8	2.8		1.1	3.2	0.8	0.8	2.4	2.3	1.8	1.7	1.1
5月16~17日	1.0	1.8	2.3	1.1	1.6	2.0	5.2	2.8	0.8	1.8		1.7	8.0	2.3		1.3	2.9	0.8	0.8		1.7	4.1	1.1	1.9
5月17~18日	1.4	2.3	2.3	1.1	1.9	1.9	5.3	2.7	0.8	1.7		2.6	1.0	3.0		1.0	3.9	0.9	0.9	2.8		1.9	1.6	1.4
5月18~19日	1.9	2.3	2.9	1.5	2.3	2.8	7.9	3.6	1.4	2.2	3.1	2.5	1.0	3.2		0.9	4.4	0.9	0.9	3.5	2.6	2.9	1.5	2.0
5月19~20日	0.9	1.5	1.0	0.8	1.1	1.6	4.7	3.2	1.0	2.4		1.9	0.9	1.8		1.0	2.3	0.6	0.6		1.5	1.7	1.3	1.0
5月20~21日	1.3	2.3	3.5	1.3	2.6	2.4	10.7	2.9	1.2	2.4		3.0	1.4	2.8		1.2	3.5	1.3	1.3		2.7	3.7	1.9	2.7
7月22~23日	4.4	3.2	1.6	1.7	2.7	3.6	9.9	8.0	1.4	3.1	6.9	5.3	1.6	6.1		2.1	6.9	1.0	1.0		4.5	2.6	1.5	1.8
7月23~24日	1.5	1.7	1.6	0.7	1.1	1.3	4.5	4.5	0.8	2.2	3.1	1.9	0.7	2.2		1.1	1.7	0.8	0.8	1.4	2.5	3.0	1.8	2.1
7月24~25日	0.7	1.3	1.8	1.1	1.3	1.3	6.2	1.9	0.4	1.5	1.3	1.4	0.6	1.4		0.7	1.7	0.8	0.8	1.7	2.4	2.5	1.5	1.5
7月25~26日	0.8	1.7	1.6	0.8	1.2	1.4	5.8	2.6	0.5	2.0	1.9	1.6	8.0	1.7		8.0	2.3	1.0	1.0	1.9	2.4	3.0	1.6	1.9
7月26~27日	1.4	1.9	1.4	1.1	1.4	1.8	6.6	2.3	0.5	1.6		2.0	8.0	2.3		0.9	2.9	0.9	0.9	1.8	2.1	2.9	1.7	2.0
7月27~28日	1.6	1.8	1.7	1.3	1.4	2.0		3.6	8.0	2.2	2.0	2.2	0.9	2.4		1.0	3.0	1.1	1.1	2.0	_	3.3	1.7	1.8
7月28~29日	1.2	1.6	1.3	1.0	1.3	1.3	6.9	2.2	0.6	1.7		1.8	0.8	1.9		1.4	2.1	0.8	0.8	1.8	1.8	3.2	1.4	2.0
7月29~30日	1.0	1.8	1.9	1.2	1.6	1.9	9.4	2.0	0.6	1.5		1.7	0.7	2.1		1.3	2.8	0.8	0.8	2.1	2.0	1.9	1.5	1.0
7月30~31日 7月31~8月1日	1.1		1.2	1.0	1.3	1.6	5.2 6.9	1.9 2.5	0.5	1.5		1.6 1.9	0.7 0.8	2.3		0.8	2.5	0.9	0.9	1.9	2.2	2.0	1.7	1.4 0.9
8月1~2日	1.3	1.6	1.3	1.2	1.4	1.4 1.4	5.6	3.1	0.8	2.2	1.9	1.9	0.8	2.2		0.9 1.0	3.1 3.2	0.8	0.8	1.8 2.7	2.1 2.6	1.6 1.5	1.4 2.0	0.9
8月2~3日	1.4	2.0	2.1	1.1	1.7	1.4	6.3	3.1	0.9	2.2	2.4	2.3	0.8	2.1	1	1.0	2.6	0.9	0.9	2.7	3.0	1.6	1.6	1.0
8月3~4日	1.4	1.9	1.3	1.1	1.6	1.5	6.4	3.3	0.9	2.1	2.4	2.3	0.8	2.3		1.0	3.2	1.0	1.0		2.8	1.6	1.6	1.0
8月4~5日	1.7	1.9	1.0		1.6	1.5	6.3	3.9	0.9	2.0		2.9	1.0	3.4		1.3	4.0	0.9	0.9		2.6	1.7	1.7	1.5
10月21~22日	1.0	1.5	1.4	0.6	1.0		5.7	2.8	0.9	2.0			0.5	1.5		0.8	2.0	0.8	0.8		2.9	1.2	1.7	0.8
10月22~23日	1.3	2.1	1.7	1.1	1.5	2.2	7.8	3.6	1.1	2.5		2.9	1.0	2.3		1.3	2.7	0.7	0.7	2.5	2.1	1.3	1.3	1.0
10月23~24日	0.9	1.1	0.9	0.6	0.8	1.0	3.6	1.8	0.4	1.8		1.3	0.6	1.3		0.5	1.4	0.5	0.5	1.5		1.0	1.5	1.0
10月24~25日	1.7	1.9	3.0	1.6	2.8	3.8	9.7	5.4	1.8	3.7		3.7	1.9	4.1		1.1	4.5	1.1	1.1	3.3	3.0	4.5	1.6	3.3
10月25~26日	1.4	1.5	4.5	2.4	3.8	4.9	12.1	5.0	1.5	3.5	4.2	4.8	1.5	2.5		1.0	3.5	1.1	1.1	2.6	3.8	4.0	1.5	2.5
10月26~27日	0.9	1.6	1.9	0.7	1.0	1.2	2.7	1.8	0.3	1.5	1.5	1.3	0.6	1.7		0.6	2.3	0.6	0.6	2.8	2.3	0.8	1.5	1.1
10月27~28日	2.6	3.2	1.7	0.7	1.9	2.8	6.8	4.1	1.1	2.4	3.6	3.8	1.3	3.2		1.2	4.9	0.7	0.7	3.7		1.9	1.4	1.4
10月28~29日	1.7	2.1	2.2	0.9	1.4	2.0	5.9	3.9	1.2	2.9		2.5	1.0	2.5		1.3	3.0	1.1	1.1	2.4	2.3	6.0	1.6	3.7
10月29~30日	0.7	1.2	2.3	0.8	1.1	1.2	4.6	2.1	0.5	1.7	1.3	1.4	0.6	1.4	2.5	0.6	1.9	0.7	0.7	1.5	2.1	4.1	1.8	3.0
10月30~31日	1.0	2.5	2.9	0.7	1.2	1.3	4.9	2.5	0.4	1.5	1.4	1.6	1.0	2.0	2.8	0.8	2.3	0.7	0.7	1.9	2.6	3.3	2.3	2.6
10月31~11月1日	0.8	1.9	2.1	0.7	1.0	1.2	4.6	3.6	1.4	2.2	2.0	2.2	0.6	2.0	3.9	1.0	2.4	0.8	0.8	2.1	2.8	3.1	1.5	1.9
11月1~2日	0.8	1.8	2.0	0.7	1.1	1.4	3.5	2.6	0.9	2.1	1.7	1.9	1.0	2.2	3.3	0.6	2.6	0.6	0.6	2.3	2.5	1.6	1.3	1.2
11月2~3日	1.0	1.6	2.4	0.7	1.1	1.5	2.6	3.2	1.2	2.3	2.1	2.3	0.8	1.9	2.9	0.6	2.1	0.8	0.8	1.2	2.0	4.1	1.1	2.6
11月3~4日	0.8	1.7	2.4	1.0	2.0	1.1	4.8	2.1	0.6	1.7	1.5	2.1	1.0	2.3	4.2	0.7	3.2	0.6	0.6	2.0	2.3	1.9	1.3	1.7
1月20~21日	2.1	1.7	-	1.7	2.8	4.9	12.8	5.3	1.8	3.4	5.0	3.1	2.4	2.4	3.8	0.9	4.0	1.0	1.0	1.4	2.9	5.0	2.6	3.2
1月21~22日	1.4	1.2	-	1.4	2.6	3.4	12.7	4.2	1.3	2.4	2.8	2.9	1.3	1.8	3.8	0.9	2.1	0.6	0.6	1.2	2.0	3.9	1.4	3.0
1月22~23日	1.2	1.5	-	1.6	3.0	3.1	12.6	4.0	1.2	2.4	2.3	3.2	1.4	1.8	4.2	1.1	2.1	0.8	0.8	2.0	2.5	3.5	1.9	2.6
1月23~24日	1.4	1.0	-	1.0	1.4	1.8	7.5	2.6	1.1	1.9	1.8	2.0	1.4	1.8	2.7	0.7	2.3	0.7	0.7	1.8	2.3	4.5	2.2	2.8
1月24~25日	3.5	2.5	-	2.0	3.0	5.6	13.4	4.8	1.7	3.5		3.1	2.7	4.4		1.3	5.8	1.2	1.2		4.3	6.0	3.9	3.9
1月25~26日	1.9	1.8	2.9	1.2	2.1	2.8	12.0	2.4	0.8	1.9	2.5	2.5	8.0	2.2		0.4	3.8	1.0	1.0	1.4	2.6	4.0	1.7	2.5
1月26~27日	1.3	1.5	2.2	0.6	1.0	1.2	6.3	1.8	0.4	1.6		1.4	8.0	2.4		0.4	3.7	0.6	0.6	1.0	2.2	2.9	1.9	2.0
1月27~28日	1.7	1.3	3.0	0.8	1.2	1.6	6.6	1.9	0.6	1.6		1.3	0.9	2.8		0.4	3.9	0.6	0.6	1.0	2.5	3.4	1.6	3.2
1月28~29日	1.3	2.0	2.0	0.6	1.0	1.4	4.0	1.7	0.5	1.6		1.2	1.0	2.1		0.5	3.2	0.6	0.6	0.9	2.5	2.5	1.4	2.1
1月29~30日	1.7	1.9	1.3	0.8	1.3	2.1	9.3	5.6	2.5	3.6	3.7	3.5	2.1	3.2		1.4	3.5	0.8	0.8	1.7	1.9	1.4	1.7	1.2
1月30~31日	0.8	1.2	1.9	0.5	0.7	1.0	3.7	3.0	1.6	2.0	1.8	1.7	1.2	1.9		8.0	2.6	0.7	0.7	1.2	2.1	1.7	1.1	1.1
1月31~2月1日	1.3	1.7	2.4	0.7	1.1	1.5	5.9	2.5	0.6	1.8		1.9	1.4	2.3		0.7	3.0	0.7	0.7	2.1	2.3	3.0	1.7	2.0
2月1~2日	0.9	1.4	2.6	0.9	1.7	1.9	7.5	3.4	1.4	2.3		2.0	1.4	1.8		0.9	1.8	0.8	0.8	2.2	1.9	2.2	1.0	1.1
2月2~3日	1.1	1.1	3.6	1.4	2.7	3.0	12.3	3.8	1.0	2.6	2.4	3.4	1.7	2.2	4.6	-	2.4	1.1	1.1	1.8	2.3	4.1	1.5	2.7

表3-1-14 温度(°C)

表3-1-14 温度(	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県 静岡県	静岡市	浜松市
期間	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士 湖西	静岡	浜松
5月7~8日	18.7		19.6	20.0	20.1	19.0		19.5	18.0	18.8		19.8	19.2	20.2		20.8	20.3	$\overline{}$		17.5	19.2		19.7
5月8~9日	18.1	—	20.4	20.8	20.9	21.0	$\sim$	19.8	17.4	18.6	-	21.2	19.3	19.9	-	20.4	19.8			17.4	19.2		19.9
5月9~10日	17.0	-	17.0	18.3	18.1	18.0		18.3	16.8	18.2	-	18.9	17.2	18.1		19.0	18.0	-		13.8	17.9		18.3
5月10~11日 5月11~12日	16.6 17.6	-	14.7 16.8	16.9 17.9	17.0 17.9	18.0 19.0		17.7 17.8	16.4 17.2	17.6 17.5		18.8 19.2	16.5 16.9	17.4 17.9		19.0 18.6	17.4 17.4	-		10.4 19.1	18.3		20.4 17.8
5月11~12日	20.4	-	18.4	17.9	19.8	20.0		21.6	17.2	20.0	-	20.9	18.9	20.2		21.1	17.4	-		17.2	19.0		18.7
5月12~13日	20.4	-	21.6	21.6	22.5	22.0		22.4	20.2	20.0	-	20.9	21.3	21.9		23.3	22.7	-		19.6	20.1		20.8
5月14~15日	22.2	_	23.0	23.9	23.9	23.0		22.7	20.6	20.5		22.8	22.5	23.5		23.3	23.9	$\overline{}$		19.1	20.4		21.8
5月15~16日	20.0	$\overline{}$	21.7	22.3	22.4	22.0		22.9	20.6	20.9	$\overline{}$	22.7	21.8	22.6		22.5	22.4	$\overline{}$		21.6	20.3		22.1
5月16~17日	19.2	$\overline{}$	21.0	21.3	21.3	21.0		20.0	18.5	20.1		21.3	20.3	20.8		21.2	21.0			16.5	19.7		20.3
5月17~18日	21.6		20.3	22.7	22.3	23.0		21.2	19.6	20.7		23.0	20.5	21.2		22.0	21.1			16.9	20.6		20.6
5月18~19日	20.8	_	19.6	21.2	21.1	21.0		21.5	20.7	20.6		21.1	19.4	20.0		20.8	19.5			18.9	20.1		19.7
5月19~20日	18.7	_	19.6	21.0	21.0	21.0		21.7	19.6	19.9	/	21.1	20.0	20.9		21.9	20.8			18.0	20.2		20.8
5月20~21日	18.7	_	19.9	20.8	21.2	21.0		20.4	18.2	19.9		21.4	19.8	20.6		21.2	20.5	_		17.1	20.2		20.2
7月22~23日	28.0	_	29.1	30.1	29.9	30.0		28.0	26.3	26.3	-	29.0	27.4	28.0	$\overline{}$	28.1	27.8	$\sim$		27.3	25.5		25.8
7月23~24日	27.2	_	27.1	28.9	28.8	29.0		27.1	25.3	25.4		28.4	26.6	27.1		27.6	27.5	-		24.1	25.7		26.5
7月24~25日	26.4	_	27.8	28.9	28.9	28.0		27.9	26.6	26.6	-	29.0	27.1	27.9		28.8	28.3	-		26.0	27.1		27.6
7月25~26日 7月26~27日	29.5 29.4	-	29.4 31.0	31.3 31.2	31.6 31.4	31.0 30.0		29.0 29.2	27.0 26.6	26.9 27.6		30.1 31.1	29.1 29.4	30.0 30.1		29.9 31.0	30.2 30.2	-		27.0 27.8	26.8		27.8 28.0
7月26~27日 7月27~28日	27.5	-	29.6	30.7	30.0	30.0	$\overline{}$	29.2	27.4	27.6	-	30.1	29.4	30.1		30.5	30.2	-		27.8	27.5		28.0
7月28~29日	27.4	-	28.1	29.3	29.4	30.0		28.4	26.7	28.7		29.9	29.0	30.3		30.5	30.8	$\overline{}$		26.1	29.0		31.3
7月29~30日	27.4	-	28.3	29.1	29.1	29.0		28.8	27.3	28.2	$\overline{}$	29.7	28.0	28.7		30.0	28.6	$\overline{}$		26.9	28.2		29.1
7月30~31日	27.8	-	28.3	29.0	29.0	29.0		29.0	26.7	27.5	$\overline{}$	30.1	27.4	28.9		29.9	28.7	-		27.7	28.4		30.3
7月31~8月1日	30.2	$\overline{}$	30.1	31.4	31.4	31.0		29.4	28.2	28.6		31.1	28.9	29.9		30.4	29.5			28.9	29.0		29.4
8月1~2日	30.5	$\overline{}$	29.6	31.6	31.4	31.0		30.1	28.5	29.1		31.0	28.7	29.8		30.5	29.5			28.5	28.7		29.5
8月2~3日	29.2		26.6	28.8	29.0	30.0		30.1	28.2	28.8		30.4	29.0	30.2		30.0	30.2			27.7	28.5		29.2
8月3~4日	29.9	$\overline{}$	29.3	30.6	30.5	30.0		29.8	28.1	28.8	$\setminus$	30.5	28.9	30.0		30.1	29.7			26.0	28.4		29.4
8月4~5日	30.2	_	29.1	30.6	30.8	31.0		29.7	27.9	28.6		30.8	28.7	29.5		30.2	29.0	_		28.5	28.5		29.4
10月21~22日	15.3	_	14.5	15.4	15.7	16.0		17.1	15.4	16.8	-	16.8	14.7	15.8	$\overline{}$	17.7	16.2	$\sim$		15.9	17.8		19.8
10月22~23日	16.4	-	16.7	17.4	17.3	18.0		18.1	16.7	18.4	-	17.7	17.0	18.1		18.7	18.3	-		14.2	19.4		20.2
10月23~24日	17.0	_	15.3	17.4	17.7	18.0 19.0		17.1	16.7	17.4		17.9	16.5	17.4		18.7 19.4	17.5 18.7	$\overline{}$		14.8	18.9		19.2
10月24~25日	17.7 12.8	-	16.5 12.5	18.0 13.4	18.3 14.2	14.0		19.7 16.0	17.9 13.5	19.3 16.2		19.1 15.3	17.3 12.4	18.6 13.4		15.7	14.0	-		14.7 8.4	18.7		19.6 15.9
10月25~26日	14.0	-	13.3	13.4	14.7	15.0		15.7	13.5	15.7	-	15.8	13.7	15.1		17.0	15.2	-		11.9	16.4		17.2
10月27~28日	20.0	$\overline{}$	16.9	18.4	18.9	20.0		20.6	20.5	20.2	$\overline{}$	20.6	18.9	20.0		20.9	19.8	$\overline{}$		18.7	19.3		20.3
10月28~29日	18.1	-	17.4	19.3	19.3	20.0		19.8	19.4	20.0		19.7	18.5	19.6		20.5	19.6	$\overline{}$		12.9	20.4		18.3
10月29~30日	15.5	$\overline{}$	14.7	15.9	16.3	16.0		16.9	14.5	15.9	$\overline{}$	17.1	15.3	16.4		18.0	16.2	$\overline{}$		11.1	16.8		17.7
10月30~31日	15.7		14.0	15.4	16.1	16.0		16.5	14.4	15.7		16.7	15.2	16.1	_	17.5	16.1			10.0	16.0	_	16.3
10月31~11月1日	11.3	$\overline{}$	10.4	11.0	11.7	13.0		13.6	12.7	13.4		12.9	11.4	12.1		13.9	12.5			7.0	13.2		13.3
11月1~2日	12.8	_	11.7	12.4	12.7	13.0		14.2	13.0	13.9		13.7	11.8	13.1		14.4	13.3	_		10.8	14.3		15.3
11月2~3日	13.0	_	11.9	12.3	12.6	13.0		14.6	13.7	14.9		13.7	12.8	14.0		14.8	14.1	$\overline{}$		9.8	14.0		14.5
11月3~4日	13.2	_	12.3	13.4	13.9	15.0		15.1	12.7	14.9		15.3	13.3	14.7		16.6	15.0			9.2	15.6		16.6
1月20~21日	2.7	-	0.0		2.8			7.1	4.3	5.8	-	4.2	2.9	4.0		5.7	4.0	$\sim$		0.0	4.7		3.7
1月21~22日 1月22~23日	4.1	-	2.1	4.1	4.5 3.6			6.8 5.9	5.6	7.3	-	5.8 5.2	3.8	4.7		6.4	4.6	-		0.0	6.2		5.4 5.9
1月22~23日	3.5 2.1	-	1.5 0.7	3.5 2.3	2.5	5.0 3.0		4.5	4.2 4.4	6.1 5.1	-	3.3	3.4 2.4	4.1 3.4		5.7 4.3	4.3 3.2	-		0.0	6.3		3.9
1月23~24日	1.4	-	0.7	1.2	1.5	2.0		4.0	1.4	2.6	$\overline{}$	2.5	0.6	1.6	_	2.4	1.5	-		0.0	0.8		0.0
1月25~26日	1.4	_	0.0	1.6	1.9	2.0		2.8	0.0	1.6	$\overline{}$	3.2	1.3	2.9		4.0	3.0	$\overline{}$		0.0	2.4		2.5
1月26~27日	3.0	_	2.3	2.4	3.1	4.0		3.3	1.1	3.0		4.2	2.7	4.3		5.0	4.4	$\overline{}$		0.0	3.7		5.1
1月27~28日	6.0	$\overline{}$	5.1	5.8	6.2	7.0		5.9	3.8	4.8		6.9	4.9	6.8		7.7	6.3	$\overline{}$		0.2	5.6		7.6
1月28~29日	7.7	$\overline{}$	7.0	7.4	8.2	8.0		7.3	5.7	7.1		8.2	6.7	8.2		9.0	8.2	$\overline{}$		3.1	7.9		9.6
1月29~30日	2.5	_	1.9	2.5	2.8	3.0		4.1	4.0	4.6		3.3	2.6	3.4		4.1	3.5			0.6	5.4		8.4
1月30~31日	3.4	$\overline{}$	3.0	2.8	3.4			4.7	3.5	4.9		4.1	3.1	3.9		5.0	3.9	$\overline{}$		0.1	5.6		6.4
1月31~2月1日	5.4		4.9	4.7	5.6	6.0		6.2	4.2	6.5		6.3	4.9	5.9		7.2	5.8			1.9	6.7		8.1
2月1~2日	2.8 3.7	_	3.1 2.7	3.6 3.6	4.3	4.0 5.0		4.7 6.0	4.0 3.6	4.9 6.4		4.7 5.8	3.5 4.3	4.0 5.1		5.6	3.9 5.2			0.0	5.6		6.2
2月2~3日																							

表3-1-15 湿度(%)

表3-1-15 湿度期間	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
5月7~8日	69.5	_	51.7		53.7	63.5		76.3	81.1	76.9		66.4	59.8	59.2		66.8	61.6			64.9	75.2			68.5
5月8~9日	85.6	_	50.7		60.7	67.6	$\overline{}$	75.7	83.8	75.5		65.6	65.9	65.7		67.3	70.1			64.6	75.3	-		70.6
5月9~10日 5月10~11日	76.2	-	72.0	69.3	72.8	71.9	-	86.9 51.8	83.8	78.3		71.3 32.1	79.4 37.0	74.9 40.1		73.8	80.7 43.5			79.7	80.7 51.6	-		74.6 40.4
5月10~11日	45.4 59.9	-	38.1 38.9		34.1 41.6	34.5 45.3	$\overline{}$	61.3	55.9 60.8	48.5 59.6		47.1	50.4	50.7		37.1 53.8	53.1			66.7 35.5	57.4	-		57.2
5月12~13日	85.6	$\overline{}$	68.2		70.3	76.5	$\overline{}$	76.8	86.8	79.8		77.1	83.0	77.1		75.1	83.3			74.5	84.5	$\overline{}$		77.3
5月13~14日	63.8	$\overline{}$	39.3		43.5	54.1	$\overline{}$	53.5	58.5	63.2		48.3	44.8	45.7		44.7	39.3			44.8	58.0	$\overline{}$		57.1
5月14~15日	55.5		44.1	50.4	48.9	56.6		56.0	61.8	65.3		54.6	50.7	47.4		49.5	47.7			55.3	69.5			62.9
5月15~16日	85.3		68.0	70.2	72.0	76.9		81.6	88.8	85.3		75.3	75.0	73.1		78.0	75.7			70.7	90.0	$\overline{}$		84.3
5月16~17日	83.8		62.6		71.1	77.5		90.6	93.5	85.6		74.9	77.0	76.5		78.3	80.6			78.5	90.4	/		68.0
5月17~18日	67.9	_	32.5		45.9	52.3		76.8	80.0	74.7		55.6	64.1	65.1		68.0	66.8			43.4	71.5	-		68.4
5月18~19日	80.8	-	77.0		72.3	77.5		84.1	90.3	82.3		76.3	81.0	79.9		79.0	84.1			70.8	76.6	-		81.6
5月19~20日 5月20~21日	89.7 78.1	-	82.6 56.6		80.2 59.6	83.0 71.3	$\overline{}$	88.5 82.0	96.2 89.5	89.9 77.2		79.8 66.0	82.2 68.8	80.0 68.7		80.1 66.5	85.4 73.6			79.2 63.9	93.3 79.0	$\overline{}$		84.1 64.6
7月22~23日	80.0		71.9		67.7	71.3		79.5	85.8	85.5		66.4	75.1	72.1		72.8	75.3			71.1	92.8			83.6
7月23~24日	83.0	-	85.7		78.0	81.1	$\overline{}$	84.6	86.1	87.1		73.2	84.9	77.9		76.8	82.0			94.8	87.3	-		75.8
7月24~25日	88.6	$\overline{}$	83.0		76.8	84.9	$\overline{}$	86.0	84.4	84.0		75.7	87.3	80.2		76.5	81.8			78.8	82.4	$\overline{}$		77.0
7月25~26日	79.9	$\overline{}$	65.5		65.5	75.4		80.7	81.7	82.6		71.4	73.2	68.0		72.3	71.0			71.5	82.8			75.4
7月26~27日	68.7		69.3	62.9	64.1	70.1		79.7	83.7	81.7		65.3	70.7	67.0		67.0	70.6			69.5	77.6			72.8
7月27~28日	86.7	_	73.5		73.4	77.1		79.5	85.3	83.7		70.2	73.8	68.7		69.8	71.3			73.8	83.9			75.1
7月28~29日	80.9	_	83.0		73.5	73.8		84.3	87.3	77.2		68.6	73.0	67.6	_	66.7	71.4			78.5	73.9	-		60.5
7月29~30日	83.0	_	81.6		74.9	77.3		80.8	81.9	81.2		68.5	79.4	75.3		70.5	80.2			79.1	79.7	-		70.4
7月30~31日	82.7	-	82.9		77.3	82.4	$\overline{}$	81.5	83.8	82.5		68.4	83.1	73.7		71.8	79.2			75.1	79.3	-		69.8
7月31~8月1日 8月1~2日	75.7 80.0	-	75.2 73.5		69.3 64.0	72.6 70.9	$\overline{}$	84.3 83.0	87.2 86.6	82.0 82.5		69.2 71.6	79.3 70.7	74.9 64.0		74.4 72.1	78.8 68.0			72.6 66.5	78.7 81.1	-		73.0 73.8
8月2~3日	74.1	-	76.6		66.8	69.0	$\overline{}$	80.0	86.3	81.1		63.4	70.7	70.1		76.3	69.1			67.0	81.5	-		74.1
8月3~4日	75.3	_	71.2		69.4	72.5		79.6	85.4	78.8		68.5	76.1	69.6		72.5	74.9			78.3	82.2			74.9
8月4~5日	74.9	$\overline{}$	75.9	67.7	69.2	72.2		79.8	86.3	80.2		65.4	75.0	69.5		70.1	74.2			64.2	76.9			70.5
10月21~22日	79.1		84.5		74.1	75.2		80.9	84.3	-		70.3	78.8	74.0	_	68.5	79.1			74.3	74.1	$\overline{}$		64.4
10月22~23日	78.9	_	77.1		70.8	72.5		82.5	83.6	-		69.6	72.4	68.0		68.4	72.7			75.0	71.1	/		68.2
10月23~24日	81.7	_	79.7		69.5	72.8	$\overline{}$	88.5	88.3	-		73.4	76.6	72.2		73.8	77.8			76.5	71.2	-		69.3
10月24~25日	66.3	-	55.1	53.2	53.6	53.1	$\overline{}$	66.9	67.7	-		53.7	60.1	55.6		54.0	60.5			65.5	66.8	-		51.1
10月25~26日 10月26~27日	48.6 69.6	-	42.3 55.7		38.1 54.0	39.8 55.9	$\overline{}$	42.3 72.1	45.8 78.0	-		34.1 56.6	44.3 66.3	42.6 61.0		30.9 57.4	45.9 65.7			64.7 65.5	45.0 69.9	-		33.7 62.8
10月20~27日	79.2	-	61.6		64.0	66.6	$\overline{}$	82.2	85.5	_		68.7	74.3	70.8		73.2	75.2			57.3	74.6			65.2
10月28~29日	76.0	_	61.3		63.0	65.2	$\overline{}$	74.1	76.5	-		63.2	69.0	64.6		63.1	68.9			75.4	67.4			46.5
10月29~30日	86.3	$\overline{}$	66.0		67.8	73.5	$\overline{}$	82.8	86.0	-		67.9	77.9	71.7		65.6	78.9			74.6	76.1	$\overline{}$		46.0
10月30~31日	69.9		51.2	60.6	53.3	59.1		75.1	86.1	-		57.1	57.9	56.0		56.5	63.6			73.8	56.3			43.9
10月31~11月1日	73.8		65.4		66.6	67.8		72.1	74.7	-		63.7	72.6	69.3		59.7	74.8			75.9	65.3			46.6
11月1~2日	78.4		66.1	67.8	63.7	68.5		77.7	82.6	-		65.1	67.8	62.7	_	63.0	67.9			67.8	65.7	_		59.9
11月2~3日	98.2	-	90.2		90.2	96.3		95.3	94.8	-		90.4	95.5	89.4		85.8	94.6			98.1	90.5			72.1
11月3~4日	81.5		61.4	+ +	58.6	65.5		79.6	85.1	- 40.6		58.0	65.4	60.5		48.1	66.6			80.4	71.5			58.4
1月20~21日 1月21~22日	61.1 53.9	$\leftarrow$	77.6 59.8		55.3 45.6	54.9 46.3	$\leftarrow$	50.1 46.7	45.3 42.4	42.6 35.3		48.2 39.4	46.6 48.2	41.7		37.4 33.6	49.9 54.7			90.2 80.2	40.8 46.4			55.6 42.1
1月22~23日	49.1	-	54.3		43.0	43.0	$\overline{}$	45.2	42.4	36.8		36.9	43.0	44.7		32.5	51.5			73.4	45.2	-		36.3
1月23~24日	86.4	-	67.7		63.0	69.5		80.4	71.0	65.1		67.3	64.4	61.2		61.5	67.6			74.0	70.2			54.7
1月24~25日	31.5	$\overline{}$	50.9		28.2	29.0	$\overline{}$	33.7	37.6	29.0		25.5	24.4	22.2		21.3	27.7			70.3	26.7			32.6
1月25~26日	50.1	=	56.5		41.0	44.8		50.0	57.3	49.3		36.6	41.3	34.8		33.9	41.7			69.0	39.3			49.7
1月26~27日	60.5	$\overline{}$	54.6		49.1	52.5	$\overline{}$	71.3	71.2	62.4		52.7	57.8	47.9		50.0	55.7			68.5	52.1	$\overline{}$		45.0
1月27~28日	57.1		56.9		47.4	48.3		70.4	68.1	65.6		48.9	52.0	43.7		47.4	51.5			73.9	48.2			47.2
1月28~29日	61.7		61.1		48.5	50.8		70.9	77.8	61.4		49.5	52.8	48.4		50.3	54.5			74.8	64.3			52.1
1月29~30日	98.8	_	99.5	+	86.3	89.7	$\overline{}$	98.0	95.5	88.6		88.0	91.2	90.8	_	88.0	95.8			94.4	99.3			83.2
1月30~31日	81.8	-	86.4		78.8	81.0		88.3	86.9	72.8		76.4	82.8	79.6		71.7	89.9			84.0	88.9			72.0
1月31~2月1日 2月1~2日	69.8 86.7	-	61.1 55.6	74.1 67.7	61.8 59.3	65.8 67.5		80.0 81.3	81.5 77.9	68.3 67.7		63.1 62.9	67.3 64.7	64.8		62.3 64.9	74.6 78.8			75.5 73.4	81.9 74.7	-		50.6 58.4
2月1~2日 2月2~3日	51.6	$\leftarrow$	55.4		43.9	45.8	$\overline{}$	51.9	54.0	39.6		39.2	41.3	40.8		- 04.9	49.6			76.3	68.1			38.7
₹₩₹. <u>₹</u> 9Ħ	01.0	_	33.4	40.9	40.9	40.0		51.9	34.0	39.0		35.2	41.3	40.0			43.0			/0.3	00.1			30.7

## 3.2 調査期間中のオキシダント1時間値(単位: ppb) 東京都綾瀬渡店局はオキシダントの自動測定を実施していない。斜線は未実施、-は欠測(校正中、調整中等)を示す。

1	表3-2-		日~5月		ハイン	ブントロ	) H 30//	ルで大	nec Cu		WTHK LO	小大肥	. 14.	測(校1	_ T . D	13E T 4	/ Z/N 9									
A		地点名	茨城県	栃木県											東京都名庫											
14. 14. 14. 14. 14. 14. 14. 14. 14. 14.		1時	37	39	-	30	-	-	45	47	28	50	-		0	34	49	46	36	51	34	40	1	-	-	-
14   16   16   16   16   16   16   16		3時	34	28	27	22	28	19	38	42	44	46	36	=	32	33	54	51	25	47	33	35	41	21		19
14 1								14						=					26 17					23 19	9	19 19
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							11	1						$\sim$		18									9	25
A PART		8時	21	16	30	20	13		19	34	39	48	31		16	9	33	26	25	34	31	33	26	37	24	28
94 19 19 19 19 19 19 19 19 19 19 19 19 19																			- 20							37 36
Martin																			-							40
14   15   16   16   16   16   16   16   16	5月7日	13時	47	61	71	79	46	36	30	52	55	65	62	$\leq$	0	53	35	56		62	61	68	43	67	58	62
Mart														$\leftarrow$												66 68
Marchand														$\leq$												69
A																										52
1841 14														-												47 47
18		21時		52	45	35	25	37		29	43	39	35		47	31	47	47		50	25	52			25	46
54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54140  54		23時	28	46	37	33	21	13	48	34	42	39	43		38	27	48	41	33	43	35	47	48		13	37
1841 PA - 184			- 36 -											$\leftarrow$									- 48	- 52 -	- 11	40 51
54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54104  54					39	32			12	38	-	39	15		26	10	34	-		47	34				8	51
18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18410  18													8										8		4	18
18410  1869  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879  1879						13	15			18				-									10	21	<u>5</u>	20 18
1416   18		7時	29	35	48			14	16		20	33	11	$\leq$	21	17	16	13	24	22	31	36		16		22
A																										40 51
9.848   1.6														=		54 -										53 56
18 16 16 16 16 16 16 16 16 17 16 16 17 16 16 17 17 18 16 17 17 18 16 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	5月8日	12時	62	77	82	92	80	73	73	55	65	59	67		87		51	72	86	72	69	67	53	70	66	60
## PAID    Mail		14時	66	80	87	95	85	-	80	73	65	73	84		88	67	69	82	78	70	80	67	64	80	76	72 74
## 18							87																			78 77
## PATH 1		17時	75	76	98	96		77	88	50	67	63	73	$\leq$	88	66	71	75	83	74	84	72	58	81	71	74
## PARISH   May   17   17   18   May   18														-												67
Fig.   14   13   15   15   15   15   15   15   15																										62 56
5   18   18   18   18   18   18   18   1		22時	44	53	67	50	62	26	62	60	55	60	51	=	53	45	47	39	49	63	44	61	54	54	24	56
18   18   18   18   18   18   18   18																										52 38
18										51													- 50	- 40	- 7	33
18		3時	25	33	39	32	25	22	37		45	49	41	$\leq$	33	25	52	45	37	52	40	32	49	37	6	24
18									16 5				**********	-									**********		8 4	23 21
98 18 20 29 30 29 20 26 24 24 14 30 30 22 30 40 20 27 37 34 38 31 10 31 13 2 2 2 30 30 30 20 27 37 34 38 31 10 31 13 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			14	28		23	18	13		33	26		28		26	23	45	42		36		34		16	4	21
98 98 98 98 98 99 99 99 99 99 99 99 99 9														$\leq$											13	23
18														-												24 38
97910   1309   60   54   61   62   64   63   72   64   65   72   73   73   74   75   75   75   75   75   75   75		11時	34	47	43	49	34	22	22	41	53	48	31		36	40	34	18	42	43	55	50	30	48	48	40
18	5月9日													=												43 50
Fig.   188																										50 43
Fig.		16時	58	68	66	69	58	53	34	44	54	59	55		63	52	50	51	60	54	56	54	54	53	58	46
2019 62 51 50 66 35 50 44 50 50 23 60 60 33 24 60 60 33 24 60 60 33 24 60 60 33 24 60 60 33 24 60 60 33 24 60 60 33 24 60 60 57 44 60 50 50 50 57 44 30 30 3 3 22 60 60 60 32 24 60 60 50 32 24 60 60 60 50 24 24 60 50 50 50 44 60 50 50 50 50 44 60 50 50 50 50 44 60 50 50 50 50 44 60 50 50 50 50 40 60 60 60 60 50 50 40 60 60 60 60 50 50 40 60 60 60 60 60 60 60 60 60 60 60 60 60																										44 45
Fig.														/												43
Part		21時	61	46	53	58	47	49	51	32	61	60	32		39	41	50	38	42	47	44	46	56	34	29	36
Part														/												27
28			52	53	39	37	30	53		47	45	61	33	=			56				23	25			14	19
유부 40 40 35 31 37 22 33 31 34 44 19 44 22 52 22 30 41 41 42 32 22 25 25 21 15 42 33 4 4 4 50 4 52 52 54 54 54 54 54 54 54 54 57 54 54 54 54 54 54 54 54 54 54 54 54 54		2時	44	37	35	40	24	35	35	49	19	56	38		40	40	44	44	41	25	26	24			5	24
SHIP   18														-											3	18 28
19th   29		5時	34	32			19	27				38	19		21	23		37		21		18	19		4	37 42
8 PA 10		7時	29	25	45	46	29	33	24	37	33	38	30		24	28	33	39	27	25	29	31	20	60		48
SAID   18		9時			57	65	57	55	61				62		47	45	56	55		46		53				54 56
5위비원 12분을 54 62 55 63 56 61 67 407 68  68 65 74 4 62 66 61 0 63 53 54 60 62 78 79 79 68 6 8 68 78 78 79 79 68 8 78 78 79 79 70 74 64 64 63 55 22 67 70 70 68 65 78 78 79 79 70 74 64 64 63 55 22 67 70 70 74 64 64 75 70 70 74 64 64 63 55 22 67 70 70 70 74 64 64 75 70 70 74 64 64 63 55 22 62 70 70 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 70 74 64 75 70 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 74 74 74 74 74 74 74 74 74 74 74 74								************																	***************************************	55 56
1398   53   64   62   54   62   56   54   62   56   54   54   54   54   54   54   54	5月10日	12時	54	62	55	63	56	55	61	67	69	70	65		66	65	74	62	66	61	63	53	54	65	62	56
Simple   S		14時	53	61	54	62	54	54	59	77	71	97	66	$\leq$	64	63	76	83	70	65	63	51	66	68	66	57 63
178					53	62				80	74							90								64 62
1987   53   50   49   55   49   51   53   59   63   68   56   56   50   46   51   52   50   58   61   45   53   56   45   45   46   49   49   54   46   49   50   50   55   55   55   55   55   5		17時	57	55	52	61	53	53	56	73	76	72	70		56	72	75	79	78	61	63	47	69	62	74	58
Section   Property   Section   Sec		19時	53	50	49	55		51	53	59	63	68	56		50	46	51	52	50	58	61			57	54	54 51
2289   43   43   45   46   52   46   46   48   47   49   52   53   41   7   44   49   48   48   48   44   43   45   55   54   33   44   24   48   48   48   48   48   48		20時	50	49	49	54	46	49	50	55	59	61	53		50	45	52	51	49	52	56	45	53	56	45	49 48
248		22時	43	48	49	54	46	48	47	49	52	53	41		47	44	49	48	48	48	44	43	45	54	33	47
189   37   44   48   -	L		43			52 51	46	45	48 46	46 38	48	49	32 24				48	48 46				43	42 38	53 52	43 45	46 43
5月 15 2 18 4 2 27 43 36 42 27 43 36 43 42 27 44 38 6 47 45 39 41 38 25 18 45 27 22 34 58 58 58 58 58 58 58 58 58 58 58 58 58			37	44	48	-	45	35	46	40	45	39	24	=	44	40	46	46	40	44	30	33	-	-	-	39
## 34 4 1 48 22 38 27 42 27 40 42 22 6 40 39 44 47 34 37 40 - 17 47 22 3 8 5 5 6 4 5 6 6 6 6 4 6 8 7 3 4 2 5 6 4 6 8 6 7 3 6 8 6 7 3 7 8 6 8 6 7 3 6 8 6 8 7 3 6 8 6 8 7 3 6 8 6 8 7 3 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6		3時	36	45	47	34	42	27	43	36	43	42	27	<u> </u>	44	38	47	45	39	41	38		18	45	27	35 36
5月1日 등 15 30 42 20 28 112 35 31 37 41 14 20 34 44 39 18 30 18 30 44 22 18 18 15 17 12 12 2 38 31 37 41 14 20 34 44 39 38 18 30 14 24 35 42 25 21 31 21 22 12 38 38 37 45 41 34 34 34 34 34 34 34 34 34 34 34 34 34											40 37	42	26 20									-				35 19
SPR   34   34   34   45   37   41   29   37   34   46   38   38   38   40   34   41   38   29   38   43   28   29   39   34   40   34   38   38   34   40   36   33   42   40   46   48   33   33   40   40   40   48   38   33   40   40   40   48   48   40   40   44   46   40   46   48   48   48   48   48   48   48		6時	15	30	42	20	28	12	35	31	37	41	14	=	20	34	44	39	18	30	44	22	18	18	15	14
SH   10		8時	34	34	45	37	41	29	37	34	44	39	38		40	34	41	39	29	36	43	28	26	39	34	25 28
1    1			40	44	47	45	43		41	34	49	40	44		46	40	36	33	42	40	48	38	31	40	40	38 39
138P   55   63   64   68   62   62   61   56   60   52   63   58   41   - 54   54   60   58   61   51   65   64   65     148P   56   65   67   73   65   66   55   64   60   60   66   55   64   60   58   64   60   65     158P   58   68   77   77   65   66   50   58   62   56   64   60   58   58   64   60   65     168P   63   66   72   78   63   74   65   66   50   58   62   58   64   62   58   58   64   61   63   63   63   57   64   63   64     172P   61   74   70   72   65   74   59   51   59   58   58   58   58   58   58   58		11時	52	54	54	55	53	48	52	41	59	39	54		51	39		28	51	52	55	51	39	51	51	49
448F   56   65   67   73   65   66   56   64   60   60   66   65   47   52   57   55   62   61   61   56   65   66   66   66   65   58   58	5月11日								55 61																	54 59
168FB   63   66   73   72   63   71   60   56   60   57   61   62   50   57   64   61   65   64   63   50   66   62   55   178FB   61   74   70   72   65   74   59   51   59   58   58   58   58   58   58   58		14時	56	65	67	73	65	66	56	64	60	60	66	=	55	47		57	55	62	61	61	56	65	66	62 60
18時 57 71 62 69 61 64 60 57 58 62 58 57 49 50 56 62 63 54 59 59 5 19		16時	63	66	73	78	63	71	60	56	60	57	61	=	62	50	57	64	61	65	64	63	50	66	62	59
1987   54   68   59   63   56   56   56   56   56   57   54   47   50   51   56   63   58   63   54   58   54   55     2087   49   65   50   58   55   49   52   52   53   56   54   55   46   50   53   56   56   60   65   51   55   41   42     2187   45   53   46   55   53   50   53   50   53   49   53   54   52   52   52   47   49   52   52   57   54   64   52   53   32   44     2287   45   44   47   55   50   47   52   48   53   55   50   53   45   59   50   50   51   56   50   60   68   52   26   48     2288   42   42   39   52   46   48   51   49   54   53   48   51   48   50   49   52   53   45   59   60   64   52   23     2288   42   42   39   52   46   48   51   49   54   53   48   51   48   50   49   52   53   45   59   60   64   52   23     2288   42   42   43   53   46   48   51   49   54   53   48   51   48   50   49   52   53   45   59   60   64   52   23     2288   42   42   43   53   46   48   50   49   54   53   48   50   49   52   53   45   59   60   60   65   50   50   50   50   50				74 71	70 62		65								58 57	48 49	55 50							63 59	62 59	55 52
21時         45         53         48         55         50         50         53         48         53         54         52         52         47         49         52         52         57         54         64         52         53         32         44         47         55         50         47         52         48         53         56         50         53         45         50         50         50         60         48         52         26         44         47         53         60         48         52         28         48         51         48         51         48         50         48         52         53         45         59         40         47         23         3           2288         42         42         239         52         46         48         51         48         51         48         50         48         52         53         45         59         40         47         23         3		19時	54	68	59	63	56	56	58	56	56	59	57	=	54	47	50	51	56	63	58	63	54	58	54	51
23時 42 42 39 52 46 48 51 49 54 53 48 51 48 50 49 52 53 45 59 40 47 23 3		21時	45	53	46	55	53	50	53	49	53	54	52		52	47	49	52	52	57	54	64	52	53	32	49 45
																										40 35
																										32

表3-2-2 月日	2 5月 1 地点名 時刻 1時 2時	芝城県 土浦 41 40	月16日 栃木県 真岡 41 43	群馬県 前橋 32	館林	埼玉県 鴻巣 34	幸手 45		千葉県 市原 50	千葉県 勝浦 55	千葉県 富津 53	千葉市 千葉 47 49	東京都 綾瀬	東京都 多摩 53 50	神奈川県 大和 40 31	横浜市 横浜 50 47	川崎市 川崎 50 49	相模原市 相模原 50 44	山梨県 甲府 - 48	山梨県 吉田 - 41	長野県 長野 54		静岡県 湖西 - 55	静岡市 静岡 - 18	浜松市 浜松 32
	3時 4時	40 38	33 26	27 30	27	20 18	42	35 30	46 41	54 55	- 54 52	50 50		44 33	39 34	47 52	50 49	43 29	47 46	46 53	48 44	39 36	53 46	15 14	27 26
	5時 6時 7時	36 40 38	- 23 28	24 29 28	25	17 18 22	17	33	40 40 49	55 55 54	48 45 49	49 46 51		28 21	34 34 33	51 46 45	48 46 44	22 23 33	41 40 41	48 43 40	43	34	47 47 43	8 11 18	27 28 30
	8時 9時	44 47	41 44	39 48	40	26 36	32	35 36	48 51	53 53	52 49	52 54		38 45	39 38	48 48	44 48	44	41 43	48 52	51 54	36	48	21 30	34 43
	10時 11時 12時	48 49 51	44 47 54	55 63 61	55	40 43	40	48	45 46 48	54 53 53	41 54 53	54 56 55		45 47 49	36 38 41	48 48 48	46 46		52 56 61	49 52 56	56 58 58	36	54	47 50 54	46 50 51
5月12日	13時	50 48	63 55	65 67	61	51 52	55	51 47	49 44	52 51	52 52	54 53		49 48	41 40	47 47	44	48 46	62 61	58 60	56 57	41 39	53 50	58 55	48 45
	15時 16時 17時	47 45 43	53 46 40	62 55 49	53	48 43 35	4	45	47 45 45	49 50 49	51 51 51	53 52 50	$\leq$	48 47 48	34 36 37	44 45 44	39 42 39		58 54 53	64 67 61		38	47 50 48	49 42 31	42
	18時 19時	44 45	43 43	46 42	26	34 45	48	46 43	46 45	46 47	51 49	50 48		44 44	39 35	42 42	36 33	46 39	51 43	57 49	52 51	33 31	48 47	37 33	43 42
	20時 21時 22時	42 42 38	41 41 42	42 36 32	40	44 37 35	36	34	46 45 42	46 47 45	48 45 42	47 46 41		39 40 37	35 36 35	41 41 41	35 32 32	31 32 29	38 36 36	43 40 38	52 51 48	27	44 41 33	33 33 32	41 38 23
	23時	37 35	39 35	31	32	32 29	30	29	42 36	45 45 41	40 36	41		34 31	34 26	39 31	32 33	25 24	39 38	38	41	23		27 13	29
	1時 2時 3時	28 25 25	31 26 26	33 36 49	28	29 31 29	30	27	29 27 31	35 29 31	31 30 37	- 30 33		0 28 20	22 26 27	27 27 36		19 26 31	31 30 31	38 43 49	57	30	- 56 56	- 23 28	40
	4時 5時	26 20	18 30	55 55	34	32 30	3	27	38 40	39 46	43 50	39 43		16 11	30 26	41 49	34 41	28	27	42 44	57	35	52 53	35 34	4:
	6時 7時	16 17	36 37	57 57	22	34 42	30	37	44 43	51 51	53 50	46 42		10 9	12 21	49 48	39 37	17	21 26	47 53	54	21	53 53	42 47	3:
	8時 9時 10時	27 46 45	48 51 55	56 56	58	47 50 54	34	50	43 35 42	50 52 54	52 53 56	42 46 46		21 37 48	28 31 33	48 49 51	40 43 42	25 33 38	30 34 55	56 65 71	54 56 59	46	53 59 68	51 59 64	40 48 60
5月13日	11時	53 54	61 66	- 63		59 65	65	60		59 65	59 64	53 64		55 64	- 49	57 62	- 56	49 59	64 68		66	62		65 67	69 71
	13時 14時 15時	61 59 66	74 77 82	64 63	93	76 80 81	78	74	65 69 64	73 72 73	72 72 71	71 75 73		67 67 74	55 59 58	65 68 71	65 67 62	63 65 66	67 64 67	72 69 67		66	83 88 89	67 67 71	75 78 80
	16時 17時	73 75	- 75	61 62	66 66	60 61	77 58	79 63	69 69	76 76	76 75	71 75		78 80	55 56	67 70	65 62	66 65	67 67	68 68	67 72	60 58	86 81	73 74	7- 71
	18時 19時 20時	67 58 57	64 69 70	64 64	59	59 49 46	53	57	71 70 68	77 76 75	74 73 72	77 73 72		77 63 56	53 52 52	69 73 73	63 68 68	58	68 69 64	67 63 47	75 69 60	70		75 81 80	6 5 5
	21時	50 52	60 49	61	48	51	42	49	56 67	73 70	68 64	69 70		43	45 32	72 66	69 64		44 40	38 45	52	49		61 47	3
	23時	54 48	45 39	33 29	28	27 29	***********	36 30	65 67	69 71	65 68	70 70		36 34	30 38	63 64	61 50	49 47	37 38	42 46	55	37	34 27	29 23	21
	1時 2時 3時	40 29 19	34 24 20	31		15		31 30 24	66 62 53	70 65 52	69 63 56	70 67 59		36 40 40	35 29 24	68 65	48 61 58	46 46 44	34 35 33	45 44 41		17	- 15	- 23 26	- 1: 2
	4時 5時	15 16	15 10	34 34	7	6 2		27 21	40 26	55 54	45 37	46 39		40 37	19 2	62 53	55 53	40	28 29	40 43	35	19	10 11	23 21	3i 2
	6時 7時 8時	24 31 37	14 14 22	34 42 50	17	16		12 17	36 29 53	55 59 62	38 50 56	37 41 57		37 29 36	17	50 57 61	52 47 55	42 43 41	25 18 33	41 37 50	38 40 36	28		27 37 40	2 3 5
	9時 10時	37 45	42 58	53 58	35 45	44 57	38 52	26 52	51 58	62 69	62 69	59 64		31 45	39 48	60 60	63 57	38 48	36 53	61 67	46 59	33 43	54 68	44 51	5i 6i
5月14日	11時	57 68 76	73 82 91	70 72 75	_	64 69 83	70	71	64 70 76	73 77 77	67 79 82	69 68 76		60 78 90	61 64 67	65 70 79	54 62 69	61 75 83	63 69 74	67 72 73	71 76 77	55	77 84 82	65 75 74	73 79 70
	14時 15時	81 85	90 95	85 92	91	94	90	83 91	79 76	82 84	86 84	85 87		91 91	70 73	83 79	73	84	77 88	78 85	80	71	88 82	- 87	75 73
	16時 17時 18時	85 78	112 112 104	102	112	104 96	82	85	68 66	83 80 76	79 73 72	85 81 76		89 84 76	70 69		75 59 64		90 87	86 81		67	76	84 80	7 7 6
	19時	72 64 59	88 76	113 92 55	74	86 75 55	48		61 61 55	75 74	70 69	73 65		66 53	66 61 51	76 72 67	69	57 53	87 81 74	72 66 58	73 72 70	61	68 62 57	74 73	61
	21時	55 50	70 65	59 57	44	25	29	18	63 64	71 71	58 53	61 50		40 30	42 36	65 65	53 51	30	71 67	49 46	53	52	53 51	67 46	5i 4i
	23時 24時 1時	41 28	63 56 54	59 60 46	22	24 30 26	23	19	54 48 43	71 68 57	59 55 51	56 51 37	$\leq$	27 36 33	19 2 10	62 54 39	52 43 30	42 33 34	66 50 49	41 43 53	53 51 50	32	50 34 -	35 30 -	39 31
	2時	39 48	51 53	37 35	30	35 41	26	27	33 31	* 39	53 51	28 25		25 27	28 23	27 19	17 10		52 43	48 43	41 43	37 38	32 27	23 19	3: 2
	4時 5時 6時	54 57 58	45 40 32	28 15 20	32	16 5	32		33 51 46	35 53 56	40 37 38	42 39 36	=	27 20 19	24 18	12 6 14	31 25 40	17 10	38 18 26	44 39 35	34 28 26	13	22 16	18 12 12	13 11
	7時 8時	60 59	38 40	34 46	28 5 54	43 55	45 43	53 58	46 57	55 64	52 61	42 51		20 41	29 48	32 43	56 61	24 42	31 42	34 50	34 37	21 28	27 30	15 34	2:
	9時 10時 11時	64 70	50 64 82	73	66	57 67 77	5	69	62	64 73 83	49 46 60			51 0			60 66 70	59	51 59 75	55 58 60	54	42	52	49 57 63	3 5 6
5月15日	12時	- 71	93 100	89	92	87 98	85	88 94	63 75	85 78	78 83	99		73 84 98	70 82	49 78	75 81	83	81 70	65 68	70	59	50 51	68 64	4
	14時 15時 16時	74 74	100 97	101	121	109	115	106	74	69 49	93 66	88		104 95	92 63		82 46	87	74 81	77	53	45	38	60 52 44	3:
	17時	73 65 59	102 77 75	111 109 106	126	115 107 76	83	65		35 30 30	39 33 32	80 60 32		66 51 36	48 33 23	37 29 27	35 25 20	44	84 79 63	60	57	23	35 34 32	39 37	2i 2i
	19時	53 52	73 67	78	57	44 30	41	25	29 32	31 34	35 36	31		27 24	22	28	21 24	24	47 43	35	51	29	30	34 28	2
	21時 22時 23時	50 47 45	62 57 50	67	41		21		29 26 20	32 30 29	32 32 25	32 34 30		23 22 20	19	25	28 18 19	20	36 30 33		39	27	27	20 15 11	21
	24時 1時	41 37	49 45	54 54	33	28 25	11 14	17 12	16	26 26	25 21	28 16		16 10	16 20	25 27	22 24	15 16	26 25	31 30	33 32	24 -	24 -	- 8	2 1
	2時 3時 4時	35 30 24	41 37 33	27 20	18	19 16		11 12 15		24 23 19	23 25 22	18 24 28		9 10 15	16 19 19	23	17 17 12	9	26 23 21		28	15		3 4 4	1: 1:
	5時 6時	20 17	32 29	19 16	18	12 11	12	8 5	21 17	13 15	15 9	23 19		11 6	8	15 13	8 9	6	17 15	23 20	25 27	10 18	13 9	3	1
	7時 8時 9時	17 18	25 30	26 45	16 18	13 17	15	6	13 12	20 21	13	17 14		11 12	5	16 27	10 20	10 22	12 13	26 27	31 38	33 27	10 15	10 9	1:
	9時 10時 11時	15 11 12	33 32 39	48 48	38		30	17	22 17	22 19 16	19 12 13	23 16		24 20 59	12 17 26		18 12 23	21 49	16 17 24	22 22	63	13	26	12 17 20	2 2 3
5月16日	12時	19 25	48 45	54 59	56 68	54 63	3°	48 59	28 38	26 22	24 43	19 32	$\leq$	72 63	50 51	49 65	45 56	71 59	29 34	27 28	68 72	20 24	51 59	20 24	3 5
	14時 15時 16時	25 39 46	52 56 59	64	77		62	69	41 49 40	28 37 44	58 60 50	38		58 65 73	45 51 56	45	60 65 60	62	42 55 48	37	68	24	62	28 29 28	5 6
	17時 18時	50 49	58 56	69 67	77	68 56	55 50	55 52	43 56	48 41	49 30	44 48		77 62	55 46	68 39	54 44	67 62	39 37	42 46	55 51	36 42	60 60	33 51	5: 5:
	19時 20時 21時	44 41 41	47 46 50		50	51 40 35	32	31	55 55 52	24 18 16	48 53 29	54 47 42		45 46 44	45 40 37	24 30 26	40 16 27	57	36 39 47	54 63 54	48	54	56 54 52	54 54 49	51 44 46
	22時	46 49	48 45	48 36	33	36 35	50 41	39	51 51	16 15	11 8	36 28		44 39	29	25 14	31 37	41 37	46 49	49 44	35 29	44 50	55 56	30 22	35 38 43
	23時	49 39	45 40						51 46	15	8 2	28 23		39	27	14	37 41	37 42	49				56 55	1	4

月日		茨城県 土浦	月21日 栃木県 真岡	群馬県前橋	群馬県館林	埼玉県 鴻巣	埼玉県 幸手	さいたま市	千葉県 市原	千葉県 勝浦	千葉県 宮津	千葉市 千葉	東京都綾瀬	東京都多摩	神奈川県	横浜市 横浜	川崎市	相模原市 相模原	山梨県 甲府	山梨県吉田	長野県	静岡県富士	静岡県湖西	静岡市	浜松浜
	1時 2時	31 22	41 41	40 48	37 42	35 35	34 31	34	41	16	3	20 23		31 31	30	10	32	46 31	33	36 28	41 -	- 9	-	- 7	
	3時 4時	29 32	38 42	50 48		36 29	31 29	34 32	37 38	22 34	13 31	20 26		23 31	21	5 13	27 37	24 29	27 24	30 22	48 34	12 15		- 6 7	
	5時 6時	38 37	42 38	47 45		28 32	28 27	30 31	36 40	37 44	44 38	32 39	=	36 38	30	25 40	40 45	38 39	37 34	32 48	25 26	8	52 50	6	
	7時 8時	41 40	37 46	44	34	39 44	32 39	37 42	45 52	46	37 51	41 47		42 44	32	42 37	43	43 42	33 36	48 54	36 41	10 19	47	8	
	9時	44 51	56 64	53 57	55	48 52	45 49	51 56	50 60	54 58	58 62	52 59	=	53 56	41	41	47 55	48 53	41 47	55 54	44 51	34 48	47	33 46	
	11時	57 58	66 68	58	61	54 56	53 53	59 62	66 68	60 62	68 70	63 67		61 62	52 54	52 55	63 70	59 63	54 56	54 55	55 58	58 63	51	61 69	
月17日	13時	60	63	57	62	55 57	55 56	60	73 68	62 65	69 66	67 65		63	67	66 80	76 73	65 80	59 59	60	58 62	66	63	72 75	
	15時	60	67	61	64	58	55	62	65	68	55	66		85	68	76	76	84	59	66	63	74 76	74	73	
	17時	62 58	68 67	62	65	57 58		63 67	67 64	63 60	57 66	66 64		78 62	58 53	60	76 65	75 62	68	70 70	62 60	62	80	76 69	
	18時	57 56	60 58	60 57	64 57	63 67	60 68	69 60	60 58	59 58	63 62	62 58		56 57	53 50	59 58	62 53	60 59	66 65	69 67	61 56	59 60	78	66 61	
	20時	52 45	61 60	52 38	58	56 52	60 60	58 54	58 54	55 51	57 42	54 53		55 55	48		38 43	57 54	65 63	61 46	51 45	57 54	65	41 33	
	22時	42 39	57 52	36 43		52 48	56 52	53 51	50 47	50 44	9 11	49 45		51 49	45 45	50 49	48 52	51 49	62 60	34 30	40 36	47 34		27	
	24時 1時	41 41	42 37	43		44 38	46 25	49 46	41 36	32 15	24 33	37 21	=	50 44	41 27	46 47	44 46	41 37	54 51	30 30	33 30		- -	16 -	
	2時	38 35	35 32	43		30 26	22 23	45 38	28 23	7	36 26	16 9	=	35 26	20 17	48	41 42	28 25	45 37	28 29	32 32	13 11		11	-
	4時	29 27	31 28	41	22	18 9	20 15	36 28	19 17	2	21 19	8 7		20 19	21	37 16	32 31	15 3	31 27	26 24	34 31	13 10		11	-
	6時	15 25	28 26	38	15	8 16	13 15	23 22	14 30	10	18 21	8 29		17 20	12	11 10	14 24	9 28	24 32	24 30	31	7 21	12	7	
	8時	38 45	30 43	37	25	26 32	17	26	46 55	41	44	39 54		31	31	24	29	37 50	38	47	35 38		37	27 53	
	10時	53 56	58 66	52 66	58	48	43 53	38 52	56 58	56 57	58 57	58 60		52 55	40	40	47 54	51 52	52 56	59 60	50 58	53 51	53	62 66	
18日	12時	57	72	71	71	62	_	55	56	56	54	60		58	46	54	57	55	61	60	61	48	64	65	_
	13時	56 53	72 69	76 76	77	64 67	62 64	61 56	55 53	54 55	56 51	58 57		56 53	47	51	58 53	56 54	64	58 58	63 62	52	65	63 61	_
	15時	51 51	68 62	65	69	-	63 57	54 50	53 52	57 54	55 55	57 56		55 53	41	48 46	52 50	55 50	63 63	59 59	63 67	46 49	62	58 56	
	17時	51 51	62 56	60 57	58	-	55 51	51 49	51 51	52 50	54 52	56 54		51 46	38 35	43 41	45 42	47 44	58 55	56 54	69 58	48	57	57 55	
	19時	49 47	55 56	49 50		-	47 42	43 40	49 48	47 47	50 48	51 50		44	35	40 41	22 28	43 41	53 51	54 49	59 55	48 42	***************************************	42 33	_
	21時	42 40	54 52	45	43 40	-	40 38	39 40	45 42	44	47 46	47 45	/	40 40	32	40 39	27 29	41 40	51 53	48 53	55 52	43 52		29 31	
	23時	37 33	50 45	34 36		-	37 43	40 45	40 41	42 40	46 51	40 36		45 50	36 27	47 49	42 49	47 48	55 52	51 48	54 54	48 45		35 35	_
	1時	34 31	48 52	43	47	-	46 49	49 48	42 34	41	45 -			0 48	35 17	47 47	50 51	51 50	- 51	- 42	53 54		-	- 34	
	3時	33	53 48	40	43		49 50	49 44	34 30	45 42	50 47	41		42	27	50 50	50 51	46 47	50 48	46 46	52 48	32 25		33	<u> </u>
	5時	36	_	44	39		42 39	35	21	32	45	36 27		43	31	41	42	47	35	44			48	23 19	_
	7時	33 36	44	38	41	-	38	31	27 15	16	30 24	25		31	29	32	36	41 31	33	34	36	26	36	19	_
	9時	36 32	42 42	36	34		38 35	28 30	15 18	22 26	23 29	21 16		21 22	24 18	21 30	25 6	26 21	39 35	26 36	33 38	20 20	26	13 15	_
	10時 11時	30 28	46 46	31 35		-	36 38	26 32	15 15	31 34	32 28	19 17		23 22	14	23 7	- 13	17 22	36 38	36 39	40 40	19 -	24	27 32	_
19日	12時	27 28	45 47	35 37	48 49	-	41 43	37 39	23 29	38 34	33 39	22 24	=	18 18	13 15	30 31	- 29	12 13	39 41	35 38	43 42	17 23		34 37	
	14時	32 34	54 51	42 40		-	45 45	41 40	23 29	34 32	42 43	29 29		22 31	16 19	32 35	33 24	15 19	41 46	35 36	43 45	24 25	35 45	31 29	_
	16時	31 28	52 52	39 47		-	44 48	44 42	29 33	35 39	42 44	29 35		31 29	19	36 32	22 19	23 25	48 51	44 43	47 48	28 26		32 31	ļ
	18時	33 33	41	54	56	-	43 31	40	34 34	38	43	32 19		29 33	20	34	25 21	27 27	50	42	46 44	32 34	55	24	_
	20時 21時	36 41	37	21	41		27 27	21	26 25	35	47	13		37	10	23 26	16	34	29	35 23	44	27	35	22	_
	22時	40	32	24	26	-	28	16 17	16	31	30 27	11		29 27	19	25	5	28	20	15	43	27 32	26	27	_
	24時	35	30	10	7	-	32	21	23	25	21	9	$\leq$	18	6	4	10	17	8	14	27	28		25	
	1時	36 26	28 24	20	10	-	35 31	22 26	22 17	19 15	16 22	16		20 20	16 15	10		25 18	16	15 19	23 17	24	- 8	21	
	3時 4時	27 26	27 27	24 23	17 23		25 26	30 32	11 7	13 9	19 10	20 20		16 19	13		16 18	12 12	16 9	22 21	16 13			18 12	_
	5時 6時	22 18	27 23	12		-	22 15	29 29	12 21	11 20	9 11	20 26		27 27	17 17	20 17	18 18	20 24	10 10	13 24	10 14	4 9	10 8	6	
	7時 8時	16 26	22 24	26 27		-	15 22	28 28	26 28	29 43	27 30	28 27		28 32	15 24		30 31	25 33	14 18	28 32	20 28	14 13		10 20	
	9時	39 47	38 50	30 43		-	39 45			40	35 39	-		39 39	31		34 44	38 38	31 41	39 44	38 43				
no =	11時 12時	50 51	58 63	50 59	56	-	57 59	56		43 46	41 51	45 49	=	49 63	35 43	46	51 59	39 56	51 57	47 50	48 54	38	48	59	Г
20日	13時	49 50	65 65	68 73	74		62 63	62	58	45 45	53 64	54 53	=	76 80	54 63	68		70 74	57 56	56 68	63	59	71	72	Ш
	15時 16時	49 49	67 66	78 79	82		64 61		66	46 46	80 85			86 92	71	66	73 69	77	64 65	72 71	63 65	63	85		L
	17時	50 49	66 65	78 59	84	-	60 56	63	58	44	53 24	61		90	53 48	52	68 59	73 63	65 64	66	66 66	69	80	80	L
	19時	49 48 45	61	60	63	-	52 46	49	46	38 30 29	34	44		63	46 45	60	29 42	58	64	59	62	69	72	81	
	20時 21時 22時	45 45	56 51	60 61	48		44 41		44	26 19	27 7 18	42		62 59	43	48	33	57 52	61 59	53 51	60	73	60		<u> </u>
	23時	46 46 43	60 65	61 62	51	-	38	54	36	15	34	35		55 52	44	34		49 50	59 58	34 24		74	65	19	
	24時	46	64 62	- 63	53	-	- 43	54	28	32 45	29 51	34		53 59	42	49		47 48	54 68	39	53	-	-	-	
	2時	47 48	61 59	56 52	53	-	51 52	59 56	45	42 51	43 56	41		61 61	47 54	63	62	59 60	73 78	69 71	53	60	72	55	ļ
	4時 5時	53 54	59 57	52 52	49	-	53 53	56	55	54 61	57 61	57 58		62 64	57 55	70	67 70	63 54	74 67	72 71		56	51	70 56	<u> </u>
	6時 7時	54 50	59 57	52 52	42		51 47		48	59 59	61 55			62 54	49 49	51	61 45	58 52	56 57	67 64	49	49	49	43	
	8時	53 53	57 52	51 53		_	43 47	54	45	58 55	47 40			48 51	45 43		44 50	51 50	60 52	64 61	50 49				
	10時 11時	56 56	52 61	49	56	-	49	56	52	52 61	46	59		54 57	45	56	51 54	-	52 51	59 58	48	55	50	68	L
21日	12時	55 58	65 66	48	52	- 49	48 48	53	55	65	55 55	66		59 59	- 55	59	55 56	56 57	53 53	56 56		67	54	77	
	14時	57	66	51	55	51	49	53	52	70	48	61		56	60	66	57	55	55	56 56	54	71	57	82	
	16時	51 48	59 58	52 52	56		50	54	53	70 70	68 70	57		56 72	61 59	-	62 70	67 70	56 57	58		69	60	79	
	17時	48 46	53 52	51 50	55	50	48	50	61	70 71	70 75	62		70 70	59 60	73	72 71	71 72	56 66	65 65	51	69	56	77	L
	19時	39 35	50 43	48 44	53	48 43	47	42	66	68 67	71 56			65 64	60	77	68 65	70 67	66 65	65 59	40	71	50	68 45	Ι
	21時 22時	42 46	43 40	41 38	42			38		66 62	62 54			64 58	53 53			60 57	63 62	41 35		42	47		
	23時	42	34	38	32	28	25 22			61 39	60 45			49 33	42	70 57	64 55	38 32	59 38	37 32		28	45	27	1 "

表3-2- 月日	地点名 時刻	22日~7 茨城県 土浦			群馬県館林	埼玉県鴻巣	埼玉県 幸手	さいたま市 さいたま		千葉県 勝浦	千葉県 富津	千葉市 千葉	東京都綾瀬	東京都多摩	神奈川県大和	横浜市横浜	川崎市	相模原市 相模原	山梨県 甲府	山梨県 吉田	長野県 長野	静岡県 富士	静岡県湖西	静岡市 静岡	浜松市 浜松
	1時 2時	7	7 6	25 26	0	2	7 8	9	14 9	10 9	10 3	14		9	5 7	13 12	- 9	8 7	15 13	9 10		- 2	- 7	- 1	4 1
	3時 4時	6	5	18	0	2	6	6	7	8	2	12		6	6 	11 10	9	5	12 9	8	16 		4	1	1
	5時	6	6		0	3	6	5	8	9	4	10		4	4	10	8	4	7	6 7	11	2	5	1	1
	7時 8時	10		***************************************	11	11	12	9		10	12	10		7	8	11	12	10	12	10	14 15	7	9	8	8
	9時	14		49		21 34	18 26	14 20	13	12		16		12 18	11	14 16	13 15	13 16	19 27	13 17			11	13 16	9
7月22日	11時	23 28	51	69	50 65	43 47	34 41	27	15 15	15 14	14	18		20 21	12 13	17 16	17	18	29 27	19 20	25	14 16	12 13	21 20	11
	13時	29 24	-	69	63 62	44 38	38 35	27 25	12 10	14 16	13	16 13		21 21	11 12	13 14	14 14	20 21	24 18	22 20	27 22	14 15	12	18 16	10 10
	15時	22 27	48 42	63	53 46	38 34	33 30	23 21	11 9	14 14	15 10	13 13		18 17	12 11	13 11	13 12	17 16	17 19	21 18		13 11	12 12	15 14	9
	17時	17 13	40 30		37 27	28 22	26 21	18 16		11 10	8 6	10 9		15 13	12 11	11 12	12	15 14	19 17	20 19	26 21	9	17 19	10 9	9 14
	19時	10 8	21 16		19 14	17 15	18 14	13 11		11 9	2 0	7		12 10	8 7	11 9	11 9	13 13	14 12	16 17	21 20	8 9	17 16	9 10	13 13
	21時 22時	5 6	13 10		12	11 10	11 11	10 9		8	3 1	5 6		9 10		7 6	<u>5</u>	11 11	12 13	17 23	19 18	13 14	17 16	<u>8</u> 5	13 13
	23時 24時	7	10 8		9	10 12	12 14	9 12		8	6 6	10 13		14 15	10 8		6 7	14 15	12 12	24 21	17 18	13 11	15 13	8 14	14 12
	1時	12 10	3 5	- 11	8 12	15 15	- 16	12 13			6 9	14 14		15 15	6 8	7 8	5 3	13 14	15 13	18 16	19 14	- 13	- 13	- 16	- 12
	3時 4時	10 11	6 7	12	12 9	13 10	15 14	12 10		8 10	11 11	15 16		14 13	7 6	11 14	8 11	14 12	11 8	16 18		12 12	12 15	14 11	9 12
	5時	11 10	6		3	6 4	10	10 9		11 12		14		13 11	7	15 14	15 13	12 11	8 7	18 18	8 11	12 10	13 14	12 14	10 11
	7時	11 13	8	11	2	4	10	9	5 5	13 13		5		10	5 5	11	9 8	10 8	5 5	16 17		8 7	12 10	9	12
	9時	11 12	10 14	14	6 16	10 14	13 14	7 9	7	12 14		7		7 8	5 7	10 13	7	9	7 11	14 14		7 9	9 10	12 13	7 10
	11時	17 21	21 29	26 26	26 44	19 28	19 26	11 16	************	15 14	13 12	9 10		9 10	8 7	14 15	13 14	10 8	14 16	12 14	13 20		13 16	16 19	10 14
7月23日	13時	26 23	42 49	23	48 56	40 48	31 41	18	10	17	14	10		14	12 15	18	17	12 15	20 25	17 18	25	18 17	21	18	18
	15時	26 27	52 56	31	57 56	53 54	50 53	33	15 13	20	16	13		21	14	19 19	16	17 20	26 27	21	31	17 17	19	19	19 21
	17時	24	60	40	57 51	58 46	50	25 21		19	16	11		16	12	19	12	16 12	26 26	20		17	22	25 24	21
	19時	15 11		21	50	28	24 13	14	8	19 19	7	9		12	9	19 23	16 16	12	22 16	20	16		26 21	22	22
	21時	8	35 27	26	30	32 30	9	8	3	17	6	3		8	5	23 19	15	8	12	12	14	7	14	6	11
	23時 24時	3	15	19	21	24 14	8	5	8	16		6		!	1	15 15	3	3	6	10	12	8	4	2	4
	1時	-	14	6	18	-	1	1	4	16	9	- 2		0	1	11	4	2	9	7	9	-			5
	2時 3時 4時	4	12	3	9	18	2	0	10	14	14 5	7		1	1	12 11 6	2	2	!	5 4 3	10	5	9	1	6
	5時	4	10 9		0	11	3	0		6	0	1		3	1	2	4	2	5	3	12 9	4	10 9	1	2
	6時 7時	5 10	9	7	5	14 14	5 8	9	***************************************	5	6	5		11 15	8	2	6	2 5	4	3 6	8 7	6	11 14	3	7
	9時	14 23	11 19		13 25	15 23	18 24	18 25	19	20		19		16 26	13 23	6 10	12 13	11 15	7 15	12 20	10 18	5 12	17 24	11 20	14 22
	10時 11時	32 54	30 45	20	25 44	25 36	30 43	27 36		20 34	24 26	31 53		44 59	- 34 -	14 32	36 36	-	25 38	26 31	22 27	21 31	30 44	28 41	30 36
7月24日	12時	68 70	50 53	21	- 71	49 59	62 66	51 55		44 48	54	64 68		63 72	36 79	64 76	- 61 -	58 79	50 51	34 38	32	41 48	57 71	55 65	35 50
	14時	68 63	57 54		74 74	56 43	64 50	53 42		53 57	46 51	55 40		81 37	90 78	95 94	70	85 52	36 38	36 43	28 25	55 68	59 33	66 68	61 42
	16時	55 32	40 32		47	47 61	43 48	76 71	43	53 46	45 50	45 33		56 55	53 31	65 57	84 70	36 44	46 50	43 47		64 30	21 20	62 69	20 17
	18時	34 29	31 29	**********	39 49	53 53	45 43	50 46	***************************************	36 30	53 37	15 20		46 44	23 27	51 48	53 32	42 35	50 49	40 27	27 29	21 17	18 15	54 34	16 12
	20時 21時	22 23	29 25		41	48 39	29 25	32 28		19 8	30 29	18 11		32 24	17 13	12 1	21 11	34 20	50 50	20 13	23 25	14 15	8 10	15 9	
	22時	19 19	20 19		31 29	29 24	21 18	26 22	28 37	<u>4</u>	26 22	16 16		14 7	8	1	7 6	11 6	46 45	8 10	17 13	14 14	9	7	9
	24時	7 5	17 14		16 16	24	14 12	14 10		11	18 13	21 12		5 4	1	1	4	3	41 33	9	14 10	- 12	- 3	- 3	3
	2時	9 10	12		13 11	20 17	13 10	9 8	*	3	10 7	22 8		<u>6</u>	1	1 8	2	8 3	24 22	9 8	7	11 12	<u>4</u> 5	3	2 2
	4時 5時	9 7	8		11 0	13	<u>6</u> 5	6 4		2	4 7	8		3 2	1 2	11 8	2 3	3	21 19	11 8		9 7	4 2	3 2	3 2
	6時 7時	4 16	5 13	3	0	14 19	6 14	4 15	8 14	3	8 7	5		5 4	3 7	6	4	3 5	11 15	10 15	5	5 6	3 8	3	2 5
	8時	29 45	19		20	36	21	27	34	17	13 18	7		14	16	11	19	16 36	21	20	12	10 12	10 25	11	9
	10時	54	48	30	53	69	49	57	41	21	31	42 64		63		17	29	53	38	20	27	13	49	38	42 61
7月25日	12時	73 83 92	73	58	82		72 83 98	73 78 59	69	35 45 39	25	87 96		76 98 96	65		58 53 50	62 69 78	45 55 49	20 23 26	42	11	82	55 60 62	80 81
	14時	108		61	89	70	107	59 65	50	30	14	70 54		83 67	43	48	43	65	44 46	32 35	33	31	65	77	70 50
	16時	118	82	70	101	77	170 142	97 99	30	22	18	45 41		65			37	62	43 49	38 26	40	65	24	94 72	34 19
	18時	113	86	39	87	136	109	74	36	30	48	43		64	49	68	32	64	49	47	38	27	15	65	13
	19時	110 68	55	23		92	73 52	71 52	49	41 39	9	38		56 46		60			50 49	46 35	39	15	12	58 40	9
	21時	76 97	47	22	54	49	36 28	28 9	36	28 15	5	48		40 31	34	39	16 16	44 28	53 53	15	31	11		17	3
	23時	86 74	21	17	24	18		5 4	23	11 8		38 29		25 17		35 27	13 21	23 21	50 40	12	21		5 4	13 9	3
	1時	62 61	21	14	25	15	10	3	17	2	10	23 16		15 19	4	24 15	9	21 17	35 31	10	14	7	3	4	2
	3時	59 50	13	15	20	9	17	3	12	1	9 8	9	$\leq$	29 25	13	7	3	15 13	18	10 7 7		6	4 6	4	3 2
	5時 6時	46 41		13 14		8	21 16	4 15	10	1	4 5	3 5		22 19	12 14	8	4 5	12 11	13 12	7	6	5	6 8	5 6	3
	7時	61 82	12		24	20	21	23 30	15	6 32		28 50		25 30	23	24	32	14 22	15 22	11 18	18	10		9 16	12 19
	9時	83 81	36	35	43 58	30 43	40 56	41 54	26 52	57 59	35	67 77		42 62	38 60	65	58 85	45 62	34 44	38 49	36	27	34	25 40	22 33
7月26日	11時	73 71	53 57	40 47	77 73	50 69	70 75	68 80	103	56 57	74 62	79 74		92 93	83 104	85 91	102 123	81 86	48 51	45 40	44 54	35 44	50 60	50 56	49 58
, A 20 E	13時	66 75	62	44 40	66 71	89 95	75 80	91 104	201 117	68 67	89 90	65 52		120 140	122		124 134	112 130	38 31	60 64	50	42 50	59 41	58 72	59 44
	15時	68 55	71 72	57	84	96	92 91	122 144	91	74 98	99	53 54		128 100	101 90	111 97	141 116	116 91	34 46	66 65	38	61	35	75 77	39 28
	17時	51 46	74	60	92	131	66	146	67	64	76	61		83	94	99	102	98	60	64 57	43	46	27	67 58	24
	19時	45 42	54	61	75	92	51 47	81 69	70	61 36	78	58 45		96 93	81	76	88	89 74	62 61	52 44	39		20	46	16 14
	21時 22時	37 36	42	79	49	77	45 40	63 43	52	23 13	49	41		57 49	47	68 77	68 58	35 38	60 58	32 15	27	19 15	15	19 14	11
	23時 24時	48 55	29	61	38	56	30 23	42 29	61	14	38	57 51		58 46	34	70 67	53 62	37	49	17	23	12	12	11	11 9
	- / - /	. 55				. 72							_	, ,			V2								

表3-2- 月日		27日~7 茨城県 土浦			群馬県館林	埼玉県鴻巣	埼玉県 幸手	さいたま市 さいたま	千葉県 市原	千葉県 勝浦	千葉県 富津	千葉市 千葉	東京都綾瀬	東京都多摩	神奈川県大和	横浜市横浜	川崎市川崎	相模原市 相模原	山梨県 甲府	山梨県吉田	長野県 長野	静岡県 富士	静岡県湖西	静岡市 静岡	浜松市 浜松
	1時	55 58	22 21	40 25	– 5 25	24 24	26 34	27 21	58 51	19 8	19 25	39 38		35 27	30 23	66 52	85 86	21 16	23 14	13 11	18 17	-	- 9	- 2	8 6
	3時	50 37	20 17	10	32	24 26	32 22	30 28	37 25	9 5	26 20	28 20		16 14	19 15	45 32	68 59	13 18	9	13 13	12	2	12	2	8
	5時	28 26	14	12		23 30	17 15	30 27	19 9	3 7	17 12	13		18 18	12	16 15	38 30	14 21	19 13	12 14	10	2	8	3	9 5
	7時	33 45		30		45 53	29 38	27 38	18 34	10 29	14 14	19		19 27	17 32	17 33	34 43	28 34	18 23	19 28	23	5 9	10	14	12
	9時	52 59	40	64		52 63	38 53	54 61	40 60	45 62	24 54	45 62		49 77	46 61	47 51	47 30	47 70	37 48	39 41	38			26 30	14
7月27日	11時	63 62	44 46	85	84	73 86	74 76	69 87	78	68 74	77 68	75 101		95 99	81 91	108	72 110	89 97	51 59	43 44	40	23	27	41 58	21
	13時	69 68	51 67		87	100 86	78 75	104 117	106 36	42 31	31 31	162 156		103 104	76 55	65 42	115 62	105 96	51 40	44 43	44	28 25	27 27	62 45	23 23
	15時	52 44	68 59	69	86	113 116	- 85	123 129	36 34	30 30	32 24	65 44		94 80	47 44	44 46	40 40	80 63	48 ***	40 43	48	19 19	27 25	36 32	22 22
	17時	47	47 42	64	84	115 93	87 64	116 86	38 40	28 24	16 12	42 44		65 38	35 23	37 27	45 30	51 34	51 46	41 36	46			31 29	21 22
	19時	39 36	38 32	56	70 5 51	51 44	52 37	59 31	25 17	19 16	14 11	38 22		33 26	18 16	17 15	13 11	30 24	39 33	30 30	40	18 18	30 28	25 21	24 26
	21時 22時	35 35	26 21	54 50		32 21	27 19	20 17		14 14	14 16	17 16		21 17	15 13	13 15	11 7	17 17	30 28	22 21		18 21	27 28	20 17	25 26
	23時	34 32	18 14		27	17 15	15 17	<u>4</u> 1	18 19	15 15	9 15	17 17		13 11	12 8	17 18	6 7	12 11	24 22	17 13		23 23	22 19	10 7	23 20
	1時	31 32	13 12		17	16 17	21 20	9	20 18	15 14	14	11 6		8 10	4	19 16	9	9	- 19	- 9	22 20	- 22	- 15	- 2	18 7
	3時	32 30	12 10			19 18	17 16	10 10	16 14	11 11	13 9	3 4		2 1	1 4	15 11	5 3	4 2	18 17	10 8		18 18	21 31	2	10 7
	5時	29 27	- 10	18	8 10	17 13	16 15	11 11	10 6	16 16	8 12	3		2 5	2	9 10	3 5	2 5	16 13	9		19 17	30 29	2	1 12
	7時	27 30	11 13		9 1 5	12 10	16 15	9	11 16	18 19	18 24	3 5		6 7	2 5	12 12	8	5 9	12 12	16 52		11 9	26 30	3 9	23 29
	9時	30 30	16 25	28	17	9 29	15 18	5 11	11 15	20 24	26 28	8 15		9 23	10 18	9	34	12 26	16 32	55 51	25 31	11 17	34 41	14 24	30 30
	11時	41 54	43 63		48	51 44	48 66	38 60	18 40	25 27	29 43	19 47		33 66	26 47	6 23	24 30	41 58	51 60	58 57	42 46	44 56	50 59	38 59	33 49
7月28日	13時	62 64	68 65	38		59 66	66 70	64 69	69	28 28	72 75	64 65		76 75	63 68	35 53	63 83	74 78	63 66	58 56	41	59		71 58	53 51
	15時	63 61	59 59	31	80	69 71	76 79	64 68		27 27	75 88	67 61		73 71	77 76	57 57	87 69	74 73	60 54	49 48	34	49 48	63	69 64	55 57
	17時	65	63 59	58		75 75	77	69 72		27	55 34	59 52		73 84	74 83	63 72	56	83	65 67	50 55	34	44		57 71	59 51
	19時	63 61		57		74 56	57 51	61	55 58	23	30 22	36 18		90	80 74	86 91	58 62	106 98	62 63	56 59	35	75	45 40	75 62	43
	21時	50 42	41	34	52	52 51	52 50	43	22	10	28 25	13		81 75	74 65	85 57	59 30	94 83	64 56	47	25	57	36	53 35	33 31
	23時	41	32 32	39	45	47	43 40	28	13	2	18	10		66 54	65 64	8	33 30	72 71	46 46	27 20	16		31 30	26 19	25 21
	1時 2時	35		26	43	39	35	26		3	14	10		40	50 36	11		78 61	39	19	17	-	_	- 13	19
	3時	28	26	17	34	40 32	34	24 26	5	3	12	4		39 36	28	21 22 8	9	46	35 28 27	20	15	23 16	27 25	6	19 19
	5時	23 19		13	3 22	38	33 26	25 28	3	6	4	14		26 18	8	7	16	22	25	43	12	14	23	5	13 9
	6時 7時	23	15		19	25 27	18 17	28 25	15 23	13	16	21		22	13	8	18 20	14	22 21	31 26	13	13	28	11	13
	9時	33			33	32	25 31	28 35	32 39	25 38	33	32		23 23	17 21	19 27	28 36	18 22	23 32	22	29		31	12 33	17 46
	10時	37 47		48		43 50	39 51	37 36	44	50 48	49 62	35 39		28 45	30 38	26 62	42 58	33 48	51 62	30 36	46		58	62 77	66 67
7月29日	12時	54 51	49 56	70		60 67	56 60	50 68		48 45	68 60	38 47		64 67	41 60	99 97	86 79	60 60	69 66	37 42	42	63 69		75 76	77 82
	14時	45 46	52 54	72	86	81 86	70 61	73 66	56 49	43 41	58 79	52 51		73 85	66 73	94 90	88 71	80 93	57 56	45 45	44	80	84 92	81 73	87 82
	16時	45 42		86		77 60	55 53	58 61	44 42	35 25	65 49	44 45		99 94	77 77	90 73	49 53	93 90	55 59	56 74	46			68 72	89 88
	18時	41	45 39	63	47	53 51	51 44	62 46	38 36	19 15	34 27	39 35		94 74	70 47	54 42	75 52	87 66	59 60	68 64	45	65	61 60	79 66	77 71
	20時	42 39	32 23	47	37	44 35	32 27	33 29	32 31	12 7	17 13	32 27		58 43	25 15	32 24	44 42	47 42	61 60	56 51	43 42	63	61 63	44 35	65 60
	22時	39 35	22 21	42		26 21	24 19	23 15	28 25	3 1	11 9	23 24		42 38	19 21	22 20	36 32	38 33	59 57	50 52	37	64	52	27 23	61 47
	24時	24	16 17		23 16	18 18	19 -	12 10	16	1	3			34 0	21 17	20 21	25 25	28 25	57 55	43 28		- 66 -	- 44	17 -	43 -
	2時	18 8	15 13	31	15	18 18	14 19	14 13	12 11	1	7 4	11 9		25 25	16 11	20 17	28 26	20 21	52 49	32 37		57 46	25 26	12 9	30 23
	4時 5時	15 15	12 10		11	21 17	13 9	12 5	15 8	1	2 4	8 6		22 17	7	11 7	26 21	17 16	48 46	22 17				8 5	18 15
	6時 7時	14 13	10	24 26	9 i 17	15 16	9 11	9 14	9 15	1 6	5 8	4 10		15 13	5 9	3 12	15 17	14 12	42 38	13 21	21	25 28	14 33	6 11	16 29
	8時 9時	22 35		33	35	20 31	20 24	19 28		23 21	15 12	19 33		15 40	21 30		12 19	20 34	41 50	32 46		33		24 51	39 48
	10時	42 46				48 64		38 51		23 31	18 24	46 52	=	62	36 48		13 36	52 61	62 64	55 55				64 71	55 66
7月30日	13章	51 49		67	83	75 85	61 74	68 90		34 34	40 57	57 62	=	73 73	47 50		- 76	67 64	62 60	53 58	47	50	86 96	75 82	75 81
	14時	40 35	63 61	71 68	87 8 95	- 94	76 74	85 75	53 47	36 33	24 27	56 47	2	62 55	56 50	77 47	111 80	60 61	61 58	63 62	50 45	61 62	101 91	79 77	91 82
	16時	36 32				85 81	79 68	79 78		35 29	29 21	40 46		57 56	40 33	38 28	42 34	56 45	56 58	61 59				66 46	85 96
	18時	32 30				72 49		72 52		28 23	13 7	54 57		40 36	26 28		26 22	36 33	54 51	47 43		52	54	36 28	88 81
	20時	29 27	27	45	46	34 25	28	42 32	32	16 7	<u>4</u> 1	40 37		27 24	30	41	21 24	34 34	48 47	35 26	44	53	60	20 13	63 58
	22時	24 22		43	34	21 17	14 12	22 12	18	5 3	12	28 18		28 26	22 19	32	26 24	27 28	42 41	20 23	36	42	60	12 10	58 59
	24時	21 -		34	19	17 -		5	13	4	11	15 11	=	24 22	19	29	37	25 20	34 31	9	27	41		10	47 27
	2時	15 4	12	14	8 .	10 8		2	10	*	5	8	=	18		21	30	17 5	29 28	12	28	22		4	26 27
	4時	3		15	5 5	8	3 2	1 0	5	1	4	2		4	22	27	33	6	17 14	11	24	16	40	3	27 23
	6時	6	5	15	5 1	8	3	2	5	1 7	7	4		7	5	29	20	4 9	14	10	26	10	26	4	34 36
	8時	18 29	13	30	19	25 44	18	19	18	22 28	36 44	17		17	18	23	25	19	15 22	27 44	32	15	31	7 16	37 39
	10時	49 67	54	53	57	62 74	55	51 68	35	39 43	49	48 66		51 66	42		30	57 64	38 52	51 52	52	36	55	43 62	59 76
7月31日	1208	76 77	61	77	85	93 98	81	84 93	66	44	50 51	61 55		80 84	51	43	50	76 81	63 59	49 46	56	49	88	68 71	79 77
	14時	81 101		94	109	106 140		118 144	76	38	49	55 52		93 78	55 45			76 62	59 54 59	46 50	71	51	103	69 69	78 85
	16時	74 57	80	87	135	168 149	135	134	47	36 32	42 42 35	43 47		65 54	43		57 52	57 49	60 62	57 66	58	54	108	63 61	97 91
	18時	52	112	88	146	100	84	67	36	29	26	43		51	42	46	53	47	61	58	51	50	82	58	87
	20時	39 30	56	70	68	71 48	43	50 43	34	28 27	38	28 42		45 41	32		41	38	65 63	48 42	43	40	74	54 39	75 74
	21時	35 35		64	39	43 43	30 31	39 35	28	26 29	42 44	45 38		38	30 29	36	26 20	34 32	61 57	28 15	36		66	20 15	67 63
	23時	33 27	34 29		39	40 36	36 19	34 31		36 42	45 47	33 35		33 32	33 31	49 50	28 31	29 30	53 48	19 17				<u>9</u> 5	60 42

表3-2- 月日			月5日 栃木県 真岡	群馬県 前橋	群馬県 館林	埼玉県鴻巣		さいたま市	千葉県 市原	千葉県 勝浦	千葉県 富津	千葉市 千葉	東京都綾瀬	東京都多摩	神奈川県大和	横浜市横浜		相模原市 相模原	山梨県 甲府	山梨県吉田	長野県 長野	静岡県 富士	静岡県湖西	静岡市 静岡	浜松市 浜松
	1時	30 25	17 12	32 31	29 31	33 30	7	32 31	35 *	48 52	48 47	37 35		29 25	27 23	50 43	40 44	25 20	42 36	19 18	34 27	- 44	- 37	- 3	34 29
	3時 4時 5時	18 17 15	11	32 20 22	18 18	28 26 17	3	28 26 22	26 25	45 48 52	51 46 45	32 29 28		19 8	19 16 20	46 38 34	40	19 13	29 18 19	20 19 12	22 16 14	16 11 12	20 18 16	3	21 17 17
	6時	16 22	8	20	<u>8</u>	13 13	3	22	23 33	52 52	41 46	27		5	13 22	36 37			16 15	12	16 20	13	26 26	4 5	18 24
	8時 9時	25 40	23 42	41 53	25 48	25 46	15 42	22 42	31 45	58 71	57 63	37 36		26 46	25 36	45 32	39	19 27	23 34	30 45	28 43	19 33	36 48	14 25	34 47
	10時 11時	58 72	61 68	66 76	65 76	64 78	57 73	64 83	56 76	70 69	59 60	69		76 98	57 79	24 33	58	52 85	50 61	54 52	52 61	50 53	63 64	47 70	61 70
8月1日	12時	81 82	68 74	87 80	84 93	95 107	86 94	100		72 62	64 57	111 133	$\leq$	108	84 69	49 59	78	99	73 70	55 57	66 61	55 57	65 70	71 70	65 67
	14時 15時 16時	84 80 82	93 100	80 84 76	104 116 125	108 124 131	105 109 118	111 130 153	85 70 68	51 45 38	63 61 44	116 63 70		98 79 65	66 57 53	60 54 50		77 67 58	58 52 60	56 54 53	53 48 50	54 52 53	75 80 90	71 68 68	69 73 86
	17時	95 70	104	81 91	133	106	99	91	51 32	34	40			55 50	43 41	44 39	49		57 46	47 46	48 48	51 48	79 75	65 47	85 74
	19時	51 43	80 68	80 59	66 55	56 51	55 51	46 41	34 34	31 29	35 34	29 35		44 39	39 36	39 40	42 41	39 35	57 44	39 33	49 49	57 53	73 72	31 24	65 63
	21時	38 36	36	50 42	33	46 38	46 34	37 34	32 33	30 30	38	31		31 29		39 33	37		33 25	26 20	49 45	49 46	65 58	18 15	62 57
	23時 24時 1時	37 29		42 37		23 19	12 9	29	33	30	42 34			25	31 21 17	34 34 35	36	18		19	36 30	43 40	56 47	13	58 57
	2時	24 20 19	27 25 21	33 31 31	22 17 15	16 12	6	20 17 12	35	29 30 27	33 33 29	35		13 12 12	17 12 10	35 35	27	20 19 17	18 17 15	21 21 17	25 24 19	33	32 29	9 6	45 23 25
	4時	20	15	28	15 11	10	11	14	28 25	27 25	24 23	25 20		9	10 15	32 30	26	17	16	16 15	16 16	31 17	33 34	4	22 18
	6時 7時	13 18		22 23	8 15	13 15	10 16	14 23		24 25	24 24	20 24		10 16		21 23	14	15 17	9 13	16 19	15 16	16 13	24 26	4 9	12 18
	8時 9時	22 32		31 44	***************************************	24 40	21 29	30 38	24 30	28 31	25 26	28 30		27 38	24 35	31 30	43	***************************************	18 30	28 41	21 32	17 27	33 46	15 35	30 48
	10時 11時 12時	60	68	58 67	62 70 77	56 69 84	50 70	54 67		38	33 43	42 63		59 74	48 63	24 29 50	54	53 62 71	44 55	54 48	42 50	40 46 47	56 59	49 56	51 56
8月2日	13時	68 70 73	73 72 76	69 69 71		94 97	80 89 103	76 82 102		36 37 36	52 50 44	85 97 88		77 87 71	63 53 48	52 49	58		63 61 51	45 44 47	55 59 51	47 49 47	62 63 59	57 54 52	60 61 57
	15時	94 75	76 63	74 76		95 121	125 130	128		35 30	37 40	78		62 56	45 41	46 42	54	50		47 52	47 47	44 42	57 54	51 53	57 50
	17時 18時	49 60		71 43	50 43	83 41	113 45	62 53		29 29		44 38		50 44	35 29	40 34	35	44 38	55 50	46 42	45 43	41 41	53 57	55 52	47 43
	19時	47 36	31 21	44 38		39 47	31 41	42 44	39 33	27 24	32 30	38 32		35 43	24 21	29 27	17	33 36	48 45	39 34	45 44	37 34	56 53	49 30	48 48
	21時	26 24	15	42 39		40 39	41	37		22	29 27	24 20		43 38	19 19	24	20	37	43 41	42	37 36	32 35	49 47	28 32	45 43
	23時 24時 1時	33 34 30	23 31 31	40 34 27		36 35 31	39 30 31	29 26	14	24 23 21	27 27 28	30 24 24		37 30 23		24 22 23			38 35 29	38 20 14	37 31 30	36 37	42 37	28 19	41 39 38
	2時	26 19	28	17 19	21	20 18	28 22	25	24 18	20	23 25	25 19		21 20	14 12	23 23		14	16 17	20	24 21	34 36	39 25	9	32 19
	4時 5時	12 19	9	14 13		14 16	16 14	20	15 12	19 17	24 20	19 12		15 15	11 8	19 18	22	12	15 12	20 20	- 14	19	21 20	4	17 15
	6時 7時	16 18	7 11	14 13		11 9	13 14	15 14	12 16	15 19	19 21	6 15		14 14	7 13	20 22	10		8 12	16 18	13 17	6 8	20 26	4 6	14 17
	9時	23 30	19	20 30		15 23	15 20	13 20		23 29	26 29			18 25	15 20	24 30	24	21	15 25	27 36	32	15 32	29 36	15 30	32 36
	10時 11時 12時	37 	47 67 69	44 54 66	45 61 74	37 55 68	32 49 64	31 47 67	32 33 47	33 34 35	33 50 52	34 51 76		42 60 81	34 48 49	27 25 32		39 55 64	39 50 56	41 47 51	41 56 57	36 36 37	38 40 41	51 52	38 40 40
8月3日	13時	- 49	63 67	77	79 88	73 79	82 101	80	64	35 31	43 45	84		88	47 43	42 42	53	67	62 55	44	54 52	38	39 36	52 49	37 34
	15時 16時	58 60	79 94	86 92	99 109	89 102	122 135	114 102		29 28	37 36	59 48		60 46	35 29	36 33	43	51 37	51 53	50 51	51 53	31 29	35 39	51 -	36 37
	17時	56 41		78 75	125	116 60	116 71	61 41	33 30	28 24	31 27	37 34		34 30	27 24	28 26	23		52 48	52 47	43 39	30 25	42 38	39 36	32 30
	20時 21時	28	49	66	55 37	38 30	45 35	24		22	25 23	29		26 24	18	23	7	27	45 43	40 34	42 42	26 24	41	23	31 34
	22時	18 12 10	26 21	49 40 30	28 25 18	25 23 22	27 19	22 22 21	19 19 17	20 17 15	24 24 19	19		22 20 20	15 16 16	19 19 20	13	23 19 17	39 34 32	29 24 19	32 25 23	22 24 23	38 35 27	16 12	32 28 26
	24時	11	18	26 26	13	21	3	21	16	15 14	14	15		19	12	18		16	29	19	17 18	22	20	7	25 22
	2時	9	17 11	21 21	0	3 1	3 2	17 16		14 13	* 20	15 12		14 11	4 2	20 21	18 15	10 10	11 12	20 20	15 11	19 16	15 13	3	16 17
	4時 5時	7 5	- 6	24 20	8 2	1 1	3	10	10 8	12 12	19 16	9		<u>6</u>	2 1	13 8	7	12 5	17 7	21 18	11 14	8 2	10 11	3	12 7
	6時 7時 8時	8	9			5	3 5	12		12	14 16	13		11	8	10 13 17	16	8	14	15 20		4	12 11	3 4	12
	9時	12 20 29	23	39	28	12 24 47	11 29 43	12 23 41	23	18 18 21	18	22		21 38 61		25 26	29	31	24	26 48 54	19 25 36	18 24	23 30 32	27 40	19 28 39
8月4日	11時	38 63	63		-	73 94	66 88	64	31	23 23		42		86		31 42	41	80	48	55 54	49 57	25 30	32 30	47 56	42 43
8,40	13時	83 88	82 84	85 82	112 121	107 118	102 114	106 109	46 36		32 26	66 52		89 62	38 29	36 30	47 34	68 43	60 56	60 61	59 57	39 38	29 35	50 48	35 35
	15時	102 98	95	78	74		128 120	88 65	18		17	27		45 33	20	24 21	22	31	50	58 53	51			48 44	
	17時	51 29	54	57	74	70 46	76 52	31	15	12		12		27		17	5	18		45		29 30	29 30	34 32	27 26
	19時 20時 21時	20 13 10	40	47	29	32 21 16	38 26 17	25 17 12	13	11	12	12		16 13 12	8	10 8 8	6	14 11	46	33 26 19		21 17 16		25 15 12	27 17 14
	22時	5	12		15		14	9	10					11	5	8	3	9	38	21			13 10	6	11 9
	24時	6 5	_	23 13	7	10 8	8	10	7	_	_	_		7	_	6 8		16	25	23 22	28	8	- 9	- 3	7
	2時	5 5	4 3	13 11	6	6 7	2	10 9	8	8 7	***************************************	6		12 11		12 13	12		20	21 22			7	2 2	5 4
	4時 5時	2	2	11 15 17	0	2	2	4		2	0			11		10 6 5	5	15 6	13	24 19			5 7	2	6 7
	6時 7時 8時	6		24	6	7 12	6 15	5 12	5 6	3 4 6	7	6		14 17	7	5 6	9	13	10	19 20 29			6 10 16	3 6 15	13 17
	9時	15 26		42	25	28 59	25 52	28	7	9	12	6		31	13	8	12		27	34	36		22	28	18
8月5日	11時 12時	41 41	65 89	70	84	81 84	79 90	63	12	11	16	15 15		31 21	9 10	10 13	-	25 14	52 52	38 41	60 72	31 15	22 21	30 24	25 21
0/100	13時	40 32	98	95 103	85	60 53	50 45	32 34	15 18	11 10	18 14	19		24 24	12 11	13 13	15 15	17 20	49 45	40 30	74 68	17 16	17	27 25	17 15
	15時	24 18	89	88		50 44	43 44	29	14			19		24	11	12	10			25 27	70 55	17 19		20	14 12
	17時 18時 19時	20 12 9	41	59	42	38 27 18	30 15	23 16	12	10 10		14		20 15 10	8	11 9 6	5	16 12 10	28	28 25 18	43 36 33	13 15 12		18 14 11	14 10 8
	20時	9 8 4			15	18 11 9	2	8		9 8				6		5 4		8	23 16 15	18 14 12	33 32 36	7 8	12 10 10	6	7 7
	22時	4	7	43 36	9	6 19	1	4	8 8			8 7		5	3 3	5		5	12 15	9	37 35	9 8	10	2	6 5
	24時	3	5	29			1	4	7	8		7		3	2	4		4	22			6	10	1	4

表3-2-7	7 10月 地点名 時刻 1時		栃木県 真岡		群馬県 館林	埼玉県 鴻巣 11		さいたま市 さいたま 12	千葉県 市原	千葉県 勝浦	千葉県 富津 10	千葉市 千葉	東京都綾瀬	東京都 多摩	神奈川県 大和	横浜市 横浜 14	川崎市 川崎 8	相模原市 相模原 15	山梨県 甲府 20	山梨県 吉田 12	長野県 長野 32	静岡県 富士	静岡県 湖西	静岡市 静岡	浜松市 浜松 13
	2時	16 20	17	33 32	10 13	14 16	3 5	6 7	4 3	2	10 11	2		7		4 5	- 15	10 8	12 8	17 18	32	5 6	12 11	5 6	9 15
	4時 5時	23 24	15 17	17 15	5 6	19 18	10	12	3	<u>5</u>	10 9	2		19 17	12	7	13	13 13	12 10	17 12		11	10 11	5 8	11 8
	7時	21 19	20 22	18 22	6	13	5 5 11	13	11 19	16 27	13 23	15		16	12	7	4	5	10 9 10	10	10	11	5	8	8
	9時	21 34	20	23	17	19	21	25 28	33	35	26 34	25 28		27	15	27	20	13 19	20	25 35	27	14	29	12 19	15 25
	10時	34 38	33	19 33		21 26	27 30	29 32	34 41 44	41	39 43	30 31		27 31 32	19	***************************************	32	20 21	25 28	36 38	48	32	40 47	44 51	36 50 62
10月21日	12時	39 39	37	39 36	33	30 37 40	33 37	36 42 41	41	43 43	45 48	32 34		36 41	24	-	31 44	25 32 37	41 54	40 38 42	58	36 43	65 75	55 58	66
	14時 15時 16時	40 39 39	39 42 42	25 26 24	36 37 40	40 40 37	39 39 36	41	41 40 36	43 43 41	48 49 47	35 33 32		44	32 32 37	36 34 27	30 32 37	42 42	58 57 58	38 34	63 61 59	42 40 40		58 59 58	68 69
	17時	37 33	38	26 21		35 28	35 30	31 24	35 31	38	42	26 17		36	19		35 31	39	51 45	27	48	38	70 61	54 50	63 57
	19時	27 27		17	31 16	23 17	23 21	16	24 25	35 32	32 26	19		13	6	18	23	25 17	41 39	21		19		44 24	35 28
	21時	24 15	22	16	13	15 14	23 21	22 20	28	28 25	26 26	21		13	7	13	23	8 2	37 34	19	33	10		15	22 14
	23時	14 12	25	9	3 6	15 12	21 19	23 25	30 33	22 19	16 14	18 21		1	5	6	14	6 7	32 21	19 21		3	15 16	10	22 23
	1時	5 9	10 12	- 3	3	4 1	- 14	17 4	21 9	23 19	14 8	- 11		0	10	5 4	4	10 11	16 14	23 24	17	- 2	- 12	- 8	- 9
	3時	15 10	6 7	10 12		1	8 4	1	5 5	16 14	8	7		2	2	3	2	6 2	11 13	27 22	11	4	11 11	7 5	11 22
	5時	6 4	7 5	9 5	1	1 2	7	1	2	5 3	5 3	1		1	1	1 1	2	2	3 8	19 12		3	23 30	6	15 3
	7時 8時	2 5	3 7	9	2 4	5 8	5 7	1	2 6	3 18	4 9	1 4		3	5	2	2 5	2 5	9 10	11 16		4 8	31 30	6 12	10 21
	9時	14 25	21	15 21	12 21	14 24	11 22	8 17	17 26	27 32	16 28	15 24		13 14	11	11	9 16	- 7	18 32	22 36	22	18 37	47	21 33	29 43
10月22日	11時 12時	30 37	-	34 40	48	33 43	32 42	25 35	38 39	41 47	37 40	29 30		34	21 29	16 23	17 28	-	41 51	45 48	31 39	33 44	56 63	50 59	52 58
	13時	39 41	46	51 58	61 56	54 53	45 44	50 45	42 40	53 52	53 46	33 35		47 58	35	40 48	58 58	45 54	58 62	49 53	43	48 47	78	65 66	65 68
	15時	40 41	40	63 54	52	47 45	44 42	46 44	43 37	51 48	46 50	36 31		64 55	50 44		39 39	49 51	56 57	57 61	44	50 54	76 74	62 62	69 68
	17時	40 37	31	45 37	41	37 35	40 35	40 38	40 35	44	46 42	27		37 35	30 26	26	35 35	38 32 29	56 57	57 45	42	53 44	72 69	60 45 29	66 63
	19時 20時 21時	33 31 27		35 32 34		37 36 36	37 37 35	37 37 37	32 30	41 40 37	40 39 37	25 25 22		34 34 37	26 28 28	25 26 22	34 35 32	29 29 31	59 59 58	46 43 32		50 49 42	68	20	62 54 46
	22時	26 23		32 29	34	33 28	31 26	35 34	27 30 25	32 26	35 35	18		35 35	23	24 22	34 33	32	57 56	26 25	33	32 29	62 51	15 12 15	43 33
	24時	24		25 24	22	26	26 25	34 26	19 30	23	32 26	19		33	30		31 35	33 29	53 47	23	31	21	32	14	32 30
	2時	29 33		24 24	26 25	22 25	21 23	24 22	31 27	*	23 31	28		33	30 29	34	35 34	29 32	41 25	22		8	25 28	6	30 24
	4時	31	16	22	24	26 23	16 17	21	23	34	27 25	20		25	30	33	30	28	27	22	25	8	27	5	20 23
	6時	30 28		25 23	20 18	18 18	12 10	15 10	21 20	32	23 21	18 16		20	21	25 18	26 22	16 12	23 17	26 25		10	17 17	3 2	19 14
	8時	26 26	10 14	22 26	12	18 19	11 12	13 16	22 25	31	24 29	22 25		15 22	14		19	15 22	13 12	27 27	21	5 10	13	6 24	17 30
	10時	29 32	23 30	30 34		26 31	19 26	21 28	30 34	36 43	29 33	27 29		29 32	27 29	19 19	25 28	28 32	27 35	29 29	26 35	20 30	40 41	36 44	37 44
10月23日	12時	35 40		37 37	43 46	39 46	33 41	36 38	37 43	45 45	34 37	30 33		34 37	29 28	20 26	29 36	34 37	42 44	31 30		41 45		51 55	48 57
	14時	42 43	45	40 41	49	49 50	44	41 41	40 43	44 45	46 47	32 33		39	34	32 35	36 38	37 37	44 43	30 28	49 52	42 41	63 64	58 57	61 59
	16時	43 41		41 36		50 48		41 37	42	43	44 42	35 30		37	31	30 26	39 29	36 35	41 41	27 25	52 45	43 46		53 50	57 55
	18時	36 34	41	19 20	40	36	35 36	28	33	33	38 35	12		18	12	25 31	30	17 15	41 45	20	34	46 40		33	52 45
	20時 21時 22時	28 31 30	42 39 29	13	37 39	32 31 34	30 23 21	28 26	25 14	12	32 23 15	3		14	13 16	28 24 27	25 19 26	12 11	43 45 44	16 10	32 32 32	38 29	46 32 32	22 17	32 29 26
	23時	31 24	27 27	10	15	31 24	24	21 24 22	4	6	13	6		8	13	18	19	13 4	45 40	10	31	23 8	34 25	12	27 27
	1時 2時	16 13	22	10	11	7	14 20	21	7	2	10	2		10	8	6	7	5	31 35	13	14	- 2	- 16	- 7	16 13
	3時	12	19 14	2	7	7	14	15	3	1	7	1		13	2	5	3	3	31 24	17	9	3	10	8	13 10
	5時	1 0		7	7	6	4	4	3	1	6	1		5	3	1	3	2	19	19		5	10	8	18 23
	7時	1 7	6	6 14	5 9	11 9	5 9	5 9	1 4	1	6 9	1			3	3 5	4 6	2 5	12 12	21 26		8 14	8	8 13	25 25
	9時	23 37		23 28	16	17	17	14 28	16 28		20 25			16 26			7 14	15 28	19 32	31	17	20	18	21 35	32 44
10月24日	11時 12時	45 50	60	35 44	59	59	54	37 47	40 36	47	34 53	42		42 54	48	48	29 38	39 45	43 53	54	48	45	55	45 49	56
	13時	58 58	71	50 57	84	68	70	56 65	50 53	47	56 58	48		63	51	52	48 55	56 57	60 61	56	65		62	57 59	58
	15時	61 58	76	66 73	86	79	70	69 62	50 49	42	53 51	50		62 59	48	53	55 58	57 54		57 57	59		56	63	61
	17時	52 46	45	66 36	63	42	51	59 43	49	41	47 48	42		52 42	38	47	50 49		57 53	43	54	51 51		64 59	
	19時 20時 21時	40 29 20	37	29 27 25	37		39	34 28 39	45 35	48	46 43 45	37		26 18 23	28	51	50 48	31 23 14	48 42 37		45		55	52 39 31	46 45 55
	22時	13	21	34 42	25			33	28 32 44	50	45 42 36			22	19	35	48 34 25		27		44			26 27	
	24時	14	25	45	42	37	39	39 46	30	27	25	29		15	32	35	30 41	25	18	51	43	20		23	
	2時	39 35	42	44	47	45	44	46 45	39 31	38	41	34		43	39	45	45 45	43	45	54	38	16		16 15	58
	4時	34 34	39	39	45		40	42	25			38		42	40	44	43	43 41	44	43	34		47	13	45
	6時	31 26	34	37	39	35	38	38 36	34	39	33	36		39	37	39	39 37	38	38	38	34	33	45	12 16	43 41
	8時 9時	27 33	31 37	38 37	41 42	35 37	38 39	36 38	33 32	38 38	32 32	32		36 35	32 34	38 37	36 36	37	36 36	41 43	34 36	39 38	40 39	20 29	39 38
	10時 11時	37 39	40 42	38 38	42 42	39 38	39 39	39 40	34 36	39 42	36 37	35 36		38 40	34 36	40 42	38 40	38 41	37 40	43 43	37 38	38 38	39 41	39 48	38 38
10月25日	12時	40 38	45 48	38 39	42 43	39 39	40 40	40 40	36 40	44 44	36 40	37 37		41 42	36 37	43 43	42 42	41 43	41 43	44 44	40 40	39	43 44	53 57	38 39
	14時 15時	37 36	47 45	39 40	43 44	39 39	40 40	40 41	33 35	45 45	39 38	37 37		41 40	37	44 42	41 40	42 41	42 43	44 44	40 40	53 56	45 46	58 58	40 41
	16時 17時	35 34	39	41 42	46 45	40 40	41	41 41	37 35	43 35	37 37			39 38	34	38	39 38	39 38	42 40	42	38	59 55	42	53 42	40
	18時	32 32	40	41 39	44	40	42	40 39	39	34	36 37	34		37	32	36	37	37 34	36 37	29	33	47	40	32 24	40
	20時	31 29	28	39 40	41	39	41	38	38	34	35 36	35		34	30	36	37 35	33 26	38 39	30	33	33	42	22	37
	22時	22	25	41	43	38 34	42	34 36	37	35 35	33 32	35		18	26	35	36 36	19 12	37 33	29 31	27	22 25	39	21	35 34
	24時	20	25	41	42	35	39	36	38	34	34	35		13	20	34	37	15	27	32	25	27	38	18	32

表3-2-8	10月 地点名 時刻 1時		栃木県 真岡			埼玉県 鴻巣 37		さいたま市 さいたま 38	千葉県 市原 40	千葉県 勝浦 31	千葉県 富津 36	千葉市 千葉 36	東京都綾瀬	東京都 多摩 21	神奈川県 大和	横浜市 横浜 32	川崎市 川崎 38	相模原市 相模原 11	山梨県 甲府 26	山梨県 吉田 33	長野県 長野 21	静岡県 富士	静岡県 湖西	静岡市 静岡	浜松市 浜松 31
	2時	20 25	15	41 37	40 37	37 37	34 35	39 38	38 37	31 28	39 40	35 34		18 18	20 22	33	39 40	10 18	24 22	32 29	18 16	29 26	34 33	13 13	30 28
	4時 5時	18 14	14	37 36		38	34 28	37 39	20 25	26 27	40 32	26 19		18	21	32 32	39	5 5	21 18	29 29	14	27 29	32 27	12	27 26
	6時 7時 8時	5 1 4	9	29 25	15	36 32	24 16 22	35 28 23	22	28 30	30 27	9 4 16		17 7 8	12	27	35 30 27	10 11	18 14 18	26 22 28	10 11 16	29 26	22	11 11 14	23 22
	9時	16	15	31	30	28 33	31	28	25 25	31 34	22 31	23		23	25	26 25	30	31	21	34	24	26 28	19 21	17	24 28
	10時	29 34 40	39	40 44 44	42	39 42	36	36 41 45	29 25	36 40	35 37	35 36		36 42	32	29 30	32	34 37	26 32	39 45	30 41 49	31 35	42	25 37	32 39
10月26日	12時 13時 14時	42	47	44	53	43 47	45 55	48	28 31	44 47	35 35	37 40		44	34	26 25	34 40	39 43	35 42	44 45 48	49 46 44	34 42		45 51	43 48
	15時	46 49		46 47	70	50 55	63 62	52 51	32 00	49 50	39 52	40 35		50 55	33	31 30	35 29	44	46 46	49	45	42 39		53 55	49 50
	16時 17時 18時	50 42 35	50	50 47 34	59	59 62 48	66 52 33	50 31	26 19 35	53 47 31	50 46 46	37 41 24		55 35 31	30 26 16	32 30 25	33 29 34	38 35 34	50 48 36	48 43 40	38	42 41 39	52 50 42	53 50 36	48 45 43
	19時	32 33	19	27 22	17	31 25	19	18 25	28 31	24	35 30	15		27	10		37	25 15	30 24	26 22	26 24	36 28	24 18	27 23	31 24
	21時	26 21	19		19	15 15	12		29	10	34 27	13		12	3	23 18	36 27	11 11	23 16	22	19	9	14	19 15	19 19
	23時	6	18	10	22	10	11	2	28 21	7	23 20	10		<u>4</u>	6	20 16	28 18	8	8	23 20	21	7	9	14	22 25
	1時	14	13		7	12	2	2	22	2	23	11		10	9	6	9	2	- 3	- 14	26 25		- 12	- 12	25 25
	3時	9	12	25 26	13	9	10	12	15	2	15 14	4		4	10	5	7	2	6	21	26 23	10	12	13	22 20
	5時	0	-	26 26	4	13	2	13	1	2	8 7	1		5	11	4	5	7	2	23	22	10	8	11	20 19
	7時	2		24	4	6	4	2	1 5	2	6	1 2		2	2	3	5	2	4	26 25	17	9	6	12	22 24
	9時	14	15	30		27 35	20 32	16	16	24	34	12		11	7 23	14	9	20	14	37	25	17	33	26	25 34
	11時	30 41	50 53	56 61		47 60	42 47	29 23	35 37	44 45	42 45	39 41		29 43	- 33	40 40	37 40	35 38	30 39	44	45 48	37 41	51 54	35 44	46 51
10月27日	13時	46 45	58	68 74	83	72 93	49 51	34 44	39 42	50 49	51 52	42 42		43 42	34 38	41 42	42	34 34	50 53	45 45	47 48	45 48	57 57	46 49	53 50
	15時	45 45		78 75		88 51	43 41	43 43	42 41	46 44	53 48	41 40		39 42	37	41 42	41	35 41	50 43	45 46	46 45	43 42	56 56	50 49	49 47
	17時 18時	43 36	40 40	68 32	67 48	43 41	41 32	42 42	37 38	43 44	47 45	38 36		43 40	34 33	40 41	28 31	40 38	42 36	44 43	45 43	41 40	55 46	46 33	46 40
	19時	35 35		24 28		39 40	35 35	40 39	39 31	44 43	41 41	36 35		41 39	35 28	37 34	29 31	38 35	38 38	43 43	42 43	35 22	45 39	20 14	33 21
	21時 22時	37 29		30 25		37 34	28 28	31 31	34 29	41 41	39 37	33 32		38 39	23	35 37	29 23	35 33	31 26	43 42	41 43	30 23	30 28	12 10	17 19
	23時	30 34	29	27 22		23 22	17 20	32 35	31 39	41 38	42 38	32 34		35 37	33	37 32	36 34	30 32	22 9	41 37	42 40	3	33 32	11 7	20 22
	1時	35 33	32	22	5	19 17	26 11	32 22	36 35	32 22	34 31	32		0 36	26 22	33 30	32 	33 32	10 9	35	41	- 3	- 32	- 9	22 17
	3時	28 21	25	17 19	3	19 18	2 8	18 20	31 26	24 36	28 33	32 31		35 26	14 24	30 19	27 21	24 22	5 9	32 29	36 33	2	26 15	8 11	17 14
	5時 6時	16 9	12	22	2	17 9	1 2	22 18	18 11	37 36	30 17	29 13		12	10		16	9	4 3	22 14	26 21	1	11 19	6 4	10 7
	7時	8	10	23	12	12 16	11	14	6 11	34 32	28 30	11 10		7	12	16 9	14	9	8 11	10	18	13	24 31	8	11 24
	9時	22 34	30	35 38	43	27 43	34	35 43	12 23	31 34	22 18	22		20 37	20 25	23 34	26 39	28 35	20 28	29 39	32	21 25	38 43	18 32	34 40
10月28日	11時 12時 13時	37 43 47	42	40 41 41	55	56 61	41 44	51 66 62	33 40	36 36	26 40 48	34 44 61		57 59 62	30 45	39 35	45 52	56 50	36 41 49	44 46 47	39 44	30 35	51	36 44 48	42 46
	14時	50	44	41		63	48 51	56	48 74	36 43	53	63		69	53 55	- 33	59 52	59 62	50	47	39 36	36 42	54 53	51	52 53
	15時 16時 17時	51 51 47	45 43 40	35 35		47 39 30	48 46 43	57 49 34	65 62 49	40 51 51	62 76 65	60 49 42		69 49 41	59 55 27	34 38 32	37 47 53	62 51 39	46 44 40	51 55 60	37 36 35	42 43 40	51 45 42	52 50 50	50 44 39
	18時	48	43	35 36	49	27 21	43 43	39	45 46	49	49 49	37		33			21	28 29	37 34	54 42		39 38		29 19	37 36
	20時	42	32	36 36	46	41	43 35	40	48	51 49	49 50	41		37 39	29	39 40	41	28 38	32 31	41	34 33	25 17	39 40	18	36 36
	22時	31 31		32 25	39	40	29 28	41	43	48 46	49 47			46 37		35 39	44	30 27	28	34	33 31	19	41	14	36 35
	24時	29	28	28		28	24	30	34	43 40	40 36			34	31	35 28	31	28 25	27	27 26	28	16	42	- 6	34
	2時	26 23	30 29	30 24	24	28 29	24 22	29 24	30 27	39 39	34 28	26 29		27 25	26 22	24 26	32	26 23	23 23	26 30	28 18	13 16	42 43	3	34 35
	4時 5時	22 24		25 28		28 24	22 19	22 24	26 24	38 36	27 29	-		26 25	21 23	28 28	27 25	21 25	22 23	28 30	16 12	7	43 43	2	35 36
	6時 7時	26 23	24	22 16	21	22 21	19 16	19 21	24 21	33 33	26 25	-		21 21	21 19	28	25 23	19 14	25 23	28 28	10 9	12 21	43 42	2 3	35 35
	8時 9時	20 18						18 15	23 26	32 32	26 29			17 16			21 17	12 15	23 	27 28		24 27		7 31	35 35 37
	10時	17 21	25	34	28	27	25	20	24	37 37	29 29	-		17 21	18	23	18	21	-	29 30	39	23	39	36 40	39
10月29日	12時	21 21	28 31	41 41		25 32	30 31	25 29	22 28	37 36	30 30	- 23		29		18	- 19	25 29	-	30 29	45	29 30	41	47 51	40 42
	14時	26 26	31	37 36	37			31 29	31 29	37 39	30	25		31 30		22	20 25	27 26	-	32 36	43	24	54	53 52	
	16時	28 25	23	24	26	28	20	29	29 29	35	34 30	14		28	8	16	19	14	42		35	43	48	54 49	47
	19時	17 20	14	20	14	12	11	16 12	27	27 18	25 17	8		10		13 16	13 19	7	44 45	19	30	39 33	37	33 22	37
	20時 21時 22時	25 16 7	15	27	6	10 10		8 11	18 17 18	19 12 8	11 11 12	11		1	2	11 11 15	20 21 17	2	37 33 36		19	7	38 35 33	18 15 13	38
	23時 24時	8 9	10		3	10 11 12	10	8 9	16	4 2	13	3		1	1	15 13 12	17 12 17	2	36 31 25	12	16	5	35	13 11	37 38 37
	1時 2時	- 4	9	21	3	- A	10	6	11	3	8	0		1	1	13	13	2	24 24	10	13	-	- 39	- 7	39 36
	3時 4時	7	6		2	9	4	7 15	9 4 2	2	9 12	3		1	1	1	10 5	2	24 25 24	14	8	4	40		43 46
	5時 6時	9	4	28 32	4	14		12	2 1 3	1 2	13	0			3	1 0	2	2 2	18 18		3	4	42 42	3	46 46 40
	7時	3	3	31	8	4	15	9	8	11	11	1		1 3	1 5	7	5	2 3	14		5	4 8	35	7	36
	9時	7	7	27	9	17	12	20	15	16 27	12			9			12	8	20		8	11	45	19	45 52
	11時	26	21	38	24		23	22	18	33 34	25 20	25		24 34	18	12	30	20	32 42	42	17	24	53	44 50	54
10月30日	13時	36 41	39	49	45	42	41	42 46	29 29	38 50	20 33	36		38	25	14	26	33	48	46	34		55	51 53	55
	15時 16時	47	50		55		53	46 44	29 39	51 48	52 52			45 51		39	33	45 48	54 51		41		56	53 52	58
	17時 18時	45 35	45	41	51	46	43	36	26 23	37	49	39		46	32	43	27	46 37	52 47	45	42	36	52	49 48	50
	19時	32 28	26		18	19	11	8	28 26	14	28 25	19		34 19	9	22 16	30 29	24 17	51 43	21	36	16	44	47 40	43
	21時 22時	16 15	24	39 38	21	23 26	17 16	20	20	8	17 16	11 3		27 37	6 29	5	17	12 19	37 38	24 25	28	13	43 42	24 24	40 37
L	23時	16 23	18	38	13	22	17	26 27	12 10	5	14 13	2		38	32	33	30 28	26	30	26	27	14	40	21	37

表3-2-	9 10月 地点名 時刻	31日~ 茨城県 +浦			群馬県 館林	埼玉県鴻巣	埼玉県	さいたま市 さいたま	千葉県 市原	千葉県勝浦	千葉県富津	千葉市 千葉	東京都綾瀬	東京都多摩	神奈川県大和	横浜市横浜	川崎市	相模原市 相模原	山梨県甲府	山梨県吉田	長野県長野	静岡県 富士	静岡県湖西	静岡市	浜松市 浜松
	1時 2時	29	21	37	14 16	28	13	27	13	4 8	14	5 8	19,19	38	34 35	33	27	32	23	21 21	21	-	- 36	- 27	32
	3時	25 25	20 23	34 35	9 16	27 24	17 11	28 26		11 21	8	10 13		34 32	33 30	28 24	21 21	29 27	19 21	22 22	16 15	13 12	35 38	19 15	37 34
	5時 6時	23 24	23 20	33 31	12 8	26 26	8 8	27 28	20 19	15 18	9 16	13 13		32 29	28 25	19 17	27 26	29 17	18 19	21 14	15 14	9 11	36 37	19 17	34 33
	7時 8時	22 21	18 17	26 28	9 13	22 23	12 20	22 22	18	21 27	11 24	8 10		23 17	23 21	17 13	25 22	8 10	16 13	8 12	12 9	11 14	37 37	15 20	32 34
	9時 10時	23 24	24 26	28 28	14 24	26 29	29 28	23 25	24 28	35 36	29 30	12 20		9 20	20 17	23 22	18 16	11 15	15 22	22 29	20 27	15 19	36 37	21 23	33 34
10 8 0 1 0	11時	26 33	27 25	32 33	28 27	27 19	25 21	28 29	33	36 36	35 36	28 29		24 25	18 18	25 21	17 16	20 25	30 36	30 31	34 36		38 39	29 36	36 38
10月31日	13時	33 32	27 27	32 33	28 27	23 28	24 28	29 26		36 36	37 36	28 26		24 27	20 20	19 26	20 18	25 25	44 51	32 32			41 45	36 35	38 41
	15時	32 30	27 27	36 32	28 28	31 34	34 32	34 34	35	35 34	35 35	27 22		29 31	25 25	21 24	20 30	27 28	53 51	29 25			44 43	37 40	42
	17時	25 18	25 21	23 12	24 19	33 23	28 20	31 27	32	32	34 33	23 24		30 29	26 23	23 25	30 28	24 24	40 32	21 17	35 35	36 18	42 41	38 20	38 36
	19時	13 13	18 16	12	20 20	19 20	19 17	21 18		33 32	29 27	22 20		27 26	21 25	19 25	29 27	25 23	28 26	17 18			40 39	15 16	37 36
	21時 22時	17 21	15 14	17 33	14 7	17 9	16 16	17 16		31 31	18 23	21 14		22 20	21 19	27 25	24 23	22 23	32 32	17 19	23 18		38 38	14 12	35 33
	23時	22 26	10 9	32 32	5 3	8 5	16 16	15 13		31 27	19 19	12 13		8 5	16 11	22 20	20 16	12 13	32 29	21 20	15 17	10 14	36 34	10 9	28 27
	1時	22 23	. 6 7	29 29	3	4 7	14 7	13 12		23 23	22 21	13 14		5 6	6 6	11 6	13 14	14 13	28 23	18 17	13 11	- 10	- 28	- 6	24 20
	3時 4時	20 15	6 8	26 24	2	14 15	7	10 9	19 25	24 24	12 13	12 15		5 6	8 8	6 8	10 11	4	21 19	17 15		8 6	26 23	5 5	19 19
	5時 6時	9		21 20	2	14 19	5 4	18 11		24 28	14 14	17 13		4	6	17 25	18 24	2 2	18 15	18 16		8 9	20 17	<u>4</u> 5	19 17
	7時	1 4	5 9	21 22	3 7	18 21	11 22	11 22	13 20	28 29	13 16	10 18		10	8 12	25 17	22 15	2 9	15 16	13 17	7 14	11 14	17 17	6 9	15 21
	9時	12 25	15 28	26 31	14 29	24 31	26 30	25 29	22 26	28 32	22 27	20 27		20 24	16 22	22 24	20 26	20 26	25 31	26 32	18 22	21 26	19 27	14 22	25 28
11月1日	11時 12時	35 39	37 40	37 41	36 43	35 46	36 43	35 39	40	37 41	27 29	32 36		32 36	31 35		33 38	30 36	35 39	37 37		36		37 42	32 41
	13時	40 41	41 44	43 45	48 54	50 48	44 47	41 43	41	44 44	34 34	35 38		41 44	37 35	37 42	40 40	39 42	45 49	38 39		41	45 52	46 48	46 48
	15時	42 42	46 49	46 45	58 54	46 45	48 48	43 41	40 42	44 42	38 38	40 39		45 42	36 35	41 36	43 38	43 40	50 50	38 36	44 44	44 44	53 54	49 49	49 50
	17時	39 34	46 30	43 34	48 31	41 23	45 27	36 30	42 40	33 22	33 22	29 21		37 30	29 15		32 28	36 24	43 43	32 27	29	35	53 44	40 32	50 46
	19時	32 33	22 15	37 31	27 25	34 21	19 27	9 5	31 30	17 12	23 18	19 20		17 10	7 2	6 5	14 24	21 22	40 41	21 13	27 22	28 19	31 32	25 21	34 32
	21時 22時	26 1	12 15	27 22	19 12	9 15	22 23	8 14	29 25	9 10	18 22	17 17		10 12	7 14	16 37	37 34	23 21	31 28	14 16	18 28		35 34	20 19	29 28
	23時	6 10	14 15		20 20	12 8	20 15	18 13		11 20	24 19	18 19		9	18 17	17 2	24 13	19 18	27 18	16 16		16 17	32 30	18 17	27 27
	1時	6 8	14 10	17 17	_ 19	12 10	13 12	3 2		23 29	24 26	18 14		10 11	11 13	11 14	3 4	8 9	19 20	18 19	34 28	_ 20	_ 30	- 14	27 27
	3時 4時	2	10	19 25	16 12	5 8	16 12	10 12		30 31	31 34	8 16		12	13 14	11 11	5 6	10 13	20 17	22 22	28 27	21 12	35 28	15 14	22 20
	5時	4 5	9	24 25	8	10 13	8 7	9 10		33 35	30 19	13		10	17 18	12 12	10	12 7	12 11	19 19		7	25 22	12 12	19 23
	7時 8時	8 10	9	25 19	4 3	13 10	6 9	10 14	14	32 29	16 11	9		11 7	15 9	13 18	9 13	7 11	10 8	18 15	22	12	26 31	11 9	18 19
	9時 10時	10 -	8	18 16	10 15	14 20	10 19	14 18		26 26	17 14	18		18 25	14 22	21 21	12 19	23 18	10 21	18 11			29 31	11 12	20 29
11月2日	11時	9 13	22 27	23 23	20 21	19 17	23 26	17 16	18	25 23	18 15	22 17		16 16	18 15	22 20	19 20	12 11	24 21	16 29			36 29	17 19	34
11720	13時	13 13	22 27	25 21	19 22	24 23	25 24	23 24	17	24 23	19 24	18 16		16 15	16 13	23	23 26	12 11	26 27	27 27	24 25	21 18	23 21	16 -	32 25
	15時	14 13	23 22	25 20	19 13	21 19	20 19	23 23		21 26	22 17	16 15		19 20	9 11	21 21	27 23	16 10	24 21	29 23	24 22	19 8	20 22	14 12	18 17
	17時	16 17	20 16	15 6	11 3	11 4	12 6	10 5		27 25	16 16	14 4		13 7	6 4	14 6	13 5	7 2	18 14	15 17	17 15		25 26	12 8	19 24
	19時	10 6	12 8	2	2 1	3 1	4 3	2 1	13 5	22 23	14 6	4 1		2	2	3 2	5 2	2	10 8	7 6	14 15		25 21	6 5	28 28
	21時	2	5 1	2	1	1 1	3	1 1	6 11	14 9	6 8	0 1		2 1	1	1 2	3	2 2	6 7	7	10 8	6 8	19 19	2 3	26 26
	23時	1 2	7	2	1	1 2	3	1 2	11 17	6 19	11 20	3 7		1 1	1 1	5 17	7 17	2 1	5 5	<u>4</u> 5	7	9 11	19 21	6 4	23 25
	1時	1 3	7 4	- 4 5	1	2	3	2 1	15 15	25 31	19 -	- 18		0 3	1 2	2	18 5	1 3	- 4	- 13	6 4	- 7	- 27	- 7	24 26
	3時	13 15	4 8	6 15	1	1 0	3	0	17 13	26 14	11 7	15 12		9	5 9	2 13	2 11	12 16	4 6	17 19	4	6 4	27 25	10 10	25 24
	5時 6時	14 12	_ 6	21 21	0	0	3 4	0	***********	11 11	15 16	9 12		8 1	10 7	10 3	8	14 3	7 10	19 18	4 3	4	28 29	10 5	29 32
	7時	13 9	5 7	19 25	1 8	2 7	4 6	2 4		14 19	14 11	11 10		2 4	4	2 4	3 5	2 5	10 10	18 20	6	3 6	30 34	5 10	30 31
	9時	11 20	9 13	31	17 22	13 23	10 18	10 14	20	23 27	15 14	19 26		8 19	7 17	11 24	13 27	8 17	12 19	38 45	20		35	15 20	36
11月3日	11時	26 30	25 29	43 43	30 41	41 44	26 34	30 43	31 34	35 38	22 30	29 33		35 41	24 33	35 42	34 41	28 36	25 32	46 45	37 44	21 31	39 45	29 33	42 41
,,,,,,,	14時	33 36	38 44	43	49	45	39 42	45 46	46	42 44	37 44	37 42		43 45	37 38	46	46		41 44	45 44	45	38	50	38 42	41
	15時 16時	39 38			48 47	43	45 43	46 45	46	45 46	52 50	42 37		46 45	40 40	45			44 46	41 38	42		48	44 43	40
	17時	32 29	35		40	33	40 32	40 34	35	40 21	46 37	30 19		42 36	37 33	38	37	40 37	44 36	34 27	38	36		38 21	30
	19時	23 16		38		23	27 22	33 27	28	13 13	33 29	15 6		35 35	29 29	35	29	33 30	30 31	23 19	22	19		15 12	26
	21時 22時	10 16		31	22 9	29	15 23	27 30	24	7 6	22 26	3		35 31	29 21	28		28 27	22 22	18 24	12	6	16 15	9	28 27
	23時	20 13	14	28	12	23	25 20	34 29	25	6 14	29 20	2	$\leq$	26 10		35	33		17 14	23 16	8	5	12 8	8 6	24 20
	1時	6	13	26	8	18	13 6	25 21	23	12 8	20 18	2 5		5 4	8 5	34	-	6 4	14 15	21 21	8	8	- 4	- 4	17 9
	3時 4時	0	11	23	1	13 7	4	18 14	2	11 13	17 10	6 1		2 1	2 1	13	22		16 14	21 19	7	13	4	3	14 15
	5時 6時	0 1	6	22	3 1	3	4	7 4	2	10 9	8 7	1		1 0	1 2	12 10			11 10	16 14	10	11		4 5	14 13
	7時	0	9	20 14	7	8 12	4 8	3 4	7	11 16	5 8	1 3		1 2	1 3	8 9	7 9	3 7	6 7	15 9	8 17	9 10		6 8	11 12
	9時	5 17		29	19	19		11 18	14	23 30	9 12	8 19	=	8 18	12 19	18	13	12 25	13 21	23 33	20	23	30	12 21	29
11月4日	11時	26 36	33 41	39	42	38	26 35	25 33	23	37 43	15 20	27 34		28 36	25 29	27	18	34	26 33	37 39	33	31	47	36 43	43
,,,,,,,,	14時	40 40		47	47 49	43	42 46	36 38	27 29	44 45	21 27	38 41		40 40	32 31			37 36	37 42	41 40	42	40	54	45 47	46 48
	15時	39 40	42		49		48 48	36 36	27 25	46 44	35 28	38 34		39 38	27 20			37 35	44 45	37 36	41	34	53	48 47	47
	17時	37 32	37 20	31 7	42 13	37 19	36 8	28 9	34 36	41 27	26 18	28 21		33 15	11 2	20 3	12 9	26 9	36 27	33 15	28 15	37 11	51 30	32 17	40 29
	19時	29 26		14		4	4 3	7 5	29	19 13	14 13	13 10		4 3	2	1 18		3 12	19 10	16 16	12	5	14 10	16 15	11 11
	21時	17	6	16 12			4	2	23 22	7	19 18	9		3	2	34 23	27	13 8	11 6	22 22	7	5	14 10	12 9	
	22時	5 0	8	14	•••••••••••••••••••••••••••••••••••••••				18		17	12				10		11		21	9		10	10	

	地点名 時刻 1時	茨城県 土浦 17	1月24日 栃木県 真岡 39	群馬県 前橋 28	館林 19	埼玉県鴻巣		さいたま市 さいたま 6	千葉県 市原 31	千葉県 勝浦 35	千葉県 富津 35	千葉 -	東京都綾瀬	多摩 31	大和 20	横浜市 横浜 33	川崎市 川崎 24	相模原市 相模原 26	甲府 18	吉田 18	長野 38	富士	湖西	静岡市 静岡	浜松市 浜松 28
þ	2時 3時 4時	15 16	41 39	16 22	22 16	0	2 5	10	27 31 32	34 34	36 35	19 28		27 26	22	29 28	31	24 20	10 10	23 23	38 36	32 27	35 36	31 31	31 31
	5時 6時	15 14 9	40 37 30	23 22 33	14 5	0	5	17 15	29 26	34 34 33	37 37 36	32 34 33		21 24 17	11 17	29 29 28	29 27 26	18 24	13 17	26 27 24	37 35 34	22 23 25	36 35 35	31 30 29	31 30 31
F	7時	2	24 20	33 33	2	1 2	2	9	26 24	32 32	34 33	29 26		8	20	22 22	21	10	6	23	31	6	33	29 27	28 25
F	9時	18	38 42	29 28	19 21	10	13 25	7	25	31 32	33	23 25		20	19 19	23	22	19	14 23	19	20	8	30 29	28	27
	11時	25 30	40	31	30	34	34 36	33	26 30	34 34	32	31 36		30	23	24 29	-	27	29 30	37 39	23	24		33	26 27
1月20日	13時	33	47 43	30		33	36 36	36 36	32 31	36 36	34 36	38 38		38	29 30	29 35		37 38	34 41	40 40	24 31	27 30	30 30	36 35	28
	15時	32 32	44	35 37		34 32	34 33	35 35	31 29	35 35	37	37 36		36 36	30 24	-	33 31	37 35	41	39		29	32	33 34	31
F	17時	29 28	34 30	36 36	37	33 33	33 32	34	29 30	33 32	31 32	35 34		32	23 20	27 29	28 27	26 18	38 37	37 36	29	28 28	31 29	32 29	28 26
	19時	24 26	31	36		32 34	33 33	28 31	32 29	31	29 30	34 33		25 29	20 25	29 28	26 26	11 23	33 34	35 36	28 27	25 27	27 26	25 21	28 25
	21時 22時	27 23	31 34	35 35	35 35	33 33	35 34	28 28	30 31	30 31	25 24	34 33		31 26	25 23	28 25	20 27	27 18	37 37	36 37	31 30	29 30	24 24	14 12	19 20
	23時	17 14	35 35	31 27	34 31	32 25	33 32	25 25	32 30	35 34	29 21	35 33		25 4	16 6	21 22	28 25	5 2	34 31	35 34	30 30	28 22	20 21	9	18 24
L	1時	13 19	34 32	- 15	29 28	21 23	30 29	23 25	20 16	31 27	17 20	31 30		6	11 15	22 25	25 24	3 17	29 26	29 19	28 25	- 18	- 23	- 6	- 22
Ŀ	3時 4時	12 14	30	21 20	22	20 8	26 23	17 17	32 24	29 29	24 25	26 25		5 5	17 15	22 17	24 18	19 10	20 14	19 22	24 20	16 10	26	9	28 28
Ŀ	5時 6時	<u>4</u> 1	24 22	16 18	9	3 10		7 8	19 25	30 26	18 13	21 21		7 17	12 7	15 12	8 9	8 4	16 11	24 27	22 17	8	29 28	7 8	24 25
Ŀ	7時 8時	0	19 18	15 16		7 11	16 20		23 14	20	9 5	7 9		12	3 8	7 5	2	14 16	5 4	27 17	18 12	9	29 27	9	22 16
þ	9時	7 21	21 29	22	30	15 21	23 24	13	22 24	27 27	15 18	19 24		13	16 21	13	20	13 24	17	15 18	12	16 22	30	17	24 30
1月21日	11時	26 32	31 37	35 38		25 28	28 34	25 31	30 31	30	26 29	30 33		25	24	24 28	23 29	-	26 29	33	23	25 27	33 35	26 31	32 35
þ	13時	34 35	37 38	39 39	39	35 36	35 36	34 36	28 25	34	23	36 36		33 34	26 25	25	30	30 32	32	35	34 34	27 25	40	33 34	37
þ	15時	35 35	43 43	38 39	-	36 35	37 35	32 35	23 22	35 33	23 28	36 35		34	24	17 16	28 28	32 31	33 33	32 31	36 34	25 25	40 39	33 31	37 37
	17時	23	39	39	35	33 26	33 31	25 24	22	27 24	23 12	32 26		30 24 27	24 23 23	14 24	28 28 27	31 29 19	29 27	22	28	26 19	38 36	26 18	36 35
	20時	17 15	28 19	39 37 34	31	20 15	28 28 22	22	18 18	19 24 24	13 20 13	27 27 27		23	23 24 25	25 27 26	26 23	22 19	26 17	13	21 20 12	4	35 34 32	7	32 31
	22時	3	19	35	17	18	20	17	30	27 28	18	28 27		25 16	26 25	26 27	24	19	12 8	7	11	4	25	7	30 27
	24時	14	23 22 25	36 35 35	24	25	26 25 28	20 29 31	31 30 28	28 29	21	28 28		15	26 27	27	25 26 29	21	10	16	20 7 12	12	23 27	6	26 26 19
	2時	9	27 26	34 33		30 34	31 29	34 35	22 22	- 27	24 30	26 25		26 23	29 26	33 34	32 33	18	13 11	20	12	19 15	35 31	6	19 21
F	4時	0	- 22	34 34		33	19	34	25 25	30	26 24	26 25		16	22	33	33	13	11	23	7	17	31	6	18
F	6時	0	19	32 27	26 22	28	11	28 27	19 23	29 29	23 23	11		3	12	31 29	29 25	1	10	24	6	16		4	11
F	8時 9時	0	17 19	23 24	21	18	17 25	22 26	20 17	29 29	18 20	3		1	4 9	21 22	20	3	4 12	15 20	6 18	12	31 27	6	10
F	10時	17 19	26 35	31 36	28	30 34	31 32	30	22 24	31 32	24 24	26 33		9 22	13 18	24 28	28 26	23 23	22 26	25 34	15 23	19 27	26 30	17 31	25 30
1月22日	12時	26 35	38 40	40 41	36 40	35 37	- 33	33 37	25 28	35 37	24 28	36 38		35 38	22 25	27 26	30 35	28 34	30 33	40 41	27 34	29 31	33 34	33 35	31 33
F	14時	36 36	41	41 40	40 42	40 39	36 37	39 40	28 30	36 38	30 29	39 39		38 40	25 26	24 20	35 34	36 37	35 37	41	35 38	33 29	36 40	37 39	39 41
	16時	35 33	45 44	39 39		38 36	37 35	39 37	36 27	39 33	34	39 36		38	23 22	16 26	34 31	35 35	39 38	40 31	36 34	25 25	41	40 39	41 40
E	18時	26 19	38 38	36 40		34 31	32 31	32 30	27 32	29 24	24 25	31 29		29 25	25 23	28 30	32 31	27 26	35 35	21 22	32 30	22 20	39 39	27 18	38 36
	20時	17 21	40 38	40 41	40 38	30 30	31 27	32 30	30 33	28 32	25 27	27 30		25 30	23 24	31 31	31 31	21 27	35 36	14 12	30 29	15 14	40 39	14 10	36 35
	22時	24 21	30 24	41 38	38 39	32 31	27 30	32 34	31 30	33 33	22 25	23 16		28 27	25 25	31 30	32 31	29 20	28 21	22 21	25 21	18 14		12 11	32 32
-	24時	15 4	24 24	41 36		33 33	32 30	34 33	28 27	32 30	22	24 21		26 27	28 28	32 32	30	19 16	21 33	19 20	19	18 -	-	11 	32 31
þ	2時	4 2	26 24	39 38	36	34 34	30 32	33	33	29 29	27 24	17 5		27 24	29 29	33 34	34	18 15	23 23	25 27	19 18	24 25	36 34	<u>7</u>	22 25
þ	4時 5時	0	22 22	37 36	34	32 31	33 32	34 35	31 32	29 33	27 25	7 14		16 11	26 26	34 35	33	16 13	22 26	26 26	21 22	23 24		7 5	22 23
þ	6時 7時	0	22	34	23	30 27	29	35 34	29 28		22	25 19		9	18	34	32 29	7	15	25 21		23		5 2	
þ	8時 9時	0	22 25	27 24	6	23 25	22	28 22	21	32 32	24 24	16		10		27	26 24		12 20	14 15	27		20	5	19 17
ļ	10時	15 26	30		21	29	22	24	20	32	23	25		30	24	23	18	22	21 26	20	34	23	22	21	25
	12時 13時 14時	30 31 31	37 42 42	36 36	33	35	35	32 31 28	22 26 31	32 33 34	22 31 36			33 33 29	26 24 22		19 19 14		30 31 32	32 30 32		18 19		27 29 28	
	15時	31	40	34 33	35	31	34	27 25	32	33	34 16	24		23 15	15		12	23	31 33	33	34	20	31	32 32	28
	17時	29 26	42	28 21	28		31	22 19	24 14	30	34 32	19		11	5	14 14	9	12	32 33	34	29	26 30	38	27 26	26
L	19時	23 25	38 37	16 19	25	28	28	21 25	18	32	27 28	25		2	5	12	8	3	29 27	19 21	26	31	32	27 30	26
	21時 22時	25 25	38	28 26	23	27	26	28 26	13	30	25 14	24		7	3	6	6	8	28 24	19	26	30	27	33 25	24
	23時	24	35	27 28	21	27	25	24	15	29	18	23		18	16		12	13	22	12	22	20	29	16	27
-	1時	18 23	35 31	28 26	18	18	21	22 19	19 22	22	12 11	22		18 11		21	21	12 17	16 14	6	16		-	- 6	31
F	3時	23 19	29		19	21	19		28	13	17	27		16		20	20	15		22	9		43	4	35
F	5時 6時	11 15	25 34	23 28	18	12		15	24 16	13	22	22		4			16	2	10 14	33 36	8	12 9	44 42	37 41	41
E	7時 8時	12 11	33 30	23 20	13 15	11 13	11 14	10 10	12 12	23 39	13 12	8 9		3	2	10 7	10 11	3 6	13 14	34 38	15 21	18 26	41 41	40 39	36 36
E	9時	15 26	31 33	26 40	30 40	25 31	25 31	10 14	19 22	40 41	18 29	12 15		8 31	8 21	12 26	15 24	14 38	15 31	40 41	38 39	35 37	39 38	39 38	35 34
18248	11時 12時	34 39	47 48	41 41	43 43	37 37	33 37	38 42	31 39	40 42	40 43	29 40		41 41	38 38	37 39	37 39	43 43	38 39	41 40	40 39	37 39	38 38	38 38	34 36
	13時	40 39	47 47	41 40	44 44	36 39	38	42 42	41 43	43 42	43 43	43 43		42 42	40 40	40 40	41 40	44 44	39 39	41 40	38 39	39 39	39 42	39 39	37 38
	15時	40 38	48 48	39 37	43 40	37 36	38 36	41 38	41 41	41 41	42 41	42 43		40 39	39 38	40 38	40 37	43 42	38 38	40 39	38 37	37 36	43 43	39 40	40 41
	17時 18時	35 33	47 46	37 36	39 37	35 33	36 36	37 34	36 35	38 37	39 37	39 37		38 37	37 35	36 33	35 33	40 38	38 38	38 38	37 36	37 37	43 42	40 40	40 39
	19時 20時	31 29	44 39	34 38	38	36	36	33 33	34 31	31	35 35	31		33 36	34		32 32	38 39	40 40	38 37	28		40	41 39	37 37
	21時 22時	29 30	37 37	37 38	38	33	36	35 34	24 29	29 27	33 35	33		36 37	34 33	27	32 30	40 34	40 39	37 36	20	34 32	39 41	39 39	35 34
	23時	31	35	35	38	30	35	34	29	27	33	30		35	32	22	30	36	38	37	23	33	39	39	34

表3-2-1	地点名 時刻 1時	茨城県 土浦 30	栃木県 真岡 37	群馬県 前橋 31	群馬県 館林 36	埼玉県 鴻巣 30	幸手 33	さいたま市 さいたま 25	千葉県 市原 33	千葉県 勝浦 28	千葉県 富津 34	千葉 29	東京都綾瀬	多摩	大和 33	32	川崎 23	相模原 32	甲府 37	吉田 38	長野 28	富士	湖西	静岡市 静岡	浜松市 浜松 32
	2時 3時 4時	27 25	32	29 31 32	35 34	30 31	34 34	20 28	31 30 34	27 28	32 32	30 27		33 32 31	29	26	25 28	38 38	40 39 37	38 37	22	12 32	32 34	33 34	35 34
	5時 6時	24 18 10	27 22 18	32 32 28	34 30 32	27 21 15	33 30 30	33 26 17	32 29	30 31 33	33 33 20	27 29 26		33 25	28 30 16	27 26 21	27 21 11	34 35 26	32 25	37 37 36	34 30 23	32 30 25	34 33 34	34 33 31	32 30 29
	7時	16	18	21	25 27	12 19	22 14	2	27 23	33	13	16		23	2	8	3	22 18	13 10	35 35	14	25 21	30	30 27	27 26
	9時	22 24	26	19 38	31	19 34	19 32	9	23 27	31 34	18 32	23 30		30 35	17	7 12	13	26 27	18 24	37 39		25 21	29 29	26 31	31 33
1月25日	11時	32 35	43 47	41 43		37 -	36 38	36 39	27 26	37 37	38 37	34 38		38 39	22 28	27 29	23 29	31 36	30 30	40 41	34	27 29	28 33	32 33	34 36
17,72011	13時	37 38	49 47	43 42	44	38 40	40 40	41 41	30 31	37 39	36 40	42 42		39 40	31 29	30 25	36 29	41 31	37 40	42 43	41	31 29	34 35	32 34	39
	15時 16時 17時	39 39	49	42 44 44	44	41 41 39	41 39	42 42 40	32	40 41 40	41 43 42	41 39		38 38 34	28	29 34 30	22	31 31	43 45 44	44 43 42	39	32 32	40 39	33 33 29	37 38
	18時	37 31 21	46 42	41	38	34 30	36 33 23	33	26 22 26	29 19	31 21	33 18 12		28	22 6	20 14	22 26 21	30 24 14	44	39	30	28 10	38 38 38	18	
	20時 21時	16 15	32	39 39	33	25 22	18	26 23	15 18	19 16	19 20	9		25 17	8	13	24	15 11	25 18	36 34	15	4	35	3	28 25
	22時	17 8		38 26	24	21 21	23 24	24 24	18 30	16 12	19 22	0		4	5	20 18	17 14	12 23	13 12	19 30	15	11 17	36 37	11 12	21 11
	24時 1時	0	23	26 29	27	24 21	26 -	16 17	16 12	10 9	20 19	1	$\leq$	1	9	17 4	15 6	27 25	- 6		18	14 -	34 -	10 -	20 29
	2時 3時 4時	4	23	32	19	24 26	13	16	5 2	8	14	1		1	11		3	30	15 11	35 36	23	18	32 34	16 15	23 24
	5時 6時	0	22 22 19	35 35 33	15	17 13	10	11 6	2	9 9 11	12 9 8	1		13	12 19	2	1	27 28 22	1 9	33 35 34	21	17 17 16	36 38 26	16 17 16	24 24 16
	7時 8時	0	17 19	31 29	1	2	1	1	2	10	6	1		2	13	1	1	21 25	8	25 22		12	24 31	14	18 26
	9時	3		34	14	23 25	14	12	14	18	11	10		5	16	9	5	27 18	7	17		20		15 21	27 34
1月26日	11時 12時	22 28		36 35	31 37	30 35	26 32	24 33	28 29	30 36	18 17	30 31		16 27	20 22	11 12	13 16	25 29	24 29	32 34	31 32	25 26	38 36	31 37	38 39
17,72011	13時	33 37		38 44	44	39 41	34 37	35 35	27 31	35 38	29 36	35 33		32 35	25 29	13 14	16 15	33 36	32 37	33 34	37	33 30	36 38	38 41	39 39
	15時	37	52	45 44	45	42 39	38	32 27	27 24	39 39	38 34	33 28		37	25	25 26	18	36 36	41 39	35 34	39	32 39	41	41 38	38 36
	17時 18時 19時	29 17 8		40 14		35 23	29 8	19 4	22 22 14	39 37 24	35 39 41	21 8		32 25 18	21 9	23 21 12	20 16 14	34 27 18	36 19 19	31 21 14	12	34 18	40 35 34	37 27 17	39 36 31
	20時	6 4		13	14 21	3	2	1 2	15	19	20	1		6		5	8	5 6	10 7	14		10		7	23
	22時	0	26 30	24	17	2	2	1	13 16	16	21 20	1 0		2	6	8	2	16 16	2	23 26				15 10	10 6
	24時 1時	0	27 25	18 33	2	4 9	1	2 9	19 15	14 11	19 15	0		6	19 18		2	16 24	3 6	24 27	4	- -	15 -	13 -	5 13
	2時	0	23	33	5	3 8	. 5 8	5	10	9	13 11	0		7	18 20		- 8	25 28	6	27 28		10	13 28	14	20 12
	5時	0	22	36 36	3	7	0	2	2	5	5	0		9	22	***************************************	4	30 28	4	26		10	26 27 17	15 16 9	
	6時 7時 8時	0 8	20 16	35 31 30		2	1	5 7	2	2	0	0		12 9	14 4	0	4	25 18 19	1	26 12 19		8	10 19	13 15	20 7 11
	9時	10		30	7	8	6	3	5 15	7	7	2		11	6	12	8	25 27	5 10	17	13	14	31	19 23	29 32
1月27日	11時 12時	-	35 39	35 41	28 32	21 31	21 32	11 24	20 28	37 40	25 28	19 29		31 33	18 26	20 32	19 19	25 25	- 30	35 37		19 24	33 38	32 33	35 40
1,7,2,1	13時	-	40 44	46 49	47	36 38	40 40	37 39	30 32	37 40	39 42	40 37		40 45	32 34	35 40	- 28	42 45	36 44	38 37	40	32 31	41 42	37 41	44 44
	15時	39	52 56	48 45		43 42	40	38	31	42 45	44	36 36		46	35	39 37	25 29	46 46	46 46	33	42	37 34	46 46	41 38	46 45
	17時 18時 19時	28 21 18	40	46 44 42		39 18	36 28	38 27 18	25 24	44 34 24	40 33 20	24 4		42 36 27	26 7	34 28	21 15	41 32	41 28 13	31 21 21		27	44 40 40	33 22	44 40 38
	20時	1 0	23 20	41	28	16 28	7	8	9	18 14	21 19	0		12	3	6	8	25 7 21	7	17		5	42 40	12	37 32
	22時	0	17	40	18	30 31	11 11	20 22	6	9	18	0		3	13	2	2	16 13	7	23 24	2	13	39	11	28 33
	24時 1時	0	23 23	33 -	15 21	30 27	16 24	24 22	6 12	8 6	20 17	0		3 10	11 21	1 6	10 22	23 28	7	29 30	4	15 -	33 -	- 8	31 -
	2時	5	22	32	24	25 21	28 17	13	10	11	15 13	0		11	22	12	15	27 27	6	29 33	6	13 15	40 42	10	32 36
	4時 5時 6時	14		30 32 28		7 2	2	5	2	12	9	0		10 15		0	5 0	29 28	5 7	33		13 13	41 41 42	12 9	39 40 38
	7時	0		25 25		2 5	1	1	2	3	3	0		2	7	5	0	25 21 21	6	28 18 17		12	38	9	32
	9時	2	22	31 33	12	12 17	10	3	5 12	10 25	9	3		10		5 7	4	24 24	10 16	13	12	17	44	14 20	38
1月28日	11時 12時	21 38	36 48	40 49	31 42	31 44	21 32	17 33	14 15	35 43	25 26	19 25		39	23 32	21 22	18 18	34 42	22 31	36 40	22 25	28 28	45 50	29 37	45 47
.,,,===	13時	41	59	50 50	53	47 50	42 47	45 48	33	47 49	26 23	45		40 45	33	7	26 23	45 45	41	42	38	35	45	39 45	48
	15時 16時 17時	45 45 39	59		53	49 47 42	- 43 44	45 46 42	29 27	49 49 43	39 48 33	40		45 43 40	33	8	30 16	44 45 39	52 48 46	38	45	37	50	47 46 37	48
	18時	21 12	34	50 45 44	32	13 17	16	25	23 5	43 31 28	18 12	12		32 20	7		4	27	30 23		23	26	48	27 16	41
	20時 21時	6	21	44		17	3	1	3	20	11 12	1		4	2	32 22	3	27 32	10 12	15	17	12	40	11	37
	22時	0	25	40 36	9	28 29	16 14	13	3	10 7	14 15	0		7 4	5 14	3	2	29 21	6 7	27 29	7	14 11		8 9	34 28
	24時 1時	- 0	32	39 40	-	- 21	6 9	10	4	8	15 14	0		4 8	20	7	2	25 26	8	28 29	12	-	-	10 -	16
	2時	10 11	31	35 30	5	14 14	11 3	10 13	4 2	3	14 13	0		11 10	22	4	2 1	26 27	7	29 28	18		23	10 7	26
	4時 5時	14 20	32	18 25	1	7 3	4	7 5	2 2	3 4	10 7 3	0		5		1	1	18 3	9 8 7	23 24	. 8		23	4	29 15
	6時 7時 8時	20 21 23	35	19 8 12	1	3	1 5	1 2	2 2	5 8	3 1 2	0		5	10 10	1	2	7	7 7 8	22 14 12	2	16 13	23	7	16 20 13
	9時	23 22 25	32	25 28	4	6	15 19	4 11	6	12	3 8	5 21		6			3	10 14	10 12		6	5	19		
1820	11時	33	40 41	27 26	12 18	19 11	22 22	18	21 23	34 36	14 18	25 28		17			9	14 19	16 22	32 31	7 10	12 16	22	11 15	15 13
1月29日	13時	31 31	43 40	29 27	10 17	13 13	25 28	28 28	25 22	38 37	18 17	29 30		14 18	9	7 18	18	17 12	20 19	30 28	10 16	16 10	23 26	19 19	15 12
	15時	28 23	41 41	28 29	27 27	13 14	24 24	29 29	27 28	39 39	22 26	33 34		23 21	14 18	17 18	23 19	24 8	20 17	26 24	20	10 10	28 23	16 17	6
	17時	21		19 17	24		23 20	26 23	30 26	38				28 26	18	21	27 25	24 29	15 15		20			21	
	19時 20時 21時	22 22 24	38	18 21 25	27	22 27 25	22 23	24 25 25	25 28 27	39 38 38	30 24 25			22 22 20	21	20	23 21 17	25 23	11 9 8	17 17 19	16	13 9	16 21 23	22 21 22	20
	22時 23時	24 26 30		25 20 13	11	25 26 24	23 24 21	25 25 25	27 27 23	36 35	25 21 25	33		24 27	18	20	20 21	23 24 29	9 11	19 18 21	20	7 8	23 20 22	18 21	14
	24時	33					21	25	24					23			22		8			17			

表3-2-1		30日~ 茨城県 土浦 31	栃木県		群馬県 館林	埼玉県 鴻巣 16		さいたま市 さいたま 28	千葉県 市原 25	千葉県 勝浦 36	千葉県 富津 27	千葉市 千葉 30	東京都綾瀬	東京都 多摩	神奈川県 大和 26	横浜市 横浜 27	川崎市 川崎 26	相模原市 相模原 22	山梨県 甲府 11	山梨県 吉田 25	長野県 長野 24	静岡県 富士	静岡県 湖西	静岡市 静岡	浜松市 浜松 18
	2時	33 35	38	11 14	18 11	16 17	15	23 16	- 30	37 36	28 28	32 32		20 21	24 25	28 28	27 26	22 21	11 12	24 23	24 24	10 18	20 20	26 25	14 12
	4時 5時	35 34		12	2	18 12	19 23	19 23	34 32	33	27 28	34 36		19 24	23 21	28 21	27 21	23 25	10 9	23 22	29	20	10 5	29 29	13
	6時 7時 8時	34 32	48	14 9	4	5 6	22 24	17	29 28	34 34	24 26	34 35		26 26	22	23 23	22	26 26	8	21 19	28	23	12	28 26	13 7
	9時	24	45	11	8	8	25 24	16 15	29 25	34 34	19	28		28 25	23	19	18	28 29	9	20	24	18	18 22	26 27	4
	10時	22	45	14 18 25	21	14 26	25 25	23 26	24	34 34	23	23		24	21	20	18 16	24	11 15	21	27	19 24	19	29 29	15
1月30日	12時	31 31	44 46	28		31 32	26 28	26 30	21	32 31	23	25 28		19 20	18	19	16 17	19	18 23	21		23 24	18	32 31	13 17
	15時	29 29	46	29 29	34 36	32 33	28 29	29 30	21 23	30 31	19 22	27		25 26	20	12 16	17		25 24	21	35	22	18 18	31 32	17 16
	16時 17時 18時	27 24 22	46 43 38	28 26 23	35 32 28	31 28 24	26 23	27 25 24	21 21 26	31 32 32	24 21 22	20 17 22		27 25 23	23 20 16		16 13 13	27 26 24	23 21 25	25 26 23	39 34 34	18 12 15	23 22 15	32 31 28	14 12 12
	19時	23 25	33	24 16		23 21	18 16	23 17	28 27	30 29	22 24	25 27		21 19	17		14	18 13	29 26	24 23	26	12	9	25 24	16 15
	21時	24 23	29	10		19 17	12 13	16 17	22	29 29 29	24 24 24	24 27		16 14	14	13	17 15	16	24 16	20 24	22	13	18	26 21	14 11
	23時	16 17	25	12	12	17 13	17	14	23	30 29	24 23	27 27		10	14	18	21	20	24 23	27	8	5	20 28	17	9
	1時	17	24	16 15		10	12 10	20	26 26	29 28	21 24	26 23		9			20	25 17	20 27	28 28		- 22	- 32	- 11	5
	3時	18	22	23 25		6	8	17	19 18	29 27	26 21	23		9	11	16	27 26	15 18	33 26	25 23	8	20	35 38	9	8 15
	5時	12	23	22	5	3	4	14	19	27 26	17	18		12	16		20	14	19 19	22	6	17	40	8	19 22
	7時 8時	3	26 25	23	4	1	0	4	15	20	23	5		6	4	8	6	15	16	25 25		8	31	7	24
	9時	12	25	30	***************************************	9	7	12	15 27	23	27	15		7	9	9	12	19	19	26	11	16	41	10	31 36
	11時	29 37		44	21 31	28 39	24 33	31 40	32 32	37 38	29 33	39 41		16 29	20 20	7 16	21 30	25 30	37 42	35 36	30 40	14 24	43 44	24 30	36 34
1月31日	13時	38 41	53	46 46	36	42 44	39 41	43 44	32 35	40 41	35 39	42 42		37 37	26 30	17 27	25 25	35 38	45 49	34 35	44	31 31	46 48	34 37	36 39
	15時 16時	43 42	60	47 48	47	45 44	42 42	43 41	34 34	39 36	35 28	39 39		37 35	30 26	31 31	28 26	36 35	46 42	35 33		36 40	51 54	38 40	43 47
	17時 18時	40 37	58 45	44 26	45	40 30	41 24	32 21	33 29	27 21	29 27	36 32		32 23	18 12	29 22	28 24	35 33	38 31	30 29	48 36	38 40	51 45	37 27	48 45
	19時	28 26		21 19	23 21	20 15	8 2	13 8	28 26	17 11	34 35	19 16	=	20 20	5 4	17 17	11 4	27 29	27 24	16 14	37 32	40 36	39 37	25 23	41 36
	21時 22時	24 18		17 16	15 15	11 20	2 9	2 1	26 16	7 5	25 28	14 12		9	2	11 15	14 26	26 8	17 16	13 9	34 26	23 13	34 34	24 23	28 29
	23時	3 1	37 39	21 25	16 14	24 20	8 12	1 3	19 11	3 4	23 25	10 7		2 6	2 6	15 8	29 6	3 4	11 7	12 15	28 30		37 30	17 15	30 26
	1時	10 21	38	30	3	11 7	16	15 19	7 12	3 4	24 21	- 6		7 15	8 7	1 2	1	10 13	13 14	17 21	36	- 10	- 24	- 8	20 24
	3時	19 14	36	36 37	1	9 15	17 5	17 15	13 13	3	8 5	11 8		16 10	15 15	5 14	10 10	11 10	11 12	23 23	38	7	26 26	8 7	26 28
	5時 6時	24 23		37 37		8 14	7	17	9 16	11 18	12 13	9		17	15	16 16	13 15	9 12	11 6	23	37	5	23 30	7 6	27 34
	7時	25 26	27	37	13	20	5	11	10 9	19 27	15 9	8		18	14	13	6	14	5 6	12 16	31	3	34 36	7	33 25
	9時	25 19	37	37 36	21	20 20	16 27	22	13 16	26 29	13	16 19		20	19	9	10	30	13	11	28	4	30 26	9	27 32
2月1日	11時 12時 13時	23 25	44 45 49	38 39 40	34	25 29	31 30	26 26	17 20	31 36	13 16 17	23		33	25 26	18 22	18	31	16 14 22	20	35	21	28 26	10 - 22	32 34
	14時	25 26	52	41	33	30 29	27 24	26 22	23	35 35	18	32		32	26 20		10 10	29 30	24	25	39	22 25	25 31	32	35 34
	15時	32		39	26	23 18	20 17 21	19 19	23	36 32	21	24 25		28 25	19	9	20	22 8	28 28	18 19 15		19	27 26	41 39	33 29
	17時 18時 19時	29 26 24	40	28 23 35		13 11 21	22 15	12 6	17 27	31 31 30	20 24 27	23 19 20		20 16	6	6		6	26 24 17	14	*******	16 5	24 18 17	30 24 18	23 18 18
	20時	15		37 38	11	15 15	16 13	18	25 25 23	30 31	27 27	12		6	2	11	20	9	17 17	16	35	7	22	11	12 14
	22時	6 8	34 34	38	24	16 11	11	22	28 29	31	27 29	15		8	8	7	20	3	21 25	19	27	10	29 34	4	10
	24時	9		36 32	10	17	9	21	30 29	34	31 34	17		17	12		14	13	23	24		9	33	2	5 5
	2時	5	33	32	30	30	20 25	25 29	31	34 29	* 20	14		22	25 25	27 33	23	25 18	25 24	17	32	20	19 16	2	8
	4時	3	30		26	32	23 21	31	26 21	28 27	25 26	5		15	13	30	28	19 19	27	15	28	18	21	3	12
	6時	2 15	23	36 30	12	34 30	19	33 32	26 22	26 25	26 24	1 8		11 28	11	27	25 25	7 18	31 30	9	20 14	7	24	2	4 5
	8時	15 24	18	26	23	24	14	22 24	21 18	30 25	22 21	9		33 32	25	31	25 26	17 22	28 23	17	7	11 11	16	3 5	6 16
	10時	27 29		40	39	34 37		34 36	21 19	27 32	20 20			36 38			-	29 36	26 30			18 23		16 29	27 32
2月2日	12時	31 39	46 48	41 41	40 43	39 41	37 39	- 40	18 26	37 39	26 30	37 38		39 40	30 34	30	-	37 39	35 37	36 37	37 40	28	37	37 41	34 37
	14時 15時	39 40	55	40	44		40	41 41	30 35	39 40	28 33	43		40 40	31	19		38 38	41 40		39		43	44 43	
	16時	38 37	52	40	42	39	37	40 38	31 30		34 34	39		38 38	23	12	-	38 35	40 38	34	36	35	43	43 35	40
	18時	32 19	45	39	39	35 32	31	37 33	34 32	24 16	28 27			37 35	29	21	-	33 34	37 37	24	32	34 30	40	22 13	34
	20時	8	34	37	34	34	19	31	34 28	9	28	28		33	30	30	-	31 28	37	20	25	14	39	11	36
	22時	10 8 9	28	36	34	37	31	31 36	32	15 21	30	30		28	29	31	-	26 25	37	18	26	10 8	40	9 8 5	35 35
	24時	14	29	35	31	34	34	35 33	33 32	28 32	28	27		30	27	33	-	25 28	34 37	23	21	-	-		35 33
	2時 3時 4時	14 11	26	34	24		25	34 34	28 27	36	29 28	16		28 29	31	37	-	29 32	36 31	24	22	16	41	5 4 4	31 33
	4時 5時 6時	16 18 9	19		29	25	22	35 33 19	29 27 26	36 33	30 26	8		27 27	34	36	-	30 26	27 18	27	21	21	40	4	34 33
	7時	0	15	23	5	23 17 17	16	19 5 13	26 21 22	33 33 34	25 29 25	1		21 6	20	27	-	13 10 8	15 11 7	28 21 22	18		39		33 29 25
	9時	14	25	30 34	16		15	17	27 26	33 32	25 24 27			14		23	-	9 20	19		21	14		6	
	11時	33 37 39	48		34	38	30	30 33	26 24 26	32 32 35	27 22 26	27		31 37	33	31	- - -	20 27 35	30 34	28	30	22	40	22 33	34
2月3日	13時	40 42	52	43	39	41	38	36 39	34 37	37 40	31 34	30		37 40	34	24	-	38 36	37 38	26	41	28 29	44	37 40	38
	15時	42	56		43		40	39 41	37 37	42 43	35 34	34		39	32	24		39 39	37 40	28	47	34	46	39	42
	17時	40	58	41	39	30	34	38	39 38	42	34 35	34		36	17	21	-	38 28	38	25	39	32	45	38	42 42 37
	19時	36 31	51	38	25	21	27	12	36 35		30 31	21		19	4	20	-	20	27 36	22	34	21	41	21	30 34
	21時	23	43		23	28 23	29	26 22	34 30	37 35	33	18		17 25	10	30		14 26	36 34	27	23	14		11	33
	23時	23 26	41	22	17	15		20	28 20	35	25 26	7		18	23	31	-	25 20	33	19	24	4	38 41	8	34 30
			, ,2																		,				. 50

## 4 成分分析測定結果

-は未測定。zzz は欠測(校正中、調整中等)をあらわす。

<u> </u>	1 3/1/E	<u> コから</u> 5	月8日	まで														(PM2.5,	, 炭素成	分,イオ	ン成分	: μg/m ³	無機成	分:ng/m	n ³ )
自治		茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都		神奈川県		川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均 基本事項	也点名 PM2.5濃度	土浦 21.9	真岡 19.4	前橋 18.3	館林 18.2	鴻巣 18.0	幸手 22.0	さいたま 26.0	市原 22.4	勝浦 12.6	富津	<u>千葉</u> zzz	綾瀬 24.0	<u>多摩</u> 18.7	<u>大和</u> 19.1	横浜 22.2	川崎 22.0	相模原 18.8	甲府 14.9	吉田 9.6	長野 17.4	富士 18.6	<u>湖西</u> 12.5	静岡 16.3	<u>浜松</u> 13.9
基本事項 イオン成分	PMZ.3 辰及	<0.0056	0.067	<0.016	<0.016	<0.046	<0.046	0.047	<0.096	<0.096	<0.096	ZZZ			<0.043	0.030	0.039		< 0.011		0.041		0.072	< 0.078	0.0057
13 2 10073	NO3-	1.6	1.9	0.32	0.24	0.68	2.3	1.7	0.77	<0.099	0.47	ZZZ	4.2	2.0	2.1	1.8	3.0		0.29	<0.011	0.71	0.22	0.56	0.15	0.34
İ	SO42-	4.0	3.6	2.5	2.5	3.7	4.1	2.8	2.4	3.2	4.8	ZZZ	4.6	3.7	4.0	5.4	5.1		4.0	2.0	3.6	4.8	2.7	4.0	3.3
	Na ⁺	0.11	0.39	0.072	0.075	0.084	0.11	<0.044	0.078	0.081	0.11	ZZZ	0.14	0.16	0.070	0.21	0.15	0.16	0.076	<0.022	0.10	0.083	0.13	0.19	0.15
	NH ₄ ⁺	2.1	1.4	0.98	0.88	1.4	1.9	1.5	1.1	1.2	1.8	ZZZ	2.5	1.8	2.0	2.5	2.6	1.8	1.4	0.75	1.4	2.0	1.3	1.7	1.1
	K ⁺	0.11	0.15	0.068	0.079	0.11	0.16	0.071	0.051	0.036	0.045	ZZZ	0.11	0.13	<0.58	0.13	0.12	0.15	0.13	0.070	0.080	0.027	0.063	0.13	0.043
	Mσ ²⁺	0.016	0.060	<0.015	<0.015	0.0059	0.0064	0.011	0.0072	<0.0038	0.012	ZZZ	0.020	0.021	0.014	0.030	0.038	0.030	0.097	<0.038	0.016	0.011	0.014	0.013	0.018
İ	Ca ²⁺	0.041	0.27	0.080	0.089	0.032	0.043	0.17	<0.044	<0.044	0.20	ZZZ	0.17	0.070	0.070	0.20	0.072	0.11	0.043	<0.040	<0.033	<0.052	<0.052	<0.032	0.17
無機成分	Na	-	170	100	70	86	74	170	140	120	140	ZZZ	150	140	130	150	190		180	59	110	290	230	190	150
	Al	110	220	310	180	51	55	380	96	49	170	ZZZ	100	120	59	160	63		47	51	170	31	22	34	120
	Si	-	-	-	-	-	-	570	380	190	550	ZZZ	240	250	-	350	-	340	72	47	-	66	64	48	-
	K	-	160	130	120	130	26	170	160	79	96	ZZZ	110	100	110	98	110		97		130	90	75	99	72
	Ca	-	83	<170	<170	5.4	<2.1	250	140	32	340	ZZZ		60	<24	200	46		90		69	44	<23	190	100
	Sc T	0.023	<0.059	0.056	0.043	<0.029	<0.029	0.26	< 0.57	0.69	<0.57	ZZZ			<0.49		<0.0086			<0.0058	0.034		<0.032		
	li V	7.2	15	ZZZ	zzz 7.3	8.4	1.9	27 8.6	14	6.1	18 24	ZZZ		8.0	9.2 9.1	12 21	7.0 21	-	2.3 5.2	2.3	11	1.4 26	<2.0 5.6	1.8 5.9	12 6.2
	V C=	7.3	4.1 0.73	2.3 <1.1	3.5	4.0 1.8	0.39	6.2	17 2.4	8.2 <0.76	0.86	ZZZ ZZZ	22	6.3 1.0	1.2	1.4	5.0			1.3 <0.78	2.2 1.4		1.2		1.9
/ F	Mn	7.8	6.8	7.1	14	9.8	2.3	14	14	<2.8	9.1	ZZZ			8.4	8.1	14		3.1		7.0		5.0	7.9	1.3
	Fe	150	190	200	240	370	52	390	290	47	300	ZZZ			160	230	340	0.7	47		150	50	71		81
	Со	0.063	0.11	<0.23	<0.23	<0.11	<0.11	0.16	0.12	0.042	0.081	ZZZ			<0.14	<1	0.27				0.065		0.011		0.054
[	Ni	3.0	1.5	<0.85	1.3	1.3	0.40	5.7	4.6	2.7	6.0	ZZZ	7.0	2.0	<5.0	5.7	9.2	2.6	0.68	<0.43	1.0	9.4	1.7	14	2.4
	Cu	5.2	<5.8	1.9	4.1	2.8	0.99	6.8	2.3	1.6	1.7	ZZZ	5.0	5.0	<3.6	3.4	7.8	4.7	2.0	<6.7	2.9	2.7	2.9	4.0	1.9
	Zn	47	30	25	44	61	<1.1	60	100	8.9	19	ZZZ			21	22	39		36		28	29	<17		31
ļ	As	1.0	1.0	0.76	0.75	0.57	0.13	0.91	0.41	0.39	0.36	ZZZ	0.90	0.70	<0.62	1.2	0.91		0.54	0.35	1.2		0.56	0.44	0.45
-	Se	0.15	1.3	0.93	1.0	0.42	<0.20	1.1	0.85	<0.19	0.53	ZZZ	1.4	1.6	<1.6	1.5	1.5		0.52	0.26	0.94	0.53	0.60	0.50	0.66
	Rb	- 1.0	0.57	0.45	0.34	0.31	<0.14 0.18	0.55	0.36 0.59	0.18 <0.098	0.31	ZZZ			<0.4 1.0	<1.1 <1.4	0.40 3.4	-	0.18	0.10 0.13	0.54 0.67	0.16 0.44	0.21	0.15 0.23	0.31 <0.82
<u> </u>	Sb	1.8	1.6 1.8	ZZZ	1.3 zzz	1.7	0.18	1.1	1.1	0.19	0.23	ZZZ ZZZ	1.2 1.9	1.1	1.0	< 6.6	1.4		0.85		0.67	0.44	0.76	0.23	0.56
ľ	Ce	0.069	0.075	0.054	<0.035	< 0.079	<0.079	0.067	0.060	0.018	0.036	ZZZ			<0.26	<9.2	0.073		0.015		0.080		0.021		0.044
	Ba	2.2	3.4	6.4	11	<2.3	<2.3	15	7.0	6.4	4.7	ZZZ	4.9	4.5	4.0	<10	4.4		1.9	0.86	2.6	2.8	2.0	1.4	2.2
	La	0.17	0.16	0.13	0.20	0.094	<0.038	0.22	0.14	0.038	0.11	ZZZ	0.19	0.16	<0.3	<12	0.11	0.24	0.042	0.025	0.12	0.085	0.048	0.038	0.076
	Ce	0.21	0.27	0.22	0.33	0.16	0.059	0.40	0.26	0.061	0.16	ZZZ	0.30	0.20	<0.23	<13	0.29	0.36	0.083	0.037	0.20	0.11	0.074	0.061	0.14
	Sm	<0.0055	<0.050	0.017	0.0070	<0.035	<0.035	0.020	<0.017	<0.017	<0.017	ZZZ		<0.06	<0.37	<20	<0.016			0.0029	0.014		<0.0097	0.0050	0.012
	Hf	0.041	<0.20	<0.023	<0.023	0.022	<0.020	0.019	<2.8	3.1	<2.8	ZZZ	<0.2	<0.2	<0.29	<0.05	<0.035		0.0028	<0.0015	0.011	0.0033	<0.0030	<0.0015	<0.41
	W	1.4	0.21	0.12	0.18	0.36	0.15	<0.16	<0.12	<0.12	<0.12	ZZZ	0.40	0.20	<0.13	0.17	0.25	-	0.089	0.0093	0.21	0.095	0.081	0.037	0.26
	Th	0.021	0.30 <0.10	<0.025 0.032	0.045	<0.028 <0.079	<0.028 <0.079	0.0040	<0.027 <0.016	<0.027 <0.016	<0.027 <0.016	ZZZ	<0.06 <0.03	<0.06 <0.03	<0.11 <0.32	<0.05 <3.2	<0.031 <0.0099	0.030 0.022	<0.00079	<0.00079 0.0023	0.027	<0.0017 <0.0077	<0.0017	<0.00079 0.0032	<0.090 0.10
-	Pb	7.6	7.2	4.3	6.0	8.0	0.079	7.9	6.0	1.5	2.4	ZZZ	8.4	7.1	3.5	2.6	7.7	6.2	3.3	2 1	7.1	3.2	4 1	4.3	3.0
	その他(Be)	- 7.0	<0.13	-	-	- 0.0	-	- 7.5	-	- 1.3	- 2.4	-	- 0.4	- /.1	-	-	- /./	- 0.2	-	- 2.1	- /.1	-	- 4.1	- 4.3	-
-	その他(Cd)	-	0.30	-	-	-	_	0.29	-	-	-	-	-	-	-	-	-	-	-	-	0.22	0.13	0.15	-	-
炭素成分	OC1	0.18	<0.011	0.26	0.34	0.16	0.20	0.37	<0.04	<0.04	<0.04	ZZZ	<0.2	<0.2	0.47	0.26	0.069	0.29	< 0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	1.4	1.0	1.2	1.3	1.5	1.3	1.2	1.6	1.2	1.1	ZZZ	0.80	1.1	1.2	1.3	1.8	-	1.2	0.90	0.79	0.86	0.68	1.2	0.87
	OC3	1.3	1.1	1.6	1.2	2.1	1.7	1.6	1.1	0.83	0.82	ZZZ	0.80	1.0	1.0	0.85	1.1		0.81	0.70	0.94	0.56	0.64	0.94	0.70
	OC4	0.91	0.56	0.85	0.66	1.2	1.2	0.78	0.59	0.36	0.38	ZZZ	0.60	0.70	0.63	0.60	0.86		0.67	0.50	0.34	0.46	0.50	0.66	0.40
	Ocpyro	1.2	1.9	1.4	0.98	1.2	1.0	1.3	1.4	1.1	1.3	ZZZ	0.50	0.80	1.0	0.98	0.91		1.2		1.0	0.79	0.66	1.2	0.62
	EC1	2.0	2.8	0.80	1.6	2.3 0.47	2.4 0.61	2.0 0.67	2.0	1.0	1.4	ZZZ	1.6	1.5	1.4	1.9 0.34	2.3		1.3	0.86	1.4 0.45	0.82	0.71	1.3	0.67
-	EC2 EC3	0.20 <0.1	0.074	0.80	0.65	0.47	0.61	0.67	0.76 0.055	0.61	0.66	ZZZ	0.60 <0.06	0.40 <0.06	0.82	0.34	0.60	0.33	0.79	0.58 <0.012	0.45	0.93 <0.028	0.60 <0.034	0.034	0.63 <0.021
	OC C	5.0	4.6	5.3	4.5	6.2	5.4	5.3	4.7	3.5	3.6	ZZZ ZZZ		3.6	4.3	4.0	4.7	4.7	3.9	3.0	3.1	2.7	2.5	4.0	2.6
	-				1.3			1.4	1.4	0.57					1.3	1.3								1.1	0.68
	EC	1.0	2.1	1.3	1:41	1.6	2.1	14			0.83	ZZZ		1.1	1.3	1.31	2.0	1.2	0.91	0.59	0.93	0.96	0.65		

227	2 07101	1/3/20	חיתי	6 C														(1 m2. 0	,火水从	77, 174	V 11X JJ	. μg/m	## 17 <b>又</b> 17 <b>人</b>	JJ . IIg/III	,
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市		相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	31.4	26.3	27.3	24.6	26.0	27.0	26.8	19.1	8.9	17.8	zzz	21.6	21.5	18.7	15.1	15.1	22.9	14.5	16.5	16.4	14.8	23.7	15.0	20.8
イオン成分	CI-	0.33	0.064		<0.016	<0.046	0.18	0.094	< 0.096	< 0.096	< 0.096	ZZZ	0.040	0.050	0.047	<0.02	0.020	0.070		<0.011	<0.026	<0.021	0.076	<0.078	0.015
	NO3- SO42-	6.1	2.3		1.7	5.1	6.3	2.5	0.37	<0.099	0.23	ZZZ	3.2	2.6	2.4	0.42	0.91	3.1	0.57	0.56	0.51	0.25	2.6	0.16	1.6
		7.9	7.5		6.1	6.0	6.1	3.9	4.6	3.1	3.2		5.1	5.3	4.8	5.0	4.7	5.3	4.5	4.1	4.3	3.3	5.0	3.5	5.2
	Na ⁺	0.074	0.13		0.10	0.076	0.080	<0.044	0.098	0.049	0.058	zzz	0.14	0.13	0.069	0.17	0.10	0.12		<0.022	0.051	0.022	0.083	0.076	0.11
	NH ₄ ⁺	4.6	3.5		2.5	3.5	4.0	2.0	1.8	1.2	0.99	ZZZ	2.6	2.5	2.4	2.1	1.9	3.1	1.7	1.7	1.6	1.5	3.0	1.5	2.1
	K ⁺	0.080	0.11	0.096	0.098	0.086	0.093	0.052	0.077	0.028	0.035	zzz	0.12	0.090	<0.58	0.090	0.053	0.10	0.083	0.065	0.063	0.029	0.066	0.071	0.12
	Mg ²⁺	<0.011	0.015	0.016	<0.015	0.0048	0.0038	0.016	0.0090	<0.0038	<0.0038	zzz	0.017	0.017	0.011	0.020	0.017	0.020	0.092	<0.038	0.012	< 0.0064	0.013	0.0073	0.0090
	Ca ²⁺	0.025	<0.078	0.10	0.15	0.019	0.030	0.29	0.054	<0.044	0.24	zzz	0.070	0.050	0.044	0.080	0.057	0.080	0.040	<0.040	<0.033	<0.052	<0.052	0.12	0.051
無機成分	Na	-	200	150	76	<2.4	49	150	140	68	130	zzz	140	130	110	110	68	140	120	87	60	150	150	97	99
	Al	140	220	540	190	10	33	420	44	24	210	zzz	100	90	27	110	18	120	50	48	110	32	24	35	60
	Si	-	-	-	-	-	-	590	350	91	590	zzz	210	200	-	180	-	230	110	61	-	62	45	63	-
	K	-	160	200	100	<5.7	81	150	150	53	120	zzz	92	90	85	73	39	110		73	85	82	73	68	89
	Ca	-	85		<170	41	7.4	320	130	21	500	zzz	60	50	<24	64	11	94		96	51	<22	<23	230	69
	Sc	0.011	<0.059	0.11	0.030	<0.029	<0.029	0.29	< 0.57	< 0.57	< 0.57	ZZZ	<0.05	<0.05	<0.49	<0.024	<0.0086	0.028	-	0.0088	0.022	<0.032	<0.032	<0.016	
	Ti	6.2	13		ZZZ	0.27	2.7	31	14	<3.7	23	ZZZ	5.0	7.0	5.7	6.2	2.2	10		4.0	7.7	1.2	<2.0	3.0	7.2
	V	7.8	6.5		8.9	0.15	2.7	11	14	7.4	18		21	8.9	9.4	15	17	11	6.1	4.5	2.0	14	8.2	5.7	6.8
	Cr M:	0.54	0.91 6.3		<1.1 7.5	<0.12	0.56 3.6	1.0 12	2.8	<0.76 <2.8	1.1		2.0 7.2	1.0 7.7	1.0 5.9	1.9 5.1	1.3 5.9	1.6 8.5		3.3 3.4	0.89	0.48 2.0	0.90 6.9	<2.1 3.1	2.1
	Mn Fe	16 240	200		180	0.64	63	400	270	2.8	420		200	160	120	160	98	190	49	3.4 49	5.6 99	31	92	52	12 64
	Co	0.046	0.078		<0.23	<0.11	<0.11	0.25	0.14	< 0.036	0.11	ZZZ	0.090	0.060	<0.14	<1	0.060	0.088	0.029	0.022	0.044	<0.017	0.025	0.029	0.049
	Ni	3.0	3.0		2.0	0.50	0.29	4.0	3.7	1.2	4.8	ZZZ	7.0	3.0	5.8	3.9	4.5	4.0		<0.43	0.044	4.2	2.5	3.3	2.3
	Cu	4.8	<5.8		2.5	<0.21	0.80	5.4	2.3	<1.6	4.5	ZZZ	3.0	4.0	52	1.8	2.9	5.1	2.1	<6.7	2.4	2.8	4.2	1.5	2.9
	Zn	32	36		38	1.7	17	43	61	7.5	28		30	36	20	21	13	36		47	25	<4.3	<17	30	40
	As	0.82	1.5		1.1	<0.097	0.64	0.85	0.49	0.26	0.45		1.1	0.70	<0.62	<0.89	0.42	1.1	0.49	0.60	1.0	0.42	0.72	0.44	0.41
	Se	0.11	1.5	0.99	1.1	<0.20	0.25	1.2	1.4	<0.19	1.0	ZZZ	4.1	1.5	<1.6	1.7	0.61	1.9	0.57	0.72	0.73	0.44	0.95	0.50	0.93
	Rb	-	0.63	0.63	0.34	<0.14	0.26	0.51	0.29	0.091	0.39	ZZZ	0.40	0.40	<0.4	<1.1	0.12	0.41	0.15	0.18	0.33	0.14	0.22	0.13	0.27
	Мо	0.40	0.87		0.61	0.26	0.37	0.61	0.59	<0.098	0.31	zzz	1.6	0.90	0.95	<1.4	0.90	1.1	0.41	0.47	0.79	0.47	1.4	0.50	4.6
	Sb	1.7	1.3		ZZZ	<0.012	0.42	1.3	0.70	1.0	0.61	ZZZ	0.90	1.5	0.99	<6.6	0.51	1.6		1.1	0.76	1.3	0.69	0.33	0.76
	Cs	0.037	0.061		0.097	<0.079	<0.079	0.062	0.054	<0.017	0.052	zzz	0.070	0.040	<0.26	<9.2	0.016	0.067	0.014	0.022	0.041	<0.0090	0.035	0.012	0.049
	Ba	1.4	3.1		4.2	<2.3	<2.3	11	9.4	2.7	3.5	ZZZ	2.5	3.5	2.6	<10	1.1	4.5		1.5	1.8	1.9	2.7	1.1	1.9
	La	0.13	0.20		0.14	<0.038	0.061	0.25	0.11	0.024	0.13	ZZZ	0.22	0.18	<0.3	<12	0.038	0.24		0.039	0.13	0.048	0.055	0.042	0.093
	Ce	0.16 0.0062	0.21 <0.050	0.34	0.18	<0.018 <0.035	0.099 <0.035	0.46	0.15 <0.017	0.032 <0.017	0.18 <0.017	ZZZ	0.20 <0.06	0.20 <0.06	<0.23 <0.37	<13 <20	0.083 <0.016	0.34 <0.04	0.079 <0.0068	0.066	0.11	0.054 <0.0027	0.070 <0.0097	0.064	0.14
	Sm	0.0062	<0.030		<0.023	<0.035	<0.035	0.018	<2.8	<2.8	<2.8	ZZZ ZZZ	<0.06	<0.06	<0.29	<0.05	<0.016	0.019	-	0.0032	<0.0087	0.0027	<0.0037	0.0032	< 0.41
	w	0.020	0.20	0.23	0.025	<0.020	0.020	0.018	<0.12	<0.12	<0.12	ZZZ	0.20	0.20	0.13	0.03	0.18	0.019	0.0023	0.0020	0.0037	0.0041	0.52	0.0022	1.1
	Ta	-	<0.26		0.068	<0.028	<0.028	0.0038	<0.027	<0.027	<0.027	ZZZ	< 0.06	<0.06	<0.11	<0.05	<0.031	<0.03	<0.00079	<0.00079	-	< 0.0017	<0.0017	<0.0079	<0.090
	Th	0.015	<0.10		0.023	<0.079	<0.079	0.029	<0.016	<0.016	0.018	ZZZ	<0.03	<0.03	<0.32	<3.2	<0.0099	0.019	-	0.0028	0.014	<0.0077	<0.0077	0.0025	0.043
	Pb	5.3	8.2	6.4	6.6	0.32	3.5	6.1	5.7	3.1	5.7		7.8	5.5	4.1	5.2	2.4	9.0	3.0	4.2	4.9	2.8	5.8	2.5	5.1
	その他(Be)	-	<0.13	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.31	-	-	-	-	0.21	-	-	-	-	-	-	-	-	-	-	-	-	0.19	0.12	0.18	-	-
炭素成分	OC1	0.16	0.017	0.16	0.27	0.11	0	0.29	<0.04	<0.04	<0.04	zzz	<0.2	<0.2	0.36	0.19	0.060	0.47	<0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	1.3	0.92	1.1	1.1	1.3	1.0	1.0	1.5	0.84	1.1	zzz	0.80	1.0	0.97	0.97	1.3	1.3	1.2	1.3	0.68	0.81	1.0	0.99	1.4
	OC3	0.73	0.49		0.72	1.3	0.89	1.1	0.99	0.54	0.92	ZZZ	0.60	0.80	0.61	0.50	0.70	0.78	0.71	0.88	0.75	0.42	0.71	0.73	0.87
	OC4	0.70	0.23		0.64	0.81	0.57	0.66	0.55	0.22	0.43	zzz	0.40	0.60	0.40	0.33	0.50	0.75		0.77	0.35	0.36	0.61	0.56	0.64
	Ocpyro	0.97	1.6		0.96	1.1	0.88	1.1	1.4	0.59	1.3	ZZZ	0.50	0.70	0.82	0.77	0.83	1.0		1.3	0.91	0.63	1.0	0.80	1.1
	EC1	1.8 0.21	1.6		1.5	1.7 0.85	1.7 0.69	1.3 0.67	1.8	0.41	1.4		1.0	1.2 0.70	0.93	1.2 0.31	1.3 0.49	0.37	1.1 0.78	1.3	1.1 0.42	0.60	0.98	0.85	1.1
	EC2 EC3	<0.1	0.086		0.61	0.030	0.69	0.67	0.69	0.50 0.055	0.48	zzz zzz	0.50 <0.06	0.70	0.82	0.010	0.49	0.060		1.2 0.030	0.42	0.81	1.0 <0.034	0.94	1.0 <0.021
	OC C	3.9	3.3		3.7	4.6	3.3	4.2	4.4	2.2	3.8	ZZZ	2.2	3.0	3.2	2.8	3.4	4.3	3.6	4.2	2.7	2.032	3.3	3.1	4.0
	EC	1.0	1.4		1.2	1.5	1.5	0.92	1.2	0.38	0.68	ZZZ	1.0	1.3	0.99	0.75	0.99	1.2		1.2	0.69	0.81	0.98	1.0	1.0
	WSOC	3.3	3.1		3.1	-	-	-	1.7	0.68	1.7		-	-	2.9	-	2.9	-	-	-	-	-	-	2.9	

	0 0/101																		,						
	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	20.4	24.8	26.4	16.1	20.0	21.0	27.5	22.8	10.0	15.0	22.0	24.9	26.6	19.9	16.1	17.8	26.4	17.9	17.9	14.2	17.5	24.2	16.2	19.3
イオン成分	CI-	< 0.0056	0.023	0.034	<0.016	< 0.046	<0.046	0.041	<0.096	<0.096	< 0.096	<0.0052	0.050	0.030	<0.043	<0.02	0.012	0.030	<0.011	<0.011	0.063	<0.021	0.028	<0.078	0.0053
1.3 = 19073	NO3-	0.99	1.4		0.83	2.6	3.0	3.7	1.5	0.16	0.96	2.8	4.6	5.7	2.7	1.2	2.2	3.8	0.44	1.4	0.96	0.17	4.9	<0.079	2.7
	SO42-	6.5	6.0		4.4	5.3	6.2	4.2	4.8	3.2	4.4	6.2	6.3	6.2	6.0	5.0	5.7	6.6	5.9	4.6	3.6	4.2	5.3	4.3	4.8
	3042-																								
	Na [⊤]	0.051	0.073	0.076	0.046	0.084	0.069	<0.044	0.050	<0.04	0.13	0.078	0.10	0.060	<0.065	0.090	0.068	0.090	0.026	<0.022	0.051	0.036	0.062	0.049	0.059
	NH₄ ⁺	2.7	2.6	1.7	1.7	2.4	2.8	2.6	2.2	1.2	1.7	2.9	3.4	3.7	2.6	2.5	2.8	3.9	2.3	2.1	1.5	1.9	3.9	1.8	2.4
	K ⁺	0.10	0.12	0.094	0.15	0.094	0.12	0.062	0.063	0.022	0.070	0.12	0.13	0.12	<0.58	0.090	0.11	0.15	0.092	0.087	0.072	0.047	0.084	0.063	0.066
	NA . 2+	0.012	0.010	0.019	0.017	0.0066	0.0028	0.0046	<0.0038	<0.0038	0.012	0.041	0.014	0.010	<0.0081	0.010	0.025	0.010	0.095	<0.038	0.017	<0.0064	0.011	<0.0055	0.0049
	IVIg																								
	Ca ²	0.034	<0.078	0.13	0.041	0.046	0.016	0.092	<0.044	<0.044	0.12	0.065	0.060	0.040	<0.033	0.040	0.050	0.040	0.056	<0.040	0.037	<0.052	<0.052	<0.032	0.051
無機成分	Na	-	93	160	<21	16	16	97	80	24	87	87	90	90	65	76	57	100	71	61	87	170	130	78	62
	Al	91	110	810	84	16	22	150	49	17	95	48	80	90	<19	110	25	85	38	36	150	29	24	19	69
	Si	-	-	-	-	-	-	260	210	120	300	110	240	170	-	160	-	180	40	53	-	46	64	31	-
	K	-	130	210	150	40	29	140	130	67	130	140	110	110	93	83	58	150	85	100	120	120	100	84	73
	Ca	_	38	280	<170	4.5	<2.1	86	84	27	160	31	40	60	<24	46	10	45	60	200	83	310	<23	120	29
	Sc	0.018	<0.059	0.18	0.017	<0.029	<0.029	<0.18	<0.57	<0.57	<0.57	<3.1	<0.05	<0.05	<0.49	<0.024		<0.021	<0.022	0.010	0.029	<0.032	<0.032	<0.016	
	T:	10	8.0	zzz	ZZZ	1.7	1.9	11	7.2	<3.7	8.5	11	5.0	5.0	2.9	6.5	2.6	7.7	1.7	3.1	9.7	1.2	<2.0	2.3	7.7
	\/	5.8	3.9	4.6	4.2	1.7	0.33	7.3	13	5.4	15	8.3	8.9	8.2	7.8	9.1	13	9.9	6.0	4.3	1.4	13	10	8.5	9.5
	v				1.5	0.32		<0.62	2.1		<0.76				0.46	0.95	0.81		<2.3				<0.53	3.4	1.4
	Cr	1.1	1.3				<0.12			1.6		1.1	1.0	1.0				2.4		2.7	0.78	1.1			
	Mn	5.7	5.9		6.2	1.9	1.1	8.2	9.8	3.4	9.4	9.6	11	6.2	5.0	8.0	7.8	7.5	3.0	3.5	5.3	3.1	5.2	3.8	8.2
	Fe -	97	140	450	120	36	25	170	190	75	220	110	180	130	74	140	130	140	34	43	120	48	82	40	54
	Со	0.063	0.063	<0.23	0.62	<0.11	<0.11	<0.081	0.095	<0.036	0.053	0.16	0.060	0.050	<0.14	<1	0.049	0.069	0.018	0.019	0.061	<0.017	0.038	0.043	0.056
	Ni	2.0	1.4		1.3	0.56	<0.19	3.0	4.6	1.9	3.5	4.8	3.0	2.0	<5	3.2	3.2	3.5	0.83	<0.43	0.68	4.3	3.2	<3.1	2.9
	Cu	5.5	<5.8		5.6	<0.21	<0.21	5.2	3.1	<1.6	<1.6	3.5	5.0	5.0	<3.6	4.4	3.1	4.6	2.1	<6.7	2.1	3.2	4.4	1.6	2.5
	Zn	57	33	38	35	13	<1.1	48	43	9.9	29	25	66	36	19	21	16	39	30	95	20	110	33	58	31
	As	2.4	2.2	1.1	1.4	0.16	0.13	1.6	1.0	0.47	0.94	1.3	1.9	1.3	1.1	1.0	1.1	2.1	0.53	0.65	0.95	0.57	0.94	0.57	0.81
	Se	0.16	2.2	0.98	1.1	0.25	<0.20	1.4	1.3	0.56	0.60	1.4	1.8	1.6	<1.6	1.2	0.89	5.3	0.60	1.0	0.70	0.50	0.74	0.53	0.81
	Rb	-	0.49	0.72	0.26	< 0.14	< 0.14	0.41	0.37	0.097	0.45	0.58	0.40	0.40	<0.4	<1.1	0.18	0.47	0.15	0.20	0.42	0.20	0.32	0.18	0.35
	Мо	0.73	0.81	1.3	1.0	0.33	<0.077	0.69	0.51	<0.098	0.36	0.93	0.70	0.60	0.61	3.2	0.71	1.1	0.60	0.57	0.50	0.65	1.0	0.64	1.1
	Sb	1.5	1.4	ZZZ	ZZZ	0.26	0.029	2.1	1.1	0.12	0.55	1.1	1.6	1.3	0.99	<6.6	0.59	1.7	1.0	1.2	1.0	0.65	1.1	0.48	0.79
	Cs	0.061	0.052	0.076	< 0.035	<0.079	< 0.079	0.054	0.070	<0.017	0.066	0.073	0.050	0.040	<0.26	<9.2	0.023	0.060	0.016	0.023	0.048	<0.0090	0.056	0.019	0.064
	Ba	2.2	2.3	14	11	5.3	<2.3	6.9	4.4	0.69	2.1	1.5	2.6	3.4	2.0	<10	1.2	3.9	1.4	1.6	2.0	1.8	1.7	1.3	1.7
	l a	0.13	0.12	0.23	0.088	<0.038	<0.038	0.16	0.17	0.026	0.10	<0.34	0.16	0.26	<0.3	<12	0.036	0.23	0.033	0.044	0.090	0.045	0.056	0.050	0.081
	Ce	0.16	0.13	0.41	0.13	0.047	0.055	0.21	0.29	0.031	0.15	<0.19	0.20	0.30	<0.23	<13	0.067	0.31	0.056	0.065	0.16	0.055	0.078	0.069	0.15
	Sm	<0.0055	<0.050	0.036	0.0030	<0.035	<0.035	<0.013	<0.017	<0.017	<0.017	<0.080	< 0.06	<0.06	<0.27	<20	<0.016	<0.04		0.0040	0.011	<0.0027	<0.0097	0.0020	0.0042
	Hf	0.039	<0.20	<0.023	<0.023	<0.020	<0.020	0.0088	<2.8	<2.8	<2.8	0.23	<0.2	<0.2	<0.29	<0.05	<0.035	<0.018		<0.0015	0.010	<0.0027	<0.0030	0.0016	<0.41
	w	0.17	0.12	0.17	0.43	<0.040	0.19	<0.16	<0.12	<0.12	<0.12	<3.3	0.30	0.20	0.15	3.2	0.23	0.48	0.13	0.12	0.20	0.11	0.44	0.32	1.1
	To	-	<0.26	<0.025	0.038	<0.048	<0.028	<0.0022	<0.027	<0.027	<0.027	0.41	<0.06	< 0.06	<0.11	< 0.05	<0.031	< 0.03	< 0.00079	< 0.00079	-	< 0.0017	< 0.0017	<0.00079	<0.090
	TL.	0.020	<0.10	0.065	<0.02	<0.020	<0.020	0.014	<0.027	<0.016	<0.016	<0.29	<0.03	0.030	<0.32	<3.2	<0.0099	<0.017	<0.001	0.0045	0.024	< 0.0077	<0.0077	0.0021	0.055
	Dh	10	11	6.4	6.3	2.6	0.073	9.1	7.5	1.5	5.2	12	13	7.4	5.0	4.6	3.8	9.6	4.4	6.4	5.8	4.1	6.4	3.4	5.0
	PD その他(Be)	-		0.4	- 0.3	-	- 0.94	9.1	- 7.3	- 1.5	- 5.2	- 12	- 13	- 7.4	- 5.0	- 4.0	-	- 9.0	- 4.4	- 0.4	- -	- 4.1	- 0.4	- 3.4	-
		_	<0.13	_	_				_	_		-		_	_		_	_	_	_				_	_
中主子ハ	その他(Cd)		0.44			- 0		0.35			<0.04	<0.042		<0.2			0.052			<0.020	0.20	0.24	0.26		
炭素成分	001	0.11	<0.011	<0.13	0.20		0 00	0.22	<0.04	<0.04			<0.2		0.17	0.15		0.24	<0.065		<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	1.2	0.82	1.0	0.78	0.90	0.90	1.1	2.2	0.80	1.4	1.3	0.80	0.80	1.0	0.96	1.3	1.5	1.4	1.3	0.54	0.85	0.84	0.94	1.1
	OC3	0.74	0.48	1.5	0.52	0.95	0.70	0.83	1.0	0.52	0.88	0.59	0.60	0.40	0.60	0.44	0.57	0.71	0.82	0.85	0.62	0.45	0.53	0.60	0.65
	OC4	0.64	0.23		0.41	0.62	0.49	0.54	0.46	0.22	0.36	0.26	0.50	0.30	0.38	0.29	0.42	0.48	0.64	0.62	0.31	0.33	0.49	0.45	0.47
	Ocpyro	1.2	1.4		0.67	0.91	0.85	1.0	1.4	0.69	1.2	1.4	0.50	0.50	0.87	0.70	0.87	1.0	1.3	1.0	0.63	0.62	0.91	0.82	0.80
	EC1	1.8	1.4	1.5	0.95	1.4	1.7	1.3	1.7	0.47	1.3	2.6	1.0	0.80	1.0	1.1	1.3	1.9	1.3	1.1	0.92	0.64	0.91	0.86	0.88
	EC2	0.23	1.4	0.64	0.51	0.71	0.53	0.74	0.84	0.53	0.62	0.53	1.0	0.80	0.80	0.28	0.54	0.42	1.2	1.2	0.35	0.83	0.94	1.1	1.0
	EC3	<0.1	0.094	0.075	0.045	0.050	0.028	0.056	0.065	0.075	0.090	<0.017	0.14	<0.06	0.087	0.010	<0.024	0.010	<0.024	0.018	0.064	0.030	<0.034	<0.024	0.057
	oc	3.9	2.9	4.4	2.6	3.4	2.9	3.7	5.1	2.2	3.8	3.6	2.3	1.7	3.0	2.5	3.2	3.9	4.2	3.8	2.1	2.3	2.8	2.8	3.0
	EC	0.83	1.5	1.0	0.84	1.3	1.4	1.1	1.2	0.39	0.81	1.7	1.6	1.1	1.0	0.69	0.97	1.3	1.2	1.3	0.70	0.88	0.94	1.1	1.1
	wsoc	2.7	2.5	2.2	2.1	-	-	-	2.1	1.1	1.3	2.0	-	-	2.8	-	2.9	-	-	-	-	-	-	2.9	

衣4-1-	4 5月10	ロから	り月II	ロまじ														(PM2.5	,炭素灰	分,イオ	-ン成分	: μg/m	無機成	分:ng/m	٠)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査:	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	8.4	13.4	ZZZ	9.3	6.6	6.4	25.7	14.7	12.1	17.0	8.7	9.3	8.8	14.3	18.9	11.8	15.9	10.9	12.5	9.3	16.4	12.2	18.1	14.8
イオン成分	CI-	<0.0056	0.020	ZZZ		<0.046	<0.046	0.095	<0.096	<0.096	< 0.096	<0.0052	0.26	0.070	0.053	0.050	0.14	0.030	<0.011	0.016	<0.026	<0.021	<0.021	<0.078	0.0092
1.2 - 7,472	NO3-	<0.25	0.31	ZZZ	0.15	0.15	0.13	0.43	0.38	0.14	0.43	<0.076	0.45	0.38	0.45	0.45	0.43	0.50	<0.28	<0.28	0.30	0.11	0.28	0.13	0.24
	SO42-	1.8	2.0	ZZZ	1.4	2.2	1.9	1.7	3.0	3.7	3.7	2.7	2.3	2.4	3.2	3.5	3.3	2.8	3.1	3.0	1.9	3.8	3.2	3.8	3.2
	N-+	0.066	0.058	ZZZ	0.037	0.030	<0.026	0.044	0.083	0.070	0.12	0.075	0.12	0.080	<0.065	0.070	0.13	0.070		<0.022	0.076	0.029	0.10	0.10	0.13
	Na .																								
	NH₄ [™]	0.84	0.77	ZZZ	0.47	0.84	0.72	0.68	1.2	1.4	1.4	0.84	0.76	0.92	1.3	1.4	1.3	1.1	1.1	1.1	0.72	1.6	1.3	1.7	1.1
	K ⁺	0.066	0.053	zzz	0.033	0.022	0.025	0.039	0.076	0.044	0.055	0.048	0.10	0.070	<0.58	0.090	0.073	0.080	0.048	0.052	0.044	0.035	0.062	0.087	0.072
	Mg ²⁺	<0.011	0.0077	ZZZ	<0.015	0.0016	0.00070	0.016	0.0094	0.0054	0.013	< 0.039	0.018	0.016	0.015	0.020	0.013	0.010	0.097	< 0.038	0.014	0.014	0.019	0.011	0.019
	C=2+	<0.021	<0.078	zzz	0.086	0.010	0.015	0.56	0.067	<0.044	0.26	< 0.051	0.12	0.11	0.14	0.17	0.077	0.11	0.060	<0.040	<0.033	0.69	<0.052	0.18	0.15
無機成分	Oa Na	- (0.021	70	ZZZ	<21	39	67	210	130	64	120	85	80	70	100	68	73	110		51	77	130	170	130	180
無饭风刀	INA	110															-								
	AI	- 110	110	ZZZ	190	55 -	<u>49</u>	1200	180 540	33	170	38	110	180 340	420 -	450	78	480 760	70	160	110	150 180	76	200	810 -
	51			ZZZ				2100		400	670		280			860				150			140	200	
	K		82	ZZZ	46	61	100	230	160	110	150		94	70	140	130	83	140		72	68	110	90	100	120
	Ca	-	36	ZZZ	<170	17	4.7	1000	170	58	450	27	50	80	160	160	27	140		150	45	150	26	240	100
	Sc	0.017	< 0.059	ZZZ	0.042	<0.029	<0.029	0.87	< 0.57	< 0.57	<0.57	<3.1	< 0.05	<0.05	<0.49	0.13		0.092		0.019	0.023	<0.032	<0.032	0.022	<0.078
	Ti	9.4	6.0	ZZZ	ZZZ	4.2	3.8	90	16	8.3	22		6.0	8.0	27	27	5.9	24	2.1	7.2	7.4	5.4	4.0	8.7	18
	V	0.79	0.56	ZZZ	2.7	0.95	2.6	3.4	2.6	3.4	7.2		0.80	0.90	2.0	3.5	-	2.0		1.5	0.61	11	1.6	3.6	2.5
	Cr	<0.41	<0.19	ZZZ	<1.1	0.39	1.0	2.3	3.4	1.2	1.8		2.0	<1	0.94	0.49		0.85	<2.3	<0.78	0.48	1.3	< 0.53	<2.1	0.97
	Mn	2.6	2.8	ZZZ	3.7	2.1	5.4	23	7.9	4.2	13	2.7	17	3.2	6.4	8.9	6.1	7.2		3.7	2.3	4.7	3.9	5.1	4.7
	Fe	67	78	ZZZ	120	48	90	960	310	120	430		210	100	270	340	200	280	43	82	69	99	69	120	73
	Co	0.082	<0.059	ZZZ	<0.23	<0.11	<0.11	0.64	0.19	< 0.036	0.079		0.050	<0.05	<0.14	<1	0.039	0.12		0.036	0.029	<0.017	0.013	0.056	0.079
	Ni	1.6	<0.52	zzz	<0.85	0.20	<0.19	1.8	4.2	1.1	1.9	0.45	<0.5	<0.5	<5	1.1	1.6	0.79	<0.43	< 0.43	0.28	3.6	0.60	<3.1	1.0
	Cu	2.3	<5.8	zzz	1.1	0.69	0.46	9.7	3.3	<1.6	2.8	1.2	8.0	2.0	<3.6	2.7	2.4	2.5	1.3	<6.7	0.81	3.7	1.9	2.2	1.3
	Zn	60	42	zzz	10	22	7.8	30	29	14	34	7.9	160	10	19	18	27	16	22	34	6.4	64	<17	<18	13
	As	0.51	0.41	zzz	0.35	0.20	0.26	0.70	0.74	0.56	0.74	0.36	1.1	0.60	0.68	<0.89	0.85	0.82	0.87	0.67	0.35	0.94	1.4	0.74	1.5
	Se	0.056	<0.38	ZZZ	<0.19	<0.20	<0.20	0.26	1.1	0.42	0.66	< 0.35	0.30	0.40	<1.6	<0.92	1.1	1.1	0.35	0.37	0.20	0.79	0.47	0.56	0.48
	Rb	-	0.29	ZZZ	0.22	0.18	0.23	0.89	0.83	0.19	0.50	0.24	0.40	0.30	0.42	<1.1	0.36	0.56	0.20	0.20	0.25	0.30	0.37	0.27	0.55
	Мо	0.61	0.39	ZZZ	<0.15	0.33	0.69	0.37	0.42	0.14	0.43	0.12	0.30	0.10	0.44	<1.4	0.81	0.48	0.085	0.16	0.10	0.69	0.28	0.55	3.0
	Sb	1.7	0.23	zzz	ZZZ	0.053	0.33	0.47	0.71	0.19	0.51	0.35	0.60	0.40	0.56	<6.6	0.53	0.65	0.25	0.34	0.20	0.71	0.26	0.53	0.32
	Cs	0.030	<0.049	zzz	< 0.035	< 0.079	< 0.079	0.086	0.13	0.026	0.073	<0.042	<0.03	<0.03	<0.26	<9.2	0.085	0.067	0.022	0.020	0.025	0.037	0.031	0.042	0.056
	Ba	1.2	1.4	ZZZ	2.5	<2.3	<2.3	18	8.5	1.2	3.9	1.1	2.1	1.8	4.0	<10	1.7	3.8	1.3	1.5	1.3	2.8	1.5	1.9	2.4
	l a	0.056	<0.081	ZZZ	0.092	<0.038	0.088	0.29	0.23	0.036	0.13	<0.34	< 0.09	<0.09	<0.3	<12		0.17		0.064	0.062	0.072	0.058	0.083	0.11
	Ce	0.13	0.12	ZZZ	0.18	0.060	0.13	0.54	0.43	0.059	0.22	<0.19	0.14	0.13	0.24	<13	0.11	0.33	0.10	0.12	0.12	0.10	0.095	0.15	0.22
	Sm	0.0064	<0.050	ZZZ		<0.035	<0.035	0.050	<0.017	<0.017	<0.017		< 0.06	<0.06	<0.37	<20	<0.016	<0.04		0.013	0.0094	<0.0027	<0.0097	0.014	0.014
	Hf	<0.022	<0.20	ZZZ	<0.023	<0.020	<0.020	0.036	<2.8	<2.8	<2.8	0.18	<0.2	<0.2	<0.29	<0.05	<0.015	0.021	0.0015	0.0016	< 0.0037	0.0050	<0.0037	0.0021	<0.41
	14/	<0.022	<0.11	ZZZ	<0.023	0.088	1.2	<0.16	<0.12	<0.12	0.17	<3.3	0.20	<0.05	<0.23	0.23	0.097	0.021		0.0092	0.016	0.0000	0.12	0.0021	0.099
	Ta	\0.002	<0.11	ZZZ	0.044	<0.028	<0.028	0.0091	<0.027	<0.027	<0.027	0.43	<0.06	<0.06	<0.13	<0.05	<0.037	<0.03		< 0.0032	-	< 0.0017	<0.0017	<0.00079	<0.090
	TL	0.014	<0.10	ZZZ	0.044	<0.028	<0.028	0.0031	0.027	<0.027	0.018	<0.29	<0.03	<0.03	<0.11	<3.2	<0.0099	0.041	<0.001	0.00073	0.018	<0.0077	<0.0017	0.0038	0.047
	In Dh	3.3	1.9	ZZZ	1.6	2.2	4.3	3.7	7.8	2.2	5.3	3.8	27	2.9	4.5	6.1	7.0	4.8	3.7	4.4	1.8	5.6	5.9	6.1	
	PD その他(Be)	- 3.3	<0.13	ZZZ	- 1.0		4.3 -	3.7	- 7.8		- 5.3	3.8	- 21	- 2.9	4.5 -	- 0.1	7.0	4.8	- 3.7	- 4.4	- 1.8	3.0	5.9	- 0.1	4.9
			<0.13	_		_			_	_	_	_	_						_	_			- 0.10	_	
出ません	その他(Cd)			_		- 0	_	0.099													0.053	0.20	0.19		
炭素成分	OC1	0.14	<0.011	ZZZ	0.17	•	0 05	0.14	<0.04	<0.04	<0.04	0.11	<0.2	<0.2	0.31	0.19	0.12	0.29		<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	0.71	0.31	ZZZ	0.37	0.30	0.35	0.48	1.5	0.95	1.2	1.0	0.50	0.40	0.73	0.69	1.2	0.92	0.87	0.86	0.35	0.90	0.51	0.95	0.75
	OC3	0.51	0.33	ZZZ	0.35	0.56	0.50	0.75	0.83	0.59	0.76		0.40	0.40	0.56	0.75	0.63	0.88	0.44	0.53	0.88	0.52	0.40	0.65	0.55
	OC4	0.38	0.15		0.26	0.30	0.28	0.50	0.39	0.28	0.37	0.17	0.40	0.30	0.33	0.34	0.37	0.36	0.30	0.40	0.34	0.41	0.36	0.57	0.42
	Ocpyro	0.49	0.67	ZZZ	0.36	0.51	0.49	1.1	0.98	0.87	1.2		0.30	0.40	0.83	1.0	0.68	0.97	0.64	0.60	0.66	0.70	0.60	0.92	0.78
	EC1	0.69	0.48	ZZZ	0.50	0.52	0.48	0.80	1.1	0.78	1.4		0.70	0.50	0.74	1.2	1.1	1.2		0.60	0.94	0.72	0.63	0.97	0.79
	EC2	0.29	0.69	ZZZ	0.31	0.41	0.47	0.57	0.62	0.49	0.74	0.44	0.40	0.50	0.55	0.35	0.48	0.35	0.55	0.59	0.21	0.88	0.51	0.87	0.57
	EC3	<0.1	<0.056	zzz	0.030	0.0050	0.033	0.038	0.090	0.050	0.12		<0.06	0.080	0.053	0.010	0.042	0.020		<0.012	0.048	<0.028	<0.034	0.029	<0.021
	oc	2.2	1.5	ZZZ	1.5	1.7	1.6	3.0	3.7	2.7	3.5	2.2	1.7	1.6	2.8	3.0	3.0	3.4	2.2	2.4	2.2	2.5	1.9	3.1	2.5
	EC	0.49	0.50	ZZZ	0.48	0.43	0.49	0.31	0.83	0.45	1.1	0.94	0.90	0.60	0.51	0.56	0.94	0.60	0.55	0.59	0.54	0.90	0.54	0.95	0.58
	WSOC	1.3	1.4	ZZZ	0.76	-	-	-	1.2	1.2	1.6	1.0	-	-	2.2	_	2.7	-	-	-	-	_	-	2.5	-

	יו דעניני	H 73 - 3	,0,,,2	1 6 C														(PMZ. 5	,灰系风	分, 17	ン以分	. μg/m	無機以	万:ng/m	,
	台体名	茨城県	栃木県	群馬県	群馬県	埼玉県		さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
,,	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	8.6	8.7		12.2	9.2	9.0	19.1	11.7	6.8	14.6	7.1	8.8	8.7	9.0	9.9	8.1	10.4	12.5	11.4	15.5	10.3	8.5	11.3	10.7
イオン成分	CI-	<0.0056	0.015		<0.016	<0.046	<0.046	0.046	< 0.096	< 0.096	< 0.096	<0.0052	0.050	0.040	0.046	0.020	0.018	0.020	<0.011	0.026	<0.026	<0.021	<0.021	<0.078	0.017
	NO3-	<0.25	0.59	0.79	0.25	0.41	0.23	0.57	0.20	<0.099	0.19	<0.076	0.45	0.43	0.32	0.18	0.20	0.41	0.37	0.41	0.33	0.087	0.15	0.16	0.33
	SO42-	1.5	2.1		1.6	2.3	2.2	1.7	2.2	1.2	2.2	1.9	2.2	2.1	2.3	2.3	2.2	2.4	2.9	2.8	2.0	2.0	1.9	2.5	2.4
	Na⁻	0.042	0.074		0.044	0.054	0.032	<0.044	0.090	0.092	0.11	0.082	0.14	0.14	0.085	0.13	0.081	0.10	0.039	0.026	0.061	0.023	0.14	0.099	0.16
	NH ₄ ⁺	0.74	0.94	0.61	0.53	0.92	0.83	0.65	0.81	0.48	0.59	0.57	0.80	0.82	0.91	0.77	0.80	0.95	1.1	1.1	0.74	0.97	0.82	1.1	0.81
	K ⁺	0.052	0.077	0.073	0.052	0.055	0.053	0.046	0.073	<0.006	0.044	0.051	0.090	0.10	<0.58	0.060	0.047	0.060	0.063	0.058	0.070	0.030	0.048	0.078	0.057
	Mg ²⁺	0.012	0.0059	<0.015	<0.015	0.0023	0.0013	0.019	0.012	<0.0038	0.015	<0.039	0.020	0.016	0.012	0.020	0.019	0.020	0.097	<0.038	0.015	< 0.0064	0.018	0.0091	0.017
	Ca ²⁺	0.027	<0.078	0.17	0.10	0.016	0.011	0.55	0.072	<0.044	0.30	< 0.051	0.10	0.10	0.053	0.10	0.057	0.080	0.061	<0.040	0.14	<0.052	< 0.052	0.093	0.055
無機成分	Na	-	100	100	<21	3.9	100	160	120	88	170	96	130	90	120	110	72	120	85	94	120	180	190	110	66
	Al	70	110	620	110	11	21	680	97	23	290	43	80	100	88	130	35	180	79	120	350	52	23	65	48
	Si	-	-	-	-	-	-	1200	330	230	800	97	210	210	-	340	-	380	110	130	-	64	53	81	-
	K	-	110		53	24	85	170	130	78	140	78	76	64	87	81	40	96		72	140	78	56		29
	Ca	-	46		<170	5.4	11	650	170	39	650	25	60	50	78	85	15	94		87	200	58	23	170	<29
	Sc	0.049	<0.059	0.14	0.017	<0.029	<0.029	0.48	<0.57	<0.57	<0.57	<3.1	<0.05	<0.05	<0.49	0.032		0.040	-	0.017	0.074	<0.032	<0.032	<0.016	<0.078
	Ti	3.9	8.4		ZZZ	<0.2	2.3	52	12	5.4	32		5.0	5.0	5.5	11	3.2	12		6.9	21	1.8	<2.0	2.5	4.0
	V	1.9	3.4		3.1	0.33	1.1	3.6	2.5	1.1	11		4.7	2.2	2.6	5.8	5.8	3.0		2.4	1.4	7.0	1.8	1.5	2.1
	Cr	0.98	2.7		1.8	0.14	0.27	1.9	1.1	<0.76	1.2		1.0	<1	0.82	0.60	0.90	0.72		<0.78	0.69	<0.27	< 0.53	<2.1	2.4
	Mn	3.7 79	5.8 150		4.6 110	1.2 25	2.4 33	16 600	8.8 220	<2.8 60	14 410	3.0 49	5.5 130	4.3 90	4.2 100	4.4 160	4.2 62	5.3 150	3.3 59	3.3 69	8.4 230	2.4 42	2.0 28	3.2 55	2.5 20
	Fe C-	0.026	0.096		<0.23	<0.11	<0.11	0.39	0.093	<0.036	0.12		0.060	<0.05	<0.14	<1		0.066		0.033	0.094	< 0.017	0.0099	0.023	0.014
	Ni	1.7	3.3		1.0	1.4	<0.11	1.8	1.5	<0.030	2.4	0.10	1.9	<0.05	<5	1.2	1.3	1.1	<0.43	<0.43	0.094	2.0	0.0099	<3.1	0.014
	Cu	1.4	<5.8		1.4	<0.21	0.44	5.3	2.6	<1.6	<1.6	1.1	2.0	4.0	80	1.2	1.7	3.1	1.4	<6.7	2.7	2.0	0.52	1.0	1.3
	Zn	16	22		15	6.2	<1.1	33	44	5.9	14	6.7	21	13	12	12	8.9	13		<16	24	<4.3	<17	45	7.3
	As	0.30	0.37		0.29	<0.097	0.13	0.50	0.37	0.25	0.33	<0.20	0.30	0.40	<0.62	<0.89	0.29	0.58	0.44	0.56	0.44	0.46	0.29	0.40	0.25
	Se	0.038	0.58	0.60	0.34	<0.20	<0.20	0.58	0.32	0.25	0.36	0.37	0.60	0.50	<1.6	<0.92	0.23	0.71	0.34	0.39	0.38	0.36	0.31	0.35	0.19
	Rb	-	0.36	0.57	0.16	<0.14	0.14	0.65	0.34	0.14	0.46	0.23	0.30	0.20	<0.4	<1.1	0.11	0.35	0.15	0.17	0.48	0.18	0.14	0.19	0.13
	Мо	<0.19	1.1	1.2	0.36	0.17	0.31	0.66	0.17	<0.098	<0.098	0.17	0.90	<0.1	<0.26	<1.4	0.31	0.28	0.11	0.14	0.30	0.34	0.082	0.13	<0.82
	Sb	1.4	0.76		zzz	0.026	0.10	0.82	0.66	<0.086	0.19	1.1	0.40	0.50	0.47	<6.6	0.20	0.74	0.28	0.65	0.69	0.58	0.17	0.22	3.6
	Cs	0.033	<0.049		<0.035	<0.079	<0.079	0.057	0.042	<0.017	0.045	<0.042	0.030	<0.03	<0.26	<9.2	0.010	0.043	0.014	0.015	0.048	<0.0090	<0.0090	0.018	0.015
	Ba	0.96	2.0		2.5	<2.3	<2.3	13	5.9	0.98	4.1	0.83	2.1	2.5	2.3	<10	0.80	2.9		1.8	3.6	2.1	0.54	1.1	0.81
	La	0.080	0.094		0.065	<0.038	0.077	0.22	0.11	0.018	0.14	<0.34	0.090	<0.09	<0.3	<12	0.031	0.17		0.057	0.16	0.077	0.034	0.050	0.029
	Ce	0.10	0.12	0.35	0.12 0.0068	0.027	0.16 <0.035	0.39	0.19 <0.017	0.041	0.24	<0.19	0.16	0.11	<0.23 <0.37	<13	0.034	0.29	0.12	0.11	0.27	0.12	0.047 <0.0097	0.086	0.056
	Sm	<0.0055 0.41	<0.050 <0.20		<0.008	<0.035 <0.020	<0.035	0.030	<2.8	<0.017 <2.8	0.022 <2.8	<0.080 0.19	<0.06 <0.2	<0.06 <0.2	<0.37	<20 <0.05	<0.016 <0.035	<0.04		0.010	0.023	<0.0027	<0.0097	0.0089 <0.0015	<0.41
	W/	0.083	<0.11	0.18	<0.023	<0.020	0.020	<0.16	<0.12	<0.12	<0.12	<3.3	0.080	0.070	<0.13	0.060	0.058	0.013	0.0010	0.0022	0.013	<0.0030	<0.0030	0.034	0.083
	Та	-	0.62		<0.025	<0.028	<0.028	0.0052	<0.027	<0.027	<0.027	0.34	<0.06	<0.06	<0.11	<0.05	<0.031	<0.03		<0.00079	-	<0.0017	<0.017	< 0.00079	<0.090
	Th	0.035	<0.10		<0.02	<0.079	<0.079	0.050	<0.016	<0.016	0.034	<0.29	<0.03	<0.03	<0.32	<3.2	<0.0099	0.025	<0.031	0.0043	0.043	<0.0077	<0.0077	0.0043	<0.024
	Pb	11	4.1		2.3	0.66	1.8	5.1	3.9	1.8	2.1	2.8	4.2	2.6	2.3	2.4	1.5	5.1	2.6	5.9	4.5	2.5	1.5	2.6	1.1
	その他(Be)	-	<0.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.14	-	-	-	-	0.099	-	-	-	-	-	-	-	-	-	-	-	-	0.12	0.094	0.070	-	-
炭素成分	OC1	0.10	<0.011	0.16	0.25	0.081	0	0.18	<0.04	<0.04	<0.04	0.051	<0.2	<0.2	0.11	0.13	0.032	0.16	<0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	0.69	0.66	0.78	0.75	0.70	0.64	0.77	1.7	0.69	0.80	1.0	0.50	0.50	0.52	0.53	0.75	0.60	0.90	0.72	0.59	0.79	0.41	0.76	0.81
	OC3	0.64	0.59		0.67	0.92	0.77	1.0	0.94	0.61	0.77	0.40	0.60	0.30	0.41	0.48	0.49	0.43	0.52	0.43	0.67	0.41	0.40	0.50	0.73
	OC4	0.44	0.26		0.44	0.52	0.38	0.56	0.41	0.25	0.34	0.20	0.30	0.30	0.22	0.28	0.29	0.28	0.43	0.34	0.31	0.32	0.30	0.40	0.35
	Ocpyro	0.59	1.0		0.56	0.58	0.60	0.78	0.86	0.56	0.78	0.65	0.30	0.40	0.46	0.45	0.40	0.53	0.78	0.52	0.68	0.49	0.47	0.69	0.50
	EC1	0.91	1.2		0.83	0.85	0.88	0.89	0.99	0.47	0.89	1.1	0.70	0.50	0.55	0.76	0.63	0.81	0.81	0.54	1.1	0.49	0.48	0.74	0.55
	EC2	0.19	0.86		0.54	0.51	0.51	0.64	0.58	0.38	0.47	0.33 <0.017	0.50	0.40	0.44	0.23	0.40	0.26	0.62	0.51	0.31	0.71	0.41 <0.034	0.58	0.44
	EC3 OC	<0.1 2.5	0.072 2.5		0.040 2.7	0.020 2.8	2.4	0.046	0.080	0.035	0.070 2.7	2.3	<0.06 1.7	<0.06 1.3	1.022	0.030	0.048	0.020 2.0	<0.024 2.6	<0.012 2.0	0.069	0.033	1.6	<0.024	<0.021 2.4
	EC	0.51	1.1		0.85	0.80	0.79	0.80	0.79	0.33	0.65	0.78	0.80	0.50	0.55	0.57	0.68	0.56	0.65	0.53	0.80	0.74	0.42	0.63	0.49
	WSOC	1.4	2.1		1.4	-	-	-	1.2	0.70	<0.55	0.78	-	-	1.5	-	1.8	-	-	-	-	-	-	1.9	-

	6 5月12	ロから	5月 13	ロまじ														(PM2.5	,灰素放	分,イオ	ン成分	: μg/m	無機以	分:ng/m	')
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	9.0	8.8	13.6	12.3	10.0	9.0	13.0	11.3	7.6	15.3	8.5	9.2	8.5	6.7	8.4	8.7	7.6	6.8	7.1	8.0	8.7	9.7	6.5	8.9
イオン成分	CI-	<0.0056	0.010	< 0.016	<0.016	<0.046	<0.046	0.014	< 0.096	< 0.096	< 0.096	0.11	0.070	0.090	< 0.043	0.080	0.092	<0.02	<0.011	0.012	<0.026	< 0.021	<0.021	<0.078	<0.0043
	NO3-	0.35	0.22	0.50	0.51	0.33	0.31	0.27	0.23	<0.099	<0.099	<0.076	0.60	0.51	0.11	0.22	0.25	0.21	0.52	<0.28	0.12	0.099	0.16	0.081	0.21
	SO42-	3.1	2.8	1.9	2.7	3.0	4.0	1.9	3.2	2.7	1.0	3.1	3.1	2.4	2.6	3.1	3.1	2.5	1.9	1.7	1.5	2.7	3.4	1.8	3.2
	Na⁺	0.24	0.18	0.060	0.063	0.064	0.13	<0.044	0.34	0.39	0.19	0.32	0.37	0.21	0.21	0.60	0.40	0.26	<0.022	<0.022	0.070	0.14	0.16	0.095	0.14
	NH₄⁺	1.2	0.83	0.81	1.0	1.1	1.3	0.56	0.84	0.63	0.19	0.79	0.93	0.82	0.65	0.62	0.78	0.68	0.75	0.55	0.45	1.0	1.3	0.74	1.0
	K ⁺	<0.045	0.049		0.059	0.062	0.038	<0.037	0.046	0.022	0.024	0.12	0.070	0.070	<0.58	0.060	0.063	0.050	0.040	0.031	0.032	0.029	0.057	0.040	0.043
	N 2+	0.028	0.018		<0.015	0.0031	0.0067	0.013	0.023	0.025	0.0084	<0.039	0.046	0.023	0.018	0.070	0.051	0.040		<0.038	0.014	0.016	0.021	0.011	0.018
	Mg ⁻																_								
- 100 B 41	Ca ²	0.035	<0.078	0.062	0.045	0.011	0.012	0.33	0.062	<0.044	0.072	<0.051	0.070	0.050	<0.033	0.080	0.054	0.070	<0.040	<0.040	0.041	<0.052	<0.052	<0.032	0.035
無機成分	Na	-	250		32	39	<2.4	190	350	350	420	270	310	180	250	390	430	270	110	100	95	240	270	110	73
	Al	93	100	250	70	32	<2.5	310	91	23	300	150	70	60	<19	77		89		96	120	24	30	35	34
	Si	-	-	-	-	-	-	430	280	120	850		150	130	-	140		170		120	-	47	81	44	-
	K		72		64	54	8.5	96	85	61	99		66	49	120	61		60		42	61	43	96	53	21
	Ca	-	71		<170	8.2	<2.1	270	140	38	450		50	50	74	59		73		200	66	<22	120	54	<29
	Sc	0.014	< 0.059		<0.012	<0.029	<0.029	<0.18	< 0.57	< 0.57	< 0.57	<3.1	<0.05	<0.05	<0.49	<0.024		<0.021	<0.022	0.011	0.026	<0.032	<0.032	<0.016	<0.078
	Ti	6.2	6.5		ZZZ	2.4	<0.2	22	9.9	<3.7	36		4.0	3.0	2.6	4.8	5.0	6.8	1.3	6.7	15	0.55	2.2	1.2	3.4
	V	2.1	1.8		1.9	1.0	<0.072	2.3	1.3	1.4	3.8		4.7	1.6	1.7	2.0		2.1	0.78	0.56	0.55	8.2	2.6	0.91	2.0
	Cr	0.81	0.45		3.1	0.47	<0.12	< 0.62	1.0	< 0.76	<0.76		<1	<1	0.93	0.37		0.50	<2.3	0.92	<0.44	0.66	< 0.53	<2.1	1.3
	Mn	3.9	4.2		7.8	3.7	<0.16	8.5	7.3	<2.8	13	4.3	4.8	3.8	4.4	2.0		3.4		2.8	3.3	1.5	5.1	2.3	2.8
	Fe	77	94		120	45	<4.3	270	150	38	460	110	100	60	46	64		78		60	80	25	54	31	18
	Co	0.039	<0.059		<0.23	0.22	<0.11	0.17	0.067	<0.036	0.14		<0.05	<0.05	<0.14	<1		0.035		0.029	0.030	<0.017	0.021	0.014	
	Ni	0.90	2.2		1.3	0.38 <0.21	<0.19	0.98	0.90	0.70	1.1 <1.6		1.1	<0.5	<5	<0.75	6.1	0.83	<0.43	<0.43	0.24	2.4	1.3	<3.1	0.57
	Cu	1.5 31	<5.8 37		2.8 20		3.5 <1.1	3.1 19	<1.6 27	<1.6 5.8		1.3 8.9	2.0 29	2.0	<3.6	<1.1	4.2 19	2.0		<6.7	1.1 7.8	2.0 <4.3	2.2	<1 <18	0.65
	∠n ^-	0.44	0.40		0.47	16 0.14	<0.097	0.42	0.39	0.38	9.5 0.33	<0.20	0.50	0.40	7.3 <0.62	6.0 <0.89	0.64	9.7 0.48	25 0.35	39 0.26	0.25	0.29	87 0.86	0.33	8.8 0.48
	As	0.081	0.40	0.53	0.47	<0.20	<0.097	0.42	0.56	0.35	0.33	0.63	0.30	0.40	<1.6	<0.89	0.64	0.40	0.33	0.20	0.23	0.23	0.68	0.33	0.48
	Rb	- 0.061	0.81		0.90	<0.14	<0.14	0.00	0.30	0.33	0.19	0.03	0.70	0.14	<0.4	<1.1	0.47	0.32	0.32	0.13	0.21	0.23	0.08	0.12	0.38
	Mo	0.57	1.1		1.0	0.14	<0.14	0.32	0.13	<0.098	<0.098	0.28	0.20	0.14	<0.26	2.3	0.20	0.22	0.090	0.034	0.22	0.10	0.32	0.12	1.9
	Sb	0.37	0.47		ZZZ	0.49	<0.012	0.51	0.13	0.095	0.088	0.16	0.50	0.60	0.25	<6.6	0.07	0.52	0.090	0.034	1.1	0.49	0.37	0.14	0.18
	Cs	0.029	<0.049		<0.035	<0.079	<0.079	0.033	0.035	0.033	0.030	<0.042	<0.03	<0.03	<0.26	<9.2		0.026		0.0076	0.022	<0.0090	0.042	0.0065	0.024
	Ba	1.0	1.6		3.1	<2.3	<2.3	4.6	4.5	0.63	2.6	0.94	1.7	1.7	1.4	<10		17	1.0	0.98	1.2	1.1	1.0	0.90	0.63
	l a	0.072	<0.081	0.092	0.089	0.057	<0.038	0.10	0.18	0.022	0.091	<0.34	<0.09	<0.09	<0.3	<12		0.076	1.0	0.038	0.051	0.026	0.048	0.029	0.031
	Ce	0.12	0.11	0.002	0.15	0.058	<0.018	0.18	0.16	0.038	0.18	<0.19	0.13	0.11	<0.23	<13	0.075	0.15		0.072	0.098	0.029	0.093	0.054	0.056
	Sm	0.0061	<0.050	0.014	0.0052	<0.035	<0.035	0.016	<0.017	<0.017	<0.017		<0.06	<0.06	<0.27	<20		<0.04		0.0072	0.0075	<0.0027	<0.0097		
	Hf	0.024	<0.20		<0.023	<0.020	<0.020	0.012	<2.8	<2.8	<2.8	0.39	<0.2	<0.2	<0.29	<0.05		<0.018		<0.0015	<0.0087	<0.0030	<0.0030	0.0023	<0.41
	W	0.093	<0.11	0.11	<0.084	0.16	0.45	<0.16	<0.12	<0.12	<0.12	<3.3	0.11	0.10	<0.13	0.16	0.23	0.15		<0.0041	0.035	<0.0068	0.098	0.11	0.24
	Та	-	<0.26		<0.025	<0.028	<0.028	0.0036	<0.027	<0.027	<0.027	0.55	<0.06	<0.06	<0.11	<0.05		<0.03		<0.00079	-	<0.0017	<0.0017	<0.00079	<0.090
	Th	0.012	<0.10	0.024	<0.02	<0.079	<0.079	0.019	< 0.016	< 0.016	< 0.016	<0.29	< 0.03	0.060	<0.32	<3.2	<0.0099	<0.017		0.0031	0.018	<0.0077	<0.0077	0.0029	<0.024
	Pb	3.8	4.0		4.0	2.3	0.75	3.4	1.8	1.4	1.9	3.5	5.1	2.4	1.5	3.0		2.8	2.3	2.1	2.2	2.1	5.6	2.3	2.1
	その他(Be)	-	<0.13	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.11	-	-	-	-	0.082	-	-	-	-	-	-	-	-	-	-	-	-	0.065	0.072	0.35	-	-
炭素成分	OC1	0.059	<0.011	< 0.13	<0.13	0	0	0.12	<0.04	<0.04	<0.04	<0.042	<0.2	<0.2	0.084	0.060	0.041	0.070	< 0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	0.63	0.41	1.1	0.80	0.64	0.41	0.64	0.94	0.74	0.61	0.82	0.40	0.30	0.43	0.41	0.72	0.46	0.67	0.38	0.26	0.68	0.32	0.40	0.43
	OC3	<0.4	0.29	2.6	0.62	0.85	0.38	0.62	0.58	0.50	0.52	0.22	0.40	0.40	0.28	0.32	0.39	0.27	0.38	0.26	0.35	0.43	0.23	0.35	0.39
	OC4	0.33	0.11	0.77	0.43	0.48	0.20	0.37	0.21	0.17	0.20	0.10	0.40	<0.2	0.14	0.18	0.22	0.15	0.27	0.18	0.17	0.30	0.21	0.26	0.19
	Ocpyro	0.38	0.40	1.2	0.44	0.41	0.32	0.43	0.43	0.33	0.36	0.44	0.18	0.12	0.22	0.21	0.19	0.27	0.43	0.28	0.18	0.40	0.34	0.34	0.39
	EC1	0.58	0.43	2.5	0.76	0.81	0.46	0.47	0.40	0.29	0.38	0.43	0.60	0.40	0.26	0.35	0.48	0.41	0.43	0.26	0.47	0.51	0.35	0.38	0.37
	EC2	0.24	0.62	0.60	0.66	0.52	0.42	0.34	0.46	0.24	0.24	0.38	0.50	0.30	0.32	0.19	0.34	0.22	0.48	0.25	0.17	0.77	0.39	0.36	0.43
	EC3	<0.1	0.075	0.085	0.060	0.015	0	0.019	0.055	0.020	0.035	<0.017	<0.06	<0.06	<0.0026	0.010	0.026	0	<0.024	<0.012	0.042	<0.028	<0.034	<0.024	<0.021
	OC	1.4	1.2	5.7	2.3	2.4	1.3	2.2	2.2	1.7	1.7	1.6	1.2	0.70	1.2	1.2	1.6	1.2	1.8	1.1	0.96	1.8	1.1	1.4	1.4
	EC	0.44	0.73	2.0	1.0	0.94	0.56	0.40	0.49	0.22	0.30	0.37	0.90	0.60	0.36	0.34	0.66	0.36	0.48	0.23	0.50	0.88	0.40	0.40	0.41
	WSOC	0.91	1.1	1.5	1.5	-	-	-	0.60	<0.55	< 0.55	0.53	-	)	1.0	-	1.3	-	-	1	1	-	-	1.0	-

11.7			דו העטו															(1.111110)	,火米以		~ IIX JJ .	. μg/ш	##10又以		
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都		神奈川県	横浜市	川崎市	相模原市	山梨県		長野県	静岡県	静岡県		浜松市
調査:	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	17.3	11.4	23.9	18.1	14.0	15.0	22.7	26.2	18.3	23.0	17.6	18.7	15.8	19.1	20.2	18.2	17.9	16.8	15.3	20.1	21.8	22.8	19.7	22.2
イオン成分	CI-	< 0.0056	<0.01	0.017	0.043	< 0.046	<0.046	0.038	< 0.096	< 0.096	0.099	<0.0052	0.020	0.030	< 0.043	0.050	0.020	0.030	<0.011	< 0.011	<0.026	<0.021	< 0.021	<0.078	0.012
	NO3-	<0.25	0.46	0.31	0.33	0.17	0.30	0.36	0.39	0.19	1.4	0.19	0.87	0.42	0.48	0.57	0.54	0.42	0.34	<0.28	0.37	0.35	0.78	0.13	0.50
	SO42-	4.6	3.0	2.9	3.4	4.8	5.2	3.7	6.2	4.6	7.0	5.6	5.7	4.2	5.2	6.0	5.6	4.4	4.4	3.4	4.6	5.6	5.5	4.8	5.8
	Na ⁺	0.21	0.11	0.055	0.098	0.042	0.13	0.063	0.26	0.28	0.93	0.30	0.39	0.16	0.25	0.39	0.33	0.12	<0.022	<0.022	0.063	0.29	0.22	0.11	0.30
		1.7	1.2	1.1	1.2	1.7	1.7	1.3	1.9	1.6				1.5	1.8	2.3	1.9	1.6	1.6	1.3		2.0	2.2	1.9	1.8
	NH ₄ ⁺										1.6	1.9	1.9								1.6				
	K ⁺	0.087	0.074	0.084	0.080	0.069	0.086	0.080	0.098	0.11	0.12	0.13	0.19	0.12	<0.58	0.16	0.13	0.11	0.089	0.068	0.12	0.13	0.16	0.13	0.14
	Mg ²⁺	0.028	0.011	0.018	<0.015	0.0026	0.0078	0.021	0.028	0.032	0.12	0.045	0.048	0.023	0.032	0.060	0.040	0.020	0.094	<0.038	0.022	0.041	0.032	0.015	0.039
	Ca ²⁺	0.042	<0.078	0.19	0.084	0.021	0.023	0.41	0.091	0.051	0.23	0.071	0.13	0.090	0.11	0.17	0.096	0.20	0.071	< 0.040	0.22	880.0	< 0.052	0.056	0.11
無機成分	Na	-	130	150	78	68	160	180	480	400	570	300	300	140	300	270	310	160	68	87	91	580	400	140	320
// (X/20/2)	ΔI	110	68	820	170	79	75	420	250	94	270	110	150	110	200	240	120	260	56	87	320	92	69	110	170
	ζi Si	-	_	-	-	_		750	830	490	710	250	370	270	-	580	-	570	120	150	-	140	83	260	-
	K C	-	85	240	110	110	130	180	240	210	230	170	170	110	200	190	170		130	110	180	250	210	190	190
	Co	_	53	580	<170	27	19	420	240	120	280	74	90	70	75	150	74	240	160	190	200	320	97	180	83
	Sc	0.020	<0.059	0.17	0.031	<0.029	<0.029	0.29	<0.57	< 0.57	<0.57	<3.1	<0.05	<0.05	<0.49	0.049	0.016		<0.022	0.012	0.065	<0.032	<0.032	<0.016	<0.078
	T:	10	5.3			5.3	5.2	48	26	15	25	16	10	9.0	17	18	11	19	3.0	3.8	21	5.7	<2.0	8.2	19
	11 V	7.0	1.4	zzz 1.6	zzz 4.7	0.70	3.6	2.3	14	6.8	25	8.0	8.3	1.3	3.0	4.3	6.2		0.61	0.97	1.0	23	7.2	2.9	5.9
	V												1.0												
	Or Man	1.0 7.0	0.46	1.9 12	2.7 15	1.7	1.9	1.5 15	1.1 15	1.1 13	1.2 15	3.3 12	1.0	<1 7.4	2.1 14	1.2	4.6 18	1.1	<2.3 5.0	<0.78 5.1	1.1	0.89 8.7	0.80	<2.1 8.2	1.9 23
	IVIN	120	4.9 84	450	210	9.4 110	9.3 150	450	340		310	160	220	130			260	220	70		240	91	150	98	
	re									180					220	230				63					170
	Co	0.073	<0.059	0.73	<0.23	<0.11	<0.11	0.21	0.17	0.071	0.14	0.33	0.090	<0.05	<0.14	<1	0.11	0.098	0.032	0.038	0.098	0.035	0.079	0.057	0.10
	Ni	2.0	1.0	1.0	2.4	0.33	1.7	1.4	3.5	2.5	6.2	3.2	3.0	<0.5	<5		5.2		<0.43	<0.43	0.64	7.4	3.0	<3.1	2.3
	Cu	2.6	<5.8	3.7	3.7		5.8	8.6	4.1	2.4	3.2	4.0	6.0	3.0	<3.6		6.6		2.6	<6.7	3.6	6.8	7.5	2.7	6.0
	Zn	37		27	43	37	30	42	71	29	32	30	42	28	42	35	44		44	39	22	110	65	56	62
	As	1.1	0.86	1.3	1.2	0.46	1.3	1.2	1.4	1.3	1.3	1.3	1.4	1.2	1.6		1.7		1.1	1.0	1.2	1.8	2.0	1.6	1.8
	Se	0.15	0.79	0.88	1.3	0.41	1.4	1.7	1.7	1.3	0.83	1.7	1.4	2.9	<1.6	<0.92	1.2	2.1	0.79	0.68	0.82	1.5	1.3	1.1	1.9
	Rb	-	0.31	1.0	0.46	0.40	0.46	0.71	0.82	0.71	0.75	0.84	0.70	0.50	0.72	<1.1	0.71	0.76	0.38	0.36	0.80	0.76	0.66	0.64	0.90
	Мо	0.52	0.51	4.5	1.8	1.3	1.6	0.56	0.62	0.33	0.37	1.4	0.60	<0.1	0.58	<1.4	1.7		0.17	0.13	0.23	0.65	0.84	0.50	<0.82
	Sb	0.96	0.99	ZZZ	ZZZ	0.44	3.1	1.6	1.3	0.50	0.50	0.94	1.6	1.3	1.7	<6.6	1.3	1.2	0.44	0.50	0.75	1.7	3.4	0.80	2.0
	Cs	0.072	<0.049	0.12	0.061	<0.079	<0.079	0.088	0.11	0.090	0.095	0.15	0.090	0.060	<0.26	<9.2	0.094		0.050	0.046	0.097	0.090	0.073	0.090	0.11
	Ва	1.8	2.2	11	5.3	<2.3	3.6	7.5	18	2.8	5.7	2.2	5.2	4.5	5.7	<10	3.6		2.6	2.1	4.2	3.3	8.0	2.9	4.5
	La	0.092	<0.081	0.29	0.17	0.094	0.36	0.25	0.36	0.083	0.18	<0.34	0.19	0.14	<0.3	<12	0.16	0.30	0.080	0.085	0.22	0.12	0.17	0.12	0.15
	Ce	0.20	0.10	0.58	0.28	0.14	0.72	0.48	0.40	0.22	0.35	0.27	0.40	0.30	0.31	<13	0.53	0.61	0.14	0.15	0.43	0.18	0.26	0.23	0.37
	Sm	<0.0055	<0.050	0.048	0.011	< 0.035	<0.035	0.020	0.023	< 0.017	0.025	<0.080	<0.06	<0.06	< 0.37	<20	<0.016			0.012	0.028	<0.0027	0.013	0.013	0.017
	Hf	0.026	<0.20	<0.023	<0.023	<0.020	<0.020	0.025	<2.8	<2.8	<2.8	0.39	<0.2	<0.2	<0.29	<0.05	<0.035	0.022	0.0023	0.0016	0.026	0.0047	<0.0030	0.0022	<0.41
	W	0.17	<0.11	0.26	0.11	<0.040	0.24	< 0.16	0.15	0.12	0.17	<3.3	0.20	0.14	0.33	0.31	0.43	0.18	0.036	0.0066	0.083	0.13	0.15	0.15	0.37
	Та	-	<0.26	<0.025	<0.025	<0.028	<0.028	0.0045	< 0.027	<0.027	<0.027	0.44	<0.06	<0.06	<0.11	<0.05	<0.031	<0.03	<0.00079	<0.00079	-	< 0.0017	<0.0017	<0.00079	<0.090
	Th	0.017	<0.10	0.091	0.027	<0.079	<0.079	0.037	0.041	<0.016	0.040	<0.29	0.030	<0.03	<0.32	<3.2	<0.0099	0.043	<0.031	0.0052	0.054	<0.0077	<0.0077	0.011	<0.024
	Pb	9.4	5.1	8.6	7.9	7.6	9.9	14	11	9.1	9.2	15	14	11	14	14	14	12	7.8	7.0	8.8	18	25	13	15
	その他(Be )	-	<0.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.14	-	-	-	-	0.21	-	-	-	-	-	-	-	-	-	-	-	-	0.20	0.55	0.46	-	-
炭素成分	OC1	0.091	<0.011	<0.13	0.28	0.12	0	0.42	<0.04	<0.04	<0.04	0.063	<0.2	<0.2	0.36	0.21	0.080	0.27	<0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	1.3	0.83	0.91	1.3	1.1	1.2	1.3	1.5	1.2	1.5	1.3	1.0	0.90	1.1	1.0	1.5	1.2	1.2	0.91	0.75	1.5	1.1	1.1	1.2
	OC3	0.83	0.54	0.91	0.93	1.2	1.1	1.3	0.93	0.76	1.1	0.49	0.90	0.70	0.85	0.71	0.88	0.77	0.70	0.65	0.93	1.0	0.97	0.72	0.79
	OC4	0.62	0.30	0.68	0.55	0.68	0.62	0.70	0.46	0.36	0.45	0.24	0.70	0.50	0.55	0.48	0.53	0.59	0.59	0.54	0.43	0.83	0.72	0.61	0.65
	Ocpyro	1.1	1.3	1.4	0.92	1.1	1.0	1.4	1.5	1.3	1.6	1.3	0.80	0.80	1.1	1.0	0.90	0.94	1.2	1.0	1.3	1.4	1.2	1.1	1.2
	EC1	1.6	1.3	1.7	1.5	1.3	1.7	1.7	1.9	1.5	1.8	1.9	1.5	1.1	1.6	1.5	1.7	1.4	1.2	1.0	1.6	1.7	1.3	1.2	1.3
	EC2	0.26	1.0	0.57	0.62	0.65	0.52	0.87	0.62	0.51	0.61	0.60	0.80	0.50	0.65	0.31	0.47	0.37	0.85	0.74	0.41	1.1	0.88	0.95	0.89
	EC3	<0.1	0.095	0.060	0.080	0.030	0.018	0.064	0.080	0.015	0.11	0.023	<0.06	<0.06	0.025	0.030	0.054	0.040	<0.024	0.041	0.080	<0.028	<0.034	<0.024	0.022
	OC	3.9	3.0	3.9	4.0	4.2	3.9	5.1	4.4	3.6	4.7	3.4	3.4	2.9	4.0	3.4	3.9	3.8	3.7	3.1	3.4	4.7	4.0	3.5	3.8
	EC	0.76	1.1	0.93	1.3	0.88	1.2	1.2	1.1	0.73	0.92	1.2	1.5	0.90	1.2	0.84	1.3	0.87	0.85	0.78	0.79	1.4	0.98	1.0	1.0
	WSOC	2.5		2.2	2.6	-	- 1.2	-	2.3	2.0	2.3	1.7	- 1.0	-	3.0	-	3.2	-	-	-	-		-	3.0	
	11300	2.0	۷.۷	۷.۷	2.0				۷.5	۷.۷	2.0	1./			0.0		0.2							0.0	

34

衣4-1-	8 5月14	ロかり	oH 10	ロまじ														(PM2.5	,灰素放	分,イオ	ン成分	: μg/m	無機风:	分:ng/m	-)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	22.5	25.0	25.8	26.1	22.0	22.0	27.3	30.1	21.3	26.4	21.8	25.1	23.2	22.8	25.9	22.9	24.0	22.4	17.4	20.4	24.1	26.9	21.0	23.2
イオン成分	CI-	<0.0056	0.041	< 0.016	<0.016	<0.046	<0.046	0.031	< 0.096	< 0.096	<0.096	0.0066	0.030	0.010	<0.043	0.030	0.032	0.020	<0.011	< 0.011	<0.026	<0.021	0.060	<0.078	0.0076
	NO3-	0.38	0.64	0.56	0.39	0.41	0.52	0.49	0.47	0.15	0.34	0.30	1.2	0.71	0.63	0.62	0.84	0.57	0.64	0.34	0.38	0.37	2.5	0.14	0.87
	SO42-	7.0	5.6	3.6	5.9	7.1	7.1	5.5	7.3	5.9	6.9	7.1	7.8	5.1	6.5	7.0	7.6	5.6	6.1	3.8	3.9	7.4	5.9	4.3	6.1
	Na ⁺	0.30	0.17	0.10	0.23	0.18	0.24	0.12	0.26	0.20	0.31	0.29	0.45	0.17	0.34	0.39	0.32	0.22	0.14	0.051	0.077	0.31	0.13	0.11	0.16
	NH ₄ ⁺	2.4	2.1		1.9	2.4	2.4	2.0	2.6	2.2	2.2	2.4	2.6	1.8	2.2	2.7	2.7	2.3	2.2	1.3	1.3	2.7	3.1	1.9	2.2
	11114	0.15	0.15		0.13	0.13	0.20	0.10	0.12	0.090	0.099	0.14	0.18	0.14	<0.58	0.17	0.14	0.15		0.089	0.10	0.12	0.12	0.10	0.13
	K 2																								
	Mg ^{∠⊤}	0.047	0.028	0.022	0.026	0.012	0.014	0.022	0.032	0.024	0.042	0.072	0.059	0.026	0.033	0.060	0.052	0.030	0.10	<0.038	0.022	0.043	0.023	0.015	0.022
	Ca ²⁺	0.094	0.13	0.19	0.12	0.051	0.059	0.37	0.12	0.048	0.22	0.12	0.16	0.12	0.16	0.17	0.12	0.15	0.078	<0.040	0.15	0.074	<0.052	0.052	0.12
無機成分	Na	-	230	240	190	130	240	310	430	280	500	310	390	180	270	340	360	260	210	150	140	520	240	180	150
	Al	69	260	810	240	85	120	470	220	94	430	160	220	180	220	340	150	340	63	130	350	93	65	85	130
	Si	-	-	-	-	-	-	980	960	660	940	350	500	460	-	730	-	720	130	210	-	140	100	150	-
	K	-	200	310	190	120	180	240	280	210	260	190	190	160	220	230	190	230	140	140	200	210	190	170	130
	Ca	-	140	700	<170	22	10	380	320	110	350	91	140	100	120	190	89	200	110	190	210	80	82	170	56
	Sc	0.016	<0.059	0.17	0.067	<0.029	<0.029	0.33	< 0.57	< 0.57	< 0.57	<3.1	<0.05	<0.05	< 0.49	0.064	0.018	0.080	<0.022	0.013	0.073	< 0.032	<0.032	<0.016	<0.078
	Ti	8.4	16	ZZZ	ZZZ	6.4	8.2	36	32	17	32	23	16	12	23	22	13	25		6.7	23	3.0	2.3	3.2	15
	V	4.6	4.9	3.8	9.2	5.3	11	10	14	8.0	22	11	22	4.9	8.0	17	18	7.1	5.3	2.9	1.5	15	11	4.2	8.9
	Cr	<0.41	1.6		2.7	1.4	2.1	1.8	1.9	1.5	2.3	5.8	2.0	1.0	2.8	2.8		2.6		<0.78	1.5	1.6	< 0.53	<2.1	1.5
	Mn	4.9	13		18	9.9	15	18	18	13	23	15	15	13	16	19	20	19		7.2	11	9.7	13	8.9	12
	Fe	77	240		320	140	220	440	500	210	510	260	300	210	340	420	260	340	75	100	250	97	130	100	96
	Co	0.048	0.10	<0.23	<0.23	0.23	0.11	0.20	0.26	0.077	0.18	0.44	0.15	0.10	0.14	<1	0.28	0.16	0.055	0.062	0.12	0.038	0.067	0.067	0.086
	Ni	2.5	2.6	2.4	3.6	1.5	4.9	4.2	4.3	2.4	6.0	4.2	7.0	1.6	17	4.9	10	2.9	0.57	< 0.43	0.92	4.8	3.9	<3.1	2.8
	Cu	2.7	<5.8	5.5	6.9	2.3	8.0	7.1	5.4	2.7	4.1	5.1	6.0	5.0	<3.6	4.2	7.5	7.1	3.6	<6.7	3.4	6.8	6.5	3.7	4.3
	Zn	37	64	48	63	46	79	58	77	31	45	38	61	45	45	55	65	62	32	36	26	37	56	45	45
	As	1.0	1.3		2.2	0.71	2.4	1.9	1.7	1.3	1.7		2.0	1.6	2.1	0.98	1.9	2.8		1.2	1.2	1.9	1.4	1.4	1.3
	Se	0.10	1.2		2.2	0.65	1.4	1.6	1.7	1.4	1.6	2.2	1.9	1.5	1.6	1.1	1.5	3.7	1.3	0.86	0.85	1.5	1.2	1.3	1.0
	Rb	-	0.79	1.2	0.75	0.44	0.68	0.96	1.0	0.62	1.0	1.0	0.90	0.70	0.88	<1.1	0.76	0.95	0.42	0.40	0.80	0.63	0.50	0.52	0.52
	Мо	0.47	0.64		2.8	1.1	1.3	1.1	1.1	0.57	0.57	0.84	1.0	0.60	1.2	<1.4	8.5	0.98	0.42	0.39	0.46	0.72	0.76	0.63	<0.82
	Sb	12	1.5		ZZZ	0.44	2.5	1.7	1.3	0.56	0.81	1.1	1.4	2.6	2.0	<6.6	1.4	2.4	0.80	0.84	1.2	2.5	1.6	0.76	1.3
	Cs	0.041	0.083	0.13	0.11	0.082	0.097	0.14	0.14	0.075	0.14	0.18	0.10	0.090	<0.26	<9.2	0.17	0.13		0.049	0.087	0.080	0.047	0.069	0.063
	Ва	1.2	4.3		6.7	<2.3	3.8	7.8	18	2.8	6.0	3.0	5.0	5.8	6.5	<10	4.9	7.9		2.8	4.9	3.6	4.0	3.1	3.4
	La	0.055	0.18		0.23	0.12	0.19	0.33	0.31	0.10	0.32	<0.34	0.27	0.26	<0.3	<12		0.42		0.098	0.23	0.11	0.12	0.12	0.14
	Ce	0.13	0.33	0.69	0.42	0.21	0.32	0.59	0.46	0.19	0.44	0.29	0.40	0.40	0.40	<13	0.36	0.80	0.16	0.17	0.43	0.16	0.19	0.21	0.27
	Sm	0.0059	<0.050		0.015	<0.035	<0.035	0.023	0.021	<0.017	0.031	<0.080	<0.06	<0.06	< 0.37	<20	<0.016	<0.04		0.014	0.030	<0.0027	<0.0097	0.013	0.014
	Hf	0.031	<0.20		<0.023	<0.020	<0.020	0.027	<2.8	<2.8	<2.8	0.39	<0.2	<0.2	<0.29	<0.05	<0.035	0.035		0.0023	0.026	0.0043	<0.0030	0.0026	<0.41
	W	0.11	0.30	0.27	0.74	0.63	0.90	0.74	0.23	0.39	0.14	<3.3	0.60	0.50	0.42	0.37	3.0	0.62	0.11	0.074	0.17	0.12	0.18	0.16	0.29
	Та	-	0.33		<0.025	<0.028	<0.028	0.0049	<0.027	<0.027	<0.027	0.48	<0.06	<0.06	<0.11	<0.05	<0.031	<0.03		<0.00079	-	0.0042	<0.0017	<0.00079	<0.090
	Th	0.012	<0.10		0.041	<0.079	<0.079	0.054	0.031	<0.016	0.049	<0.29	0.040	<0.03	<0.32	<3.2	0.013	0.054	<0.031	0.0099	0.059	<0.0077	<0.0077	0.0088	<0.024
	Pb	5.9	11	11	14	9.6	17	15	15	9.0	11	19	15	13	13	19	16	18	9.7	9.9	8.2	18	16	13	9.6
	その他(Be)	-	<0.13	-	-	-	-	_	_	_	_	-	-	-	-	_	-	-	-	-	-	_	_	-	-
	その他(Cd)	-	0.34	-	-	-	-	0.43	-	-	-	-	-	-	-	-	-	-	-	-	0.27	0.55	0.41	-	-
炭素成分	OC1	0.30	0.014		0.37	0.096	0	0.42	<0.04	<0.04	<0.04	0.047	<0.2	<0.2	0.40	0.19	0.084	0.62		<0.020	<0.040	<0.023	<0.023	0.022	<0.032
	OC2	1.8	1.3		1.7	1.6	1.4	1.5	1.7	1.5	1.1	1.5	1.3	1.5	1.4	1.6	1.8	1.7	1.6	1.1	0.78	1.4	1.1	1.7	1.3
	OC3	1.1	0.92		1.1	1.6	1.2	1.3	0.90	0.83	0.86	0.54	0.90	1.1	1.0	0.79	0.93	1.1		0.81	0.96	0.81	0.69	0.98	0.81
	OC4	0.86	0.41		0.82	1.1	0.89	0.94	0.50	0.38	0.51	0.28	0.80	0.90	0.62	0.74	0.67	0.87	0.89	0.65	0.44	0.66	0.61	0.88	0.69
	Ocpyro	1.3	2.1		1.3	1.3	1.2	1.5	1.6	1.5	1.6	1.5	1.1	1.0	1.4	1.1	1.3	1.2		1.1	1.2	1.3	1.2	1.4	1.3
	EC1	2.0	2.8		2.3	2.4	2.2	2.2	2.3	1.7	2.0		1.9	1.7	2.1	2.0	2.3	2.2		1.1	1.5	1.6	1.2	1.5	1.3
	EC2	0.26	1.1		0.70	0.60	0.52	0.88	0.77	0.58	0.62	0.61	0.70	0.70	0.68	0.41	0.50	0.44	1.1	0.82	0.46	1.2	1.1	1.1	1.1
	EC3	<0.1	<0.056		0.075	0.035	0.018	0.083	0.095	0.070	0.075	<0.017	0.20	0.080	0.040	0.050	0.057	0.050		0.014	0.093	<0.028	<0.034	0.044	0.028
	oc	5.4	4.7		5.3	5.7	4.7	5.7	4.7	4.2	4.1	3.9	4.0	4.4	4.8	4.4	4.8	5.5	5.0	3.7	3.4	4.2	3.6	5.0	4.1
	EC	0.97	1.8		1.8	1.7	1.5	1.7	1.6	0.85	1.1	1.4	1.8	1.5	1.4	1.4	1.6	1.5	1.4	0.83	0.85	1.5	1.1	1.2	1.1
	WSOC	3.8	3.8	3.0	4.2	-	-	-	2.8	2.4	1.5	2.0	-	-	3.9	-	3.7	-	-	-	-	-	-	3.9	-

127 1	9 0710	֓֞֜֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	טו הלכי	6														(I M2. J	,灰米瓜	<i>17</i> 0, 174	アルスカ	. μg/m	無权以	//	. /
自治	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均	也点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	27.4	29.9	34.3	30.8	27.0	25.0	26.7	15.4	10.3	13.7	12.9	19.6	24.2	17.0	13.2	16.1	26.2	18.0	12.8	21.3	13.6	9.5	13.7	8.8
イオン成分	CI-	0.34	0.16	0.078	0.15	0.10	0.19	0.12	< 0.096	< 0.096	< 0.096	0.012	0.15	0.15	0.18	<0.02	0.078	0.16	<0.011	< 0.011	0.060	< 0.021	< 0.021	<0.078	< 0.0043
	NO3-	3.7	2.8	3.7	3.4	4.1	3.4	1.6	<0.099	<0.099	<0.099	<0.076	1.4	2.5	1.2	0.11	0.88	2.3	<0.28	<0.28	0.47	0.13	0.19	<0.079	0.097
	SO42-	8.3	8.4	6.4	7.2	8.5	8.1	5.5	5.4	4.2	4.8	5.2	7.5	8.0	6.3	6.3	6.3	7.9	7.0	4.9	5.9	5.4	3.9	5.7	4.2
	Na ⁺	0.33	0.36	0.16	0.23	0.19	0.21	0.063	0.13	0.089	0.12	0.16	0.30	0.27	0.13	0.26	0.15	0.27	0.067	0.022	0.057	0.13	0.087	0.11	0.10
	NH ₄ ⁺	3.9	3.7	3.3	3.4	4.0	3.6	2.3	1.9	1.4	1.5	1.8	2.8	3.2	2.4	2.4	2.3	3.6	2.4	1.8	2.1	2.0	1.6	2.4	1.4
	K114	0.13	0.18		0.13	0.13	0.15	0.074	0.072	0.038	0.039	0.077	0.12	0.13	<0.58	0.10	0.080	0.14	0.066	0.073	0.093	0.036	0.033	0.067	0.030
	N 2+																								
	Mg ²	0.042	0.049	0.022	0.026	0.011	0.012	0.015	0.014	<0.0038	0.012	<0.039	0.039	0.036	0.020	0.040	0.036	0.040	0.097	<0.038	0.014	0.017	0.015	0.012	0.0077
	Ca ²⁺	0.063	<0.078	0.11	0.066	0.029	0.029	0.19	0.052	<0.044	0.10	<0.051	0.090	0.10	0.053	0.090	0.069	0.17	_	<0.040	<0.033	<0.052	<0.052	<0.032	0.031
無機成分	Na	-	430	230	250	2.9	280	260	180	140	170	160	240	230	170	190	120	270		96	85	260	170	140	90
	Al	250	140	580	170	12	99	220	70	34	150	66	100	130	22	130	27	180		59	160	27	30	33	25
	Si	-	-	-	-	-	-	430	290	140	350	100	190	290	-	250	-	380		71	-	31	<16	51	-
	K	_	180		170	8.5	170	160	110	70	96		110	130	100	86	59	160		76	140	74	93	73	25
	Ca	-	87		<170	9.9	6.4	130	94	33	180	40	80	80	<24	75		190		68	85	380	260	170	<29
	Sc	0.019	<0.059	0.10	0.037	<0.029	<0.029	<0.18	<0.57	<0.57	<0.57	<3.1	<0.05	<0.05	<0.49	<0.024		0.039		0.0066	0.032	<0.032	<0.032	<0.016	
	Ti	7.1	12		ZZZ	0.62	7.0	15	9.5	<3.7	13	5.2	7.0	7.0	5.8	7.2	3.6	14		3.3	11	1.7	<2.0	1.7	2.3
	V	7.0	5.6		8.6	0.91	11	9.4	12	6.5	19		19	7.7	8.0	11	12	8.6		3.8	1.8	23	6.5	4.0	4.3
	Cr	0.47	1.1		2.5	<0.12	1.5	1.5	1.4	< 0.76	0.91	3.4	2.0	1.0	1.5	0.90	3.9	2.7		<0.78	1.2	1.9	< 0.53	<2.1	0.37
	Mn	7.9	8.9		16	1.1	10	13	7.7	<2.8	6.8	4.6	8.4	9.0	6.3	5.4		11		3.1	7.5	2.5	2.6	2.3	8.0
	Fe	110	300		250	25	160	260	160	54	200	90	180	170	120	140	190	230		45	130	43	29	34	27
	Со	0.11	0.088		<0.23	<0.11	<0.11	<0.081	0.13	<0.036	0.079	0.12	0.090	0.080	<0.14	<1	0.067	0.11		0.025	0.065	0.032	0.025	0.020	
	Ni	2.7	10		3.2	0.89	4.9	3.7	3.7	1.6	5.2	1.4	7.0	2.0	<5	2.8	2.8	3.7		<0.43	0.99	7.5	2.7	<3.1	1.2
	Cu	4.6	<5.8		5.5	<0.21	5.9	6.1	2.8	<1.6	<1.6	1.5	4.0	4.0	<3.6	<1.1	3.4	4.5		<6.7	3.4	2.4	1.1	1.3	
	Zn	35	32		57	3.0	78	57	61	8.0	12	15	43	37	17	19	17	44		<16	24	75	170	70	14
	As	1.7	2.2		2.4	<0.097	1.5	1.4	0.63	0.45	0.44	0.27	1.2	1.4	0.91	<0.89	0.71	1.8		0.80	1.1	0.62	0.32	0.60	0.24
	Se	0.22	1.4		2.2	<0.20	1.2	1.4	0.64	0.33	0.40	0.65	1.3	2.0	<1.6	1.3	0.92	2.3		0.44	0.74	0.63	0.22	0.41	0.35
	Rb		0.67		0.63	<0.14	0.58	0.59	0.33	0.19	0.27	0.45	0.50	0.50	0.42	<1.1	0.25	0.65		0.18	0.48	0.19	0.15	0.16	0.11
	Mo	0.64 2.3	0.56 0.96		1.2	0.14	1.1	1.2 1.6	0.44	<0.098	0.13	0.25 0.28	0.80	0.70 1.7	0.64 0.82	<1.4 <6.6	0.87 0.47	0.96		0.13	0.34	0.34	0.14 0.22	0.15 0.28	<0.82 0.41
	Sb Cs	0.070	0.96		222 0.087	0.049 <0.079	0.085	0.081	0.046	0.16	0.33	<0.042	0.070	0.050	<0.26	<9.2	0.47	0.095		0.48	0.91	<0.0090	<0.0090	0.0065	0.41
	OS Da	1.7	3.0		5.7	<2.3	2.6	4.1	6.0	1.1	2.4	1.5	3.2	3.7	2.2	<10	1.3	4.4		1.3	2.4	2.6	0.0090	1.2	0.65
	Da La	0.13	0.13		0.35	0.041	0.24	0.27	0.16	0.041	0.091	<0.34	0.21	0.21	<0.3	<12	0.040	0.30		0.041	0.090	0.045	0.79	0.035	0.025
	Ca.	0.13	0.13	0.49	0.32	0.041	0.24	0.27	0.10	0.041	0.091	<0.19	0.30	0.21	<0.23	<13	0.040	0.30		0.041	0.090	0.043	0.021	0.033	0.023
	Sm	0.0068	<0.050		0.32	<0.049	<0.035	<0.013	<0.017	< 0.038	<0.12	<0.080	<0.06	<0.06	<0.23	<20	<0.016	<0.04		0.0059	0.17	<0.0027	<0.0097	0.0043	0.0029
	OIII	<0.000	<0.20		<0.011	<0.033	<0.033	0.013	<2.8	<2.8	<2.8	0.080	<0.2	<0.00	<0.37	<0.05	<0.010	0.018		< 0.0035	0.012	0.0027	<0.0037	0.0043	<0.41
	w	0.27	0.21	0.35	0.31	<0.020	0.39	0.33	<0.12	<0.12	<0.12	<3.3	0.20	0.20	0.15	0.53	0.48	0.34		0.028	0.18	0.0031	0.069	0.032	0.073
	Ta	- 0.27	<0.26		<0.025	<0.040	<0.028	0.0039	<0.027	<0.027	<0.027	0.34	<0.06	<0.06	<0.11	<0.05	<0.031	<0.03		< 0.00079	-	<0.017	<0.003	<0.0079	<0.090
	Th	0.014	<0.10		0.037	<0.020	<0.079	0.0033	<0.027	<0.027	<0.016	<0.29	<0.03	<0.03	<0.32	<3.2	<0.0099	0.027		0.0033	0.024	<0.0077	<0.0077	0.0040	<0.024
	Ph	10	12		14	0.94	13	13	5.1	2.1	2.6	6.7	9.5	8.8	5.0	4.8	4.6	10		5.1	6.6	3.4	1.7	2.9	1.7
	その他(Be)	-	<0.13	-	- '	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1.0	-	-	-	- '	-	- ',
	その他(Cd)	-	0.36	-	-	-	-	0.30	_	_	_	-	_	-	-	_	-	-	-	_	0.23	0.10	0.45	-	_
炭素成分	OC1	0.11	<0.011	0.27	0.19	0	0	0.17	<0.04	<0.04	<0.04	<0.042	<0.2	<0.2	0.11	0.11	<0.026	0.28	<0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
10000000	OC2	1.1	1.0		1.3	1.2	1.0	1.1	1.1	0.78	0.84	1.1	0.80	1.1	0.80	0.66	1.0	1.4		0.79	0.73	0.51	0.38	0.74	0.37
	OC3	0.68	0.49		0.73	1.0	0.76	0.80	0.73	0.70	0.62	0.34	0.30	0.70	0.33	0.32	0.52	0.58		0.47	0.68	<0.36	0.30	0.32	0.25
	OC4	0.55	0.20		0.58	0.70	0.58	0.54	0.28	0.24	0.24	0.15	0.30	0.60	0.25	0.23	0.35	0.50		0.36	0.30	0.21	0.18	0.31	0.15
	Ocpyro	1.0	1.4		1.0	1.1	0.75	1.0	0.85	0.67	0.59	0.79	0.40	0.60	0.66	0.43	0.62	0.95		0.56	0.95	0.35	0.29	0.54	0.26
	EC1	1.7	1.8		1.6	2.1	1.8	1.5	1.0	0.56	0.49	1.1	1.0	1.2	0.85	0.82	1.3	2.0		0.57	1.2	0.46	0.30	0.56	0.25
	EC2	0.21	0.90		0.83	0.60	0.69	0.71	0.71	0.40	0.53	0.44	0.70	0.90	0.62	0.26	0.54	0.30		0.76	0.58	0.69	0.42	0.79	0.35
	EC3	<0.1	<0.056		0.095	0.00	0.023	0.053	0.060	0.055	0.075	<0.017	<0.06	0.14	0.026	0.020	0.032	0.010		0.021	0.14	0.033	< 0.034	<0.024	<0.021
	OC	3.4	3.1		3.8	4.0	3.1	3.6	3.0	2.4	2.3	2.4	1.5	2.8	2.2	1.8	2.5	3.7		2.2	2.7	1.1	1.2	1.9	1.0
	EC	0.91	1.3		1.5	1.6	1.8	1.3	0.92	0.35	0.51	0.75	1.3	1.7	0.84	0.67	1.3	1.4		0.79	0.97	0.83	0.43	0.81	0.34
	WSOC	2.8	3.0		3.1	-	-	-	0.99	0.70	0.86	1.0	-	-	1.9	-	1.6	-	-	-	-	-	-	1.6	-

衣4-1-	10 5月1	りロカ	50月1	/ロまり	<u> </u>													(PM2.5	,炭素成	分,イオ	ン成分	: μg/m°	無機成	分:ng/m	.")
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	22.1	23.6	19.7	18.7	20.0	20.0	22.9	20.6	15.3	23.1	19.3	26.0	29.1	24.3	30.8	23.4	27.0	13.5	16.0	11.4	19.9	20.0	16.8	20.2
イオン成分	CI-	<0.0056	0.032	< 0.016	< 0.016	<0.046	<0.046	0.017	< 0.096	< 0.096	< 0.096	<0.0052	0.050	0.060	<0.043	0.070	0.034	<0.02	<0.011	< 0.011	<0.026	<0.021	<0.021	<0.078	< 0.0043
	NO3-	0.77	0.60	0.62	0.41	1.1	1.1	0.89	0.31	0.22	0.98	1.1	1.7	4.6	2.6	3.0	2.0	2.7	<0.28	0.83	0.20	0.46	0.15	0.32	0.16
	SO42-	6.2	6.4	4.6	4.8	6.8	6.9	4.2	5.6	4.4	6.4	6.6	5.2	7.2	6.6	8.8	7.3	7.4	4.7	4.8	4.5	5.8	7.5	4.9	7.0
	Na ⁺	0.079	0.091	0.044	0.059	0.058	0.081	<0.044	0.074	<0.04	0.070	0.090	0.13	0.10	0.075	0.25	0.086	0.12	<0.022	<0.022	<0.020	0.15	0.074	0.16	0.068
	NH₄ ⁺	2.5	2.5		1.8	2.6	2.6	1.8	2.2	1.8	2.8	2.8	2.4	3.8	3.0	4.6	3.2	3.8		2.0	1.6	2.3	2.9	2.1	2.6
	+	0.13	0.16		0.097	0.097	0.13	0.071	0.075	0.070	0.090	0.099	0.12	0.14	<0.58	0.19	0.12	0.15		0.076	0.091	0.085	0.15	0.11	0.17
	K.																								
	Mg ²⁺	0.013	0.012	<0.015	<0.015	0.0036	0.0036	0.0061	0.0067	<0.0038	<0.0038	<0.039	0.015	0.014	0.011	0.020	0.020	0.020	<0.038	<0.038	0.0063	0.027	0.016	0.0091	0.0061
	Ca ²⁺	0.027	<0.078	0.071	0.034	0.016	0.017	0.090	<0.044	<0.044	<0.044	<0.051	0.040	0.050	0.057	0.070	0.051	0.060	<0.040	<0.040	< 0.033	0.064	<0.052	<0.032	0.056
無機成分	Na	-	130	120	41	59	100	110	110	55	94	83	130	100	100	120	130	140	61	38	33	280	160	210	75
	Al	120	160	340	74	32	67	140	52	30	67	56	100	80	32	140	61	130	26	22	67	94	49	18	100
	Si	-	-	-	-	-	-	270	240	130	200	130	210	210	-	200	-	230	64	25	-	44	87	29	-
	K	-	180	200	110	63	150	150	150	110	140	100	130	120	140	150	140	160	100	67	110	170	260	150	150
	Ca	1	66	230	<170	3.7	5.6	90	47	22	54	26	60	50	<24	61	30	69	73	33	32	<22	220	65	30
	Sc	0.023	< 0.059	0.069	0.017	< 0.029	<0.029	<0.18	< 0.57	< 0.57	< 0.57	<3.1	<0.05	<0.05	< 0.49	<0.024	<0.0086	0.024	<0.022	<0.0058	0.016	< 0.032	< 0.032	<0.016	<0.078
	Ti	9.3	11	ZZZ	ZZZ	2.6	5.7	11	6.7	<3.7	7.0	8.6	7.0	5.0	4.0	7.9	5.7	9.4	0.95	6.0	7.0	1.2	<2.0	0.99	8.5
	٧	4.5	3.4	2.2	3.7	1.8	4.7	4.3	7.3	6.4	21	5.1	5.2	7.8	7.6	31	11	9.5	2.8	2.4	2.1	17	5.0	11	3.1
	Cr	1.2	0.79	1.3	2.0	0.72	1.4	2.6	2.4	< 0.76	1.5	0.42	2.0	2.0	1.5	1.9	3.8	2.1	<2.3	< 0.78	0.88	0.71	< 0.53	<2.1	1.2
	Mn	6.8	7.7	7.7	8.0	4.3	9.9	11	8.1	5.3	11	5.5	9.6	9.1	7.8	16	11	11	2.9	3.0	3.8	5.2	9.2	4.6	7.0
	Fe	140	190	230	130	64	140	190	170	78	180	58	170	150	110	280	150	190	31	28	65	61	110	47	58
	Со	0.080	0.068	<0.23	<0.23	<0.11	0.15	<0.081	0.060	< 0.036	0.081	0.099	0.070	0.080	<0.14	<1	0.10	0.11	0.013	0.0098	0.034	<0.017	0.055	0.038	0.055
	Ni	2.5	1.4	1.2	1.6	0.46	2.1	2.0	2.9	2.1	6.1	1.9	1.6	2.0	<5	8.5	5.6	3.8	< 0.43	< 0.43	1.0	5.3	2.3	<3.1	1.5
	Cu	8.6	<5.8	3.5	4.1	0.70	5.5	5.7	6.1	3.1	3.9	4.2	6.0	5.0	<3.6	5.4	4.9	5.6	1.9	<6.7	2.3	5.6	5.7	2.9	3.6
	Zn	51	35		37	53	72	55	44	23	47		50	52	37	58	58	56	39	19	13	<4.3	120	40	34
	As	3.7	2.3	1.7	2.9	0.48	2.2	2.4	3.2	2.6	1.7	2.7	3.3	1.9	1.7	1.3	2.5	2.4		0.81	1.4	1.7	4.0	1.3	2.7
	Se	0.19	2.3	1.1	1.8	<0.20	1.2	1.8	1.5	0.67	1.1	1.3	1.9	1.8	<1.6	1.5	1.5	2.3	0.68	0.70	0.62	1.2	1.6	1.0	1.3
	Rb	-	0.69	0.65	0.38	0.21	0.48	0.57	0.48	0.28	0.43	0.38	0.50	0.50	0.43	<1.1	0.52	0.62	0.20	0.18	0.37	0.39	0.73	0.33	0.67
	Мо	1.0	0.29	0.98	0.86	0.64	0.89	1.8	1.7	0.22	0.65	0.45	1.4	1.3	1.3	2.7	2.8	1.9	0.24	0.39	0.26	0.74	0.63	0.73	<0.82
	Sb	2.0	1.6	ZZZ	zzz	0.18	1.2	1.6	1.5	0.82	2.0	2.0	1.6	2.0	1.5	<6.6	1.5	2.0		0.59	0.53	2.3	1.2	0.80	1.5
	Cs	0.070	0.074	0.069	0.052	< 0.079	< 0.079	0.085	0.074	0.035	0.063	0.045	0.070	0.060	<0.26	<9.2	0.10	0.088	0.018	0.012	0.044	0.030	0.078	0.033	0.074
	Ва	2.1	2.7	9.3	2.6	<2.3	3.3	3.2	1.8	1.0	3.0	1.3	2.9	3.4	3.3	<10	3.0	3.8	1.2	0.99	2.2	2.6	1.7	1.4	2.1
	La	0.099	0.12	0.13	0.11	0.059	0.14	0.20	0.11	0.048	0.17	<0.34	0.16	0.19	< 0.3	<12	0.15	0.25	0.035	0.038	0.047	0.069	0.089	0.076	0.086
	Ce	0.18	0.20	0.25	0.20	0.084	0.24	0.26	0.21	0.066	0.23	< 0.19	0.20	0.20	<0.23	<13	0.25	0.33	0.061	0.053	0.087	0.089	0.15	0.11	0.17
	Sm	0.0069	<0.050	0.015	0.0059	<0.035	<0.035	<0.013	<0.017	<0.017	< 0.017	<0.080	<0.06	<0.06	<0.37	<20	< 0.016	<0.04	<0.0068	<0.0022	0.0055	<0.0027	<0.0097	0.0017	0.0079
	Hf	0.051	<0.20		<0.023	<0.020	0.033	0.011	<2.8	<2.8	<2.8	0.20	<0.2	<0.2	<0.29	<0.05	<0.035	<0.018		<0.0015	<0.0087	0.0032	<0.0030	<0.0015	<0.41
	w	1.1	<0.11	0.19	0.15	0.35	0.19	0.23	1.2	<0.12	0.21	<3.3	0.50	0.30	0.22	0.42	0.45	0.44	0.059	0.038	0.11	0.28	0.38	0.24	0.78
	Та	-	<0.26		<0.025	<0.028	<0.028	0.0022	0.051	<0.027	<0.027	<0.26	<0.06	< 0.06	<0.11	<0.05	<0.031	<0.03	< 0.00079	< 0.00079	-	<0.0017	< 0.0017	<0.00079	<0.090
	Th	0.020	<0.10		<0.02	<0.079	<0.079	0.014	<0.016	<0.016	<0.016	<0.29	<0.03	<0.03	<0.32	<3.2	<0.0099	0.018		0.0027	0.012	<0.0077	<0.0077	0.0015	<0.024
	Pb	16	13		10	3.6	12	12	12	6.1	10		13	13	9.0	17	17	14		4.9	6.4	9.7	16	8.2	14
	その他(Be)	-	<0.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	_	0.58	-	-	_	_	0.49	_	_	-	-	_	_	-		-	_	-	-	0.19	0.29	0.50	- 1	_
炭素成分	OC1	0.044	<0.011	<0.13	0.14	0	0	0.24	<0.04	<0.04	<0.04	<0.042	<0.2	<0.2	0.18	0.31	0.043	0.17	<0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
343,473	OC2	1.2	0.93		1.3	1.1	1.1	1.3	1.7	1.2	1.5	1.3	1.1	1.1	1.1	1.6	1.6	1.5		1.1	0.35	0.96	0.76	1.0	0.90
	OC3	0.71	0.46		0.70	1.0	0.78	1.0	0.91	0.71	0.96		0.60	0.60	0.61	0.70	0.79	0.62		0.67	0.32	0.59	0.51	0.57	0.51
	OC4	0.66	0.22		0.52	0.61	0.53	0.64	0.38	0.33	0.42	0.23	0.60	0.40	0.40	0.62	0.51	0.46		0.55	0.14	0.48	0.40	0.50	0.45
	Ocpyro	1.2	1.4		0.97	0.79	0.89	1.1	1.3	0.91	1.4		0.70	0.70	0.92	0.90	1.0	0.83		0.83	0.43	0.86	0.80	0.90	0.79
	EC1	1.8	1.7		1.5	1.5	1.6	1.5	2.0	1.2	2.0		1.3	1.2	1.2	2.5	2.1	1.9		0.86	0.63	1.1	0.80	0.95	0.92
	EC2	0.20	1.2		0.88	0.81	0.79	0.61	0.74	0.59	1.1	0.44	1.0	1.1	1.1	0.36	0.61	0.49		1.0	0.29	1.0	0.81	1.0	0.73
	EC3	<0.1	<0.056		0.080	0.060	0.058	0.087	0.070	0.055	0.080		0.30	0.20	0.072	0.010	0.046	0.040		0.019	0.053	<0.028	<0.034	<0.024	0.023
	OC	3.8	3.0		3.6	3.5	3.3	4.3	4.3	3.2	4.3	3.1	2.8	2.5	3.2	4.1	3.9	3.6		3.2	1.2	2.9	2.5	3.0	2.6
	EC	0.80	1.5		1.5	1.6	1.6	1.1	1.5	0.94	1.8		1.9	1.7	1.5	2.0	1.8	1.6		1.0	0.54	1.2	0.81	1.0	0.88
	WSOC	2.7	3.0		2.6	- 1.0	- 1.0	- 1.1	2.2	1.5	1.5		- 1.5	_ './	3.5	- 2.0	3.7	- 1.0	- 0.04	-	-	- 1.2	- 0.01	2.7	-
		£./	5.0	2.0	2.0				4.4	1.0	1.0	1.0			0.0		0.7							£./	

	0/,.			0 1 0 0															,					-	
自治	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	14.3	16.1	19.6	15.5	13.0	14.0	25.3	14.7	12.2	14.5	13.1	16.6	14.4	15.4	16.6	16.2	16.3	18.5	17.9	19.7	18.7	18.3	16.4	19.2
イオン成分	CI-	<0.0056	0.024	0.020	<0.016	<0.046	< 0.046	0.046	< 0.096	<0.096	< 0.096	<0.0052	0.040	0.020	<0.043	<0.02	0.031	<0.02	<0.011	<0.011	<0.026	<0.021	<0.021	<0.078	0.0062
1-3 = 19073	NO3-	<0.25	0.71	0.43	0.19	0.29	0.29	0.56	<0.099	<0.099	<0.099	<0.076	1.5	0.48	0.49	0.21	1.1	0.26	<0.28	<0.28	0.20	0.13	0.42	<0.079	0.29
	SO42-	4.0	3.9	1.5	2.7	4.0	3.9	2.7	4.0	4.1	4.9	4.6	5.2	4.7	5.6	5.9	6.0	5.0	6.1	6.5	1.9	6.7	5.5	5.5	6.0
	3042-																								
	Na [⊤]	0.031	0.066	0.043	0.053	0.080	0.052	<0.044	0.077	0.058	0.067	0.091	0.15	0.13	0.090	0.15	0.083	0.12	<0.022	<0.022	0.029	0.10	0.077	0.084	0.090
	NH₄ ⁺	1.6	1.6	0.71	0.95	1.5	1.4	1.1	1.4	1.6	1.8	1.7	2.1	1.8	1.9	2.3	2.4	1.8	2.2	2.3	0.74	2.5	2.3	2.3	2.1
	K ⁺	0.078	0.12	0.075	0.065	0.12	0.095	0.062	0.095	<0.006	0.081	0.091	0.16	0.10	<0.58	0.12	0.11	0.11	0.077	0.10	0.084	0.088	0.081	0.091	0.086
	M-2+	0.012	0.0098	0.015	<0.015	0.0041	0.0031	0.019	0.0090	0.0046	<0.0038	<0.039	0.024	0.019	0.016	0.020	0.026	0.020	0.096	<0.038	0.011	0.031	0.014	0.0081	0.0091
	- 2+																								
4 104 B 43	Car	0.027	<0.078	0.12	0.059	0.020	0.013	0.65	<0.044	<0.044	0.062	<0.051	0.10	0.060	0.064	0.070	0.066	0.060	<0.040	<0.040	0.053	0.061	<0.052	<0.032	0.037
無機成分	Na	-	91	99	41	5.0	79	140	58	79	89	92	100	110	91	120	90	170	110	87	63	220	140	130	95
	Al	92	140	440	160	13	67	540	45	85	130	78	70	110	47	190	65	180	40	45	210	72	23	43	59
	Si	-	-	-	-	-	-	1400	360	350	380	150	260	280	-	380	-	380	70	53	-	98	66	63	-
	K	-	140	190	110	21	130	190	170	120	150	120	110	110	90	150	97	170	130	130	140	180	110	130	95
	Ca	-	72	320	<170	3.9	11	620	71	39	86	30	50	60	<24	80	30	92	170	150	120	130	<23	60	<29
	Sc	0.016	< 0.059	0.095	0.041	<0.029	< 0.029	0.46	< 0.57	< 0.57	< 0.57	<3.1	< 0.05	< 0.05	< 0.49	0.029	<0.0086	0.036	<0.022	<0.0058	0.041	< 0.032	< 0.032	< 0.016	<0.078
	Ti	7.3	8.2	ZZZ	ZZZ	0.79	4.5	59	8.7	7.1	11	9.4	5.0	6.0	7.5	11	4.3	13	1.9	2.0	13	4.4	<2.0	1.1	5.8
	V	2.2	2.5	1.1	2.4	0.52	3.5	4.1	2.5	4.4	13	2.7	9.7	4.0	5.0	20	14	5.2	4.0	3.4	0.57	16	4.6	5.1	4.5
	Cr	2.3	0.97	<1.1	<1.1	< 0.12	0.73	3.4	2.1	< 0.76	< 0.76	0.20	1.0	<1	1.1	1.0	0.97	1.3	3.4	2.0	0.80	0.87	< 0.53	<2.1	0.67
	Mn	4.1	4.4	6.5	4.8	0.88	3.6	16	6.8	4.6	4.2	3.6	8.5	4.4	2.9	6.4	5.9	6.0	3.4	3.4	5.9	4.8	3.6	3.5	3.9
	Fe	91	150	240	130	15	73	610	120	81	130	48	170	110	62	190	140	170	45	41	140	79	67	48	41
	Co	0.067	<0.059	<0.23	<0.23	<0.11	<0.11	0.49	< 0.036	<0.036	0.069	0.13	0.080	<0.05	<0.14	<1	0.061	0.094	0.025	0.033	0.050	<0.017	0.015	0.030	0.038
	Ni:	4.4	4.4	<0.25	<0.25	<0.11	1.5	2.0	1.1	1.2	3.6	1.0	3.0	0.80	<5	5.0	4.3	2.0	<0.43	<0.43	0.30	5.7	1.4	<3.1	1.5
	C	3.2	<5.8	1.3	1.8	<0.13	2.5	4.1	2.0	<1.6	<1.6	1.8	4.0	3.0	<3.6	2.9	3.7	3.7	2.4	<6.7	1.9	5.0	2.6	1.8	2.8
	Ou 7	29	25	25	1.0	2.7	2.3	23	17	13	16		56	22		2.9	19	3.7	86	55	1.9	69	<17	<18	2.0
	Zn	1.6	1.4		1.5	0.18	0.81	1.3	1.1	1.1	1.3	1.2	1.5	1.8	9.4 1.3	1.2	1.5	2.6	1.4	1.5	0.97	1.8	1.4	1.6	1.3
	As	0.13	0.70	0.51	0.79	<0.20	0.58	2.0	0.56	0.57	0.68	0.54	1.3	1.0	<1.6	1.5	2.0	1.6	1.4	0.92	0.97	1.1	0.85	0.96	0.92
	Se	- 0.13		0.66		<0.20	0.34					0.54		0.40		1.5 <1.1		0.64	0.27		0.23	0.45			
	Rb		0.50		0.38			0.61	0.28	0.39	0.43		0.50		<0.4		0.39			0.32			0.35	0.32	0.38
	Mo	0.33	0.18	0.18	0.80	0.27	1.0	1.0	0.13	0.12	0.13	0.37	2.4	<0.1	<0.26	<1.4	0.96	0.51	0.33	0.36	0.13	0.52	0.35	0.40	<0.82
	Sb	0.70	1.4	ZZZ	ZZZ	0.062	0.34	0.64	0.30	0.38	0.52	0.66	0.70	0.80	0.56	<6.6	0.52	1.4	0.62	0.67	0.30	1.0	0.62	0.56	0.73
	Cs	0.056	<0.049		0.042	<0.079	<0.079	0.054	0.034	0.044	0.053	0.044	0.080	0.040	<0.26	<9.2	0.057	0.086	0.033	0.028	0.047	0.042	0.032	0.039	0.050
	Ва	1.6	2.1	12	3.1	<2.3	<2.3	4.8	1.1	1.6	2.5	1.4	1.9	2.8	1.6	<10	1.6	3.7	1.6	1.4	2.8	2.8	1.9	1.9	1.9
	La	0.11	0.090	0.24	0.14	<0.038	0.25	0.29	0.037	0.061	0.12	<0.34	0.11	0.10	<0.3	<12	0.085	0.24	0.061	0.052	0.13	0.079	0.053	0.062	0.081
	Ce	0.19	0.17	0.34	0.25	0.029	0.60	0.29	0.070	0.10	0.15	<0.19	0.13	0.16	<0.23	<13	0.22	0.43	0.10	0.086	0.25	0.11	0.077	0.095	0.16
	Sm	0.0057	<0.050	0.028	0.013	<0.035	<0.035	0.025	<0.017	<0.017	<0.017	<0.080	<0.06	<0.06	<0.37	<20	<0.016	<0.04		0.0064	0.020	<0.0027	<0.0097	0.0052	0.0067
	Hf	<0.022	<0.20	<0.023	<0.023	0.022	<0.020	0.023	<2.8	<2.8	<2.8	0.29	<0.2	<0.2	<0.29	<0.05	<0.035	<0.018		<0.0015	0.017	0.0031	<0.0030	0.0019	<0.41
	W	0.68	<0.11	<0.084	<0.084	<0.040	0.10	<0.16	<0.12	<0.12	<0.12	<3.3	0.18	0.14	<0.13	0.16	0.14	0.34	0.067	0.056	0.042	0.067	0.099	0.072	0.25
	Та	-	<0.26	<0.025	<0.025	<0.028	<0.028	0.0061	<0.027	<0.027	<0.027	0.26	<0.06	<0.06	<0.11	<0.05	<0.031	<0.03	<0.00079	< 0.00079	-	<0.0017	< 0.0017	<0.00079	<0.090
	Th	0.014	<0.10	0.053	0.026	<0.079	<0.079	0.031	< 0.016	< 0.016	0.020	<0.29	<0.03	<0.03	< 0.32	<3.2	<0.0099	0.031	< 0.031	0.0033	0.038	<0.0077	<0.0077	0.0034	<0.024
	Pb	12	7.0	4.2	5.2	1.4	6.5	6.5	6.5	5.4	6.6	9.3	11	7.0	4.1	8.4	7.2	12	6.5	6.9	3.3	11	7.7	7.4	7.1
	その他(Be)	-	<0.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.21	-	-	-	-	0.16	-	-	-	-	-	-	-	-	-	-	-	-	0.12	0.42	0.26	-	-
炭素成分	OC1	<0.027	0.024	0.18	0.16	0	0	0.20	< 0.04	<0.04	< 0.04	<0.042	<0.2	<0.2	0.21	0.14	0.038	0.10	< 0.065	<0.020	<0.040	< 0.023	<0.023	<0.013	< 0.032
	OC2	1.1	0.96	1.1	1.2	1.0	0.91	1.0	1.5	1.0	0.96	1.1	0.80	0.70	0.81	0.81	1.1	1.1	1.2	0.97	0.82	0.88	0.79	0.78	0.93
	OC3	0.67	0.69	1.7	0.93	1.4	1.3	1.4	0.75	0.63	0.69	0.40	0.60	0.50	0.41	0.42	0.47	0.49	0.68	0.59	1.6	0.48	0.57	0.46	0.50
	OC4	0.48	0.37	0.81	0.60	0.83	0.72	0.73	0.31	0.23	0.27	0.17	0.40	0.50	0.28	0.32	0.38	0.47	0.52	0.50	0.71	0.41	0.39	0.38	0.43
	Ocpyro	0.96	1.7		1.3	1.2	1.2	1.3	0.89	0.67	0.88	0.79	0.50	0.60	0.72	0.67	0.62	0.74	0.97	0.93	1.8	0.82	0.67	0.74	0.76
	EC1	1.3	2.1	2.1	1.7	1.6	1.7	1.4	1.1	0.67	0.76	1.3	0.90	0.90	0.84	1.2	1.1	1.2	1.0	0.97	2.2	0.82	0.71	0.78	0.79
	EC2	0.24	1.1	0.64	0.53	0.51	0.57	0.63	0.51	0.49	0.74	0.38	0.60	0.70	0.61	0.32	0.55	0.26	0.87	1.1	0.38	0.94	0.71	0.89	0.90
	EC3	<0.1	0.070	0.075	0.055	0.025	0.048	0.034	0.060	0.040	0.090	<0.017	<0.06	0.70	0.036	0.020	0.047	0.020	<0.024	0.041	0.086	<0.028	<0.034	<0.024	<0.021
	OC C	3.2	3.7	5.5	4.2	4.4	4.1	4.6	3.5	2.5	2.8	2.5	2.0	2.1	2.4	2.4	2.6	2.9	3.4	3.0	4.9	2.6	2.4	2.4	2.6
			1.6			0.94	1.1	0.76	0.78		0.71	0.89	0.90	1.2	0.77	0.87	1.1	0.74	0.90		0.87	0.94	0.95		0.93
	EC	0.58			0.99	0.94	1.1	0.76		0.53			0.90	1.2		U.87		0.74	0.90	1.2	0.87	0.94	0.95	0.93	0.93
	WSOC	2.0	3.1	3.4	2.4	-	-	-	1.5	0.90	1.4	1.2	_	-	2.1	_	2.2	-	_	-	-	-	-	2.1	

衣4-1-	12 5月1	8日か	りり月し	9日ま (	ž.													(PM2.5	,灰素成	分,イオ	-ン成分	: μg/m	無機成	分:ng/m	)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	10.2	13.3	15.9	14.0	12.0	12.0	18.8	12.2	6.6	10.0	10.1	13.1	12.6	11.4	12.4	11.9	13.7	10.2	9.4	15.2	13.5	13.8	10.4	13.1
イオン成分	CI-	0.017	0.038	0.070	0.019	<0.046	<0.046	0.090	< 0.096	< 0.096	< 0.096	0.065	0.090	0.070	0.080	0.030	0.038	0.060	<0.011	< 0.011	<0.026	0.041	0.024	<0.078	0.0063
	NO3-	0.51	0.50	0.71	0.73	0.64	1.0	0.69	0.34	<0.099	<0.099	0.69	1.3	0.70	0.69	0.31	0.61	0.76	<0.28	<0.28	0.23	0.39	0.24	0.15	0.21
	SO42-	2.8	3.7	4.1	4.9	6.4	6.1	3.6	4.1	1.8	3.6	4.0	4.6	5.5	4.4	4.5	4.6	5.3	3.7	4.0	3.1	4.6	5.2	3.8	4.8
	Na⁺	0.074	0.13	0.064	0.078	0.085	0.072	<0.044	0.12	0.080	0.16	0.13	0.16	0.13	0.089	0.13	0.087	0.14	<0.022	<0.022	0.036	0.17	0.12	0.092	0.11
	NH ₄ ⁺	1.3	1.4	1.6	1.6	2.3	2.3	1.3	1.6	0.61	1.2	1.5	1.9	2.0	1.8	1.5	1.7	2.3	1.3	1.4	1.1	1.8	2.1	1.6	1.6
	K ⁺	<0.045	0.084		0.070	0.096	0.070	0.061	0.068	0.027	0.056	0.085	0.10	0.12	<0.58	0.090	0.075	0.10		0.055	0.076	0.10	0.084	0.10	0.079
	N 2+	0.012	0.014		<0.015	0.0044	0.0041	0.011	0.011	<0.0038	0.0048	<0.039	0.022	0.021	0.013	0.020	0.025	0.020		<0.038	0.010	0.025	0.025	0.0065	0.015
	Mg ⁻																								
- 100 B 41	Ca ²⁺	<0.021	<0.078	0.065	0.046	0.016	0.014	0.35	0.048	<0.044	<0.044	0.055	0.050	0.060	0.055	0.060	0.059	0.10		<0.040	<0.033	0.11	<0.052	<0.032	0.035
無機成分	Na	-	150		40	46	95	140	130	44	110	120	130	110	110	120	130	160		80	64	160	170	100	97
	Al	69	100	250	<55	42	59	320	55	<17	37	33	100	100	<19	130	46	150		29	170	60	29	32	<28
	Si	-	-	-	-	-	-	530	230	130	180		180	230	-	240	-	270		63	-	110	78	42	-
	K	-	96		67	61	100	160	110	56	96		99	100	99	110	94	130		74	110	120	91	99	73
	Ca	-	43		<170	15	5.4	340	59	26	54		80	60	<24	59	30	120		58	92	<22	<23	30	<29
	Sc	0.011	<0.059		0.019	<0.029	<0.029	<0.18	< 0.57	< 0.57	<0.57	<3.1	< 0.05	<0.05	<0.49	<0.024		0.030		<0.0058	0.036	<0.032	<0.032	<0.016	<0.078
	Ti	2.7	6.8		ZZZ	2.7	4.0	28	6.3	<3.7	5.0		5.0	5.0	4.7	7.1	4.3	8.5		2.3	11	1.5	2.3	0.93	5.2
	V	1.3	1.3		2.5	1.9	2.6	4.0	6.8	2.3	7.5		3.4	2.4	3.5	5.2	12	3.2		1.8	1.4	7.3	3.9	1.9	2.7
	Cr	0.63	0.50		1.2	0.62	2.6	1.1	5.5	<0.76	0.91		<1	<1	0.83	0.95	4.3	0.97		<0.78	2.6	2.0	< 0.53	<2.1	1.9
	Mn	2.5	3.8		4.6	5.0	4.6	12	11	3.3	4.7		5.0	4.6	4.7	5.7		5.1		2.1	6.9	3.8	3.5	2.7	6.1
	Fe	55	99		100	140	94	340	120	56	65		110	90	120	120	230	110		27	130	56	40	34	34
	Co	0.031	<0.059		<0.23	<0.11	<0.11	0.18	0.11	<0.036	<0.036		<0.05	<0.05	<0.14 <5	<1 1.6		0.056		0.0099	0.075	<0.017	0.016	0.025	0.023
	Ni	0.87	1.4 <5.8		<0.85 1.7	3.6 0.98	1.2 2.3		2.0 <1.6	1.0 <1.6	1.6	2.2 1.5	1.1	<0.5 2.0	<3.6	2.0	5.5 3.3	1.2		<0.43	1.5	2.3	1.5	<3.1 1.1	1.4
	Gu Z-	1.3	<5.8 22		1.7	10	30	3.6 22	35	4.2	10		31	2.0	₹3.6 9.6	2.0	3.3	2.5		<6.7 28	2.3	2.8 <4.3	3.4 <17	(1.1 <18	2.4
	∠n As	0.61	0.70		0.97	0.37	0.80	1.4	0.70	0.31	0.68	0.50	1.1	1.4	1.1	<0.89	1.2	1.6		0.88	18 0.82	1.4	1.5	1.2	1.3
	AS C	0.064	0.70		0.87	<0.20	0.67	1.4	0.70	<0.19	0.00	0.30	0.90	1.4	<1.6	<0.89	0.61	1.1		0.88	0.82	0.71	0.66	0.61	0.77
	Rb	- 0.004	0.49		0.87	0.20	0.87	0.56	0.72	0.053	0.40	0.43	0.40	0.40	<0.4	<1.1	0.01	0.50		0.44	0.37	0.71	0.00	0.01	0.77
	Mo	0.20	<0.16		0.65	0.76	0.35	0.67	0.70	<0.098	<0.098	2.0	0.40	<0.1	<0.4	7.7	1.4	0.33		0.13	0.29	0.37	0.24	0.19	<0.82
	Sb	0.43	0.10		ZZZ	0.099	0.45	0.07	0.70	<0.086	0.37	0.32	0.80	0.80	0.61	<6.6	0.65	1.0		0.12	0.23	0.76	0.44	0.13	0.49
	Cs	0.028	<0.049		<0.035	<0.079	<0.079	0.062	0.037	<0.017	0.024	0.055	0.030	<0.03	<0.26	<9.2	0.032	0.060		0.014	0.039	0.022	0.018	0.020	0.036
	Ba	0.84	1.5		2.1	<2.3	<2.3	4.3	1 4	0.18	0.99	0.86	2.5	2.3	2.0	<10	2.0	2.1		0.78	2.2	2.2	0.86	0.84	1.3
	La	0.043	<0.081	0.10		0.044	0.083	0.14	0.090	<0.0087	0.026	<0.34	<0.09	0.13	<0.3	<12		0.11		0.025	0.090	0.051	0.032	0.035	0.023
	Ce	0.081	0.11	0.18	0.13	0.071	0.13	0.24	0.13	<0.0007	0.054	<0.19	0.16	0.17	<0.23	<13	0.14	0.20		0.045	0.16	0.087	0.059	0.055	0.10
	Sm	<0.0055	<0.050	0.014	0.0022	<0.035	<0.035	0.016	<0.017	<0.017	<0.017		<0.06	<0.06	<0.37	<20	<0.016	<0.04		0.0041	0.013	<0.0027	<0.0097	0.0035	0.0017
	Hf	0.023	<0.20		<0.023	<0.020	<0.020	0.015	<2.8	<2.8	<2.8	0.23	<0.2	<0.2	<0.29	<0.05	<0.035	<0.018		<0.0015	0.011	<0.0030	<0.0030	<0.0015	<0.41
	w	<0.082	<0.11	0.10	<0.084	0.13	0.10	<0.16	<0.12	<0.12	<0.12	<3.3	0.11	0.11	<0.13	0.29	0.25	0.17		0.053	0.076	0.065	0.10	0.15	0.23
	Та	-	0.41		<0.025	<0.028	<0.028	0.0033	<0.027	<0.027	<0.027	0.26	<0.06	<0.06	<0.11	<0.05	<0.031	<0.03	<0.00079	< 0.00079	-	< 0.0017	<0.0017	<0.00079	<0.090
	Th	0.0089	<0.10		<0.02	<0.079	<0.079	0.024	< 0.016	< 0.016	< 0.016	<0.29	< 0.03	< 0.03	<0.32	<3.2	<0.0099	0.021	< 0.031	0.0034	0.023	< 0.0077	<0.0077	0.0031	<0.024
	Pb	4.2	4.6	5.7	5.9	4.1	6.4	9.2	4.8	<1.4	3.7	6.2	7.4	6.9	4.3	6.4	5.6	8.2	4.5	4.3	4.5	7.1	7.2	5.7	6.1
	その他(Be)	-	<0.13	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.12	-	-	-	-	0.22	-	-	-	-	-	-	-	-	-	-	-	-	0.18	0.21	0.21	-	-
炭素成分	OC1	<0.027	<0.011	<0.13	<0.13	0	0	< 0.097	<0.04	<0.04	<0.04	<0.042	<0.2	<0.2	<0.053	0.070	0.034	0	< 0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	0.56	0.53	0.60	0.69	0.58	0.44	0.62	1.7	0.61	0.77	1.0	0.40	0.20	0.44	0.53	0.83	0.61	0.66	0.38	0.46	0.59	0.44	0.40	0.48
	OC3	<0.4	0.27	0.42	0.32	0.33	0.34	0.45	0.68	0.47	0.58	0.30	0.20	<0.2	0.20	0.28	0.42	0.18	0.34	0.20	0.67	< 0.36	0.35	0.25	0.34
	OC4	0.29	0.14	0.37	0.33	0.22	0.26	0.26	0.25	0.16	0.18	0.14	<0.2	<0.2	0.11	0.17	0.27	0.12	0.25	0.17	0.29	0.28	0.23	0.21	0.26
	Ocpyro	0.42	0.77	0.53	0.50	0.47	0.42	0.44	0.49	0.28	0.40	0.53	0.14	<0.06	0.27	0.28	0.39	0.28	0.45	0.30	0.77	0.48	0.40	0.41	0.49
	EC1	0.64	0.68	0.80	0.84	0.55	0.54	0.51	0.64	0.28	0.36	0.83	0.30	0.30	0.43	0.62	0.84	0.53	0.45	0.29	1.0	0.59	0.47	0.43	0.47
	EC2	0.21	0.72	0.51	0.48	0.51	0.50	0.46	0.51	0.25	0.42	0.41	0.40	0.20	0.45	0.24	0.38	0.22	0.54	0.43	0.37	0.81	0.47	0.49	0.62
	EC3	<0.1	<0.056	0.030	0.055	0.020	0.018	0.026	0.040	0.025	0.045	<0.017	<0.06	<0.06	0.0034	0.010	<0.024	0	<0.024	<0.012	0.092	<0.028	<0.034	<0.024	<0.021
	OC	1.3	1.7	1.9	1.8	1.6	1.5	1.8	3.1	1.5	1.9	2.0	0.80	0.20	1.0	1.3	1.9	1.2		1.0	2.2	1.4	1.4	1.3	1.6
	EC	0.43	0.63	0.81	0.88	0.61	0.64	0.56	0.70	0.28	0.43	0.71	0.60	0.50	0.61	0.59	0.83	0.47	0.54	0.42	0.69	0.92	0.54	0.51	0.60
	WSOC	1.0	1.6	1.2	1.2	-	-	-	<0.55	0.63	<0.55	0.65	-	-	1.1	-	1.5	-	_	-	-	-	-	1.2	-

衣4-1-	13 5月1	9 ロ ル	50月2	リロより	<i>.</i>													(PM2.5,	,灰素从	分,イオ	ン成分:	μg/m	無機风:	分:ng/m	. )
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	11.4	12.5	16.2	12.4	13.0	12.0	14.6	12.0	5.0	8.9	11.0	13.3	16.6	13.0	13.1	11.4	17.1	7.4	5.8	6.6	14.5	15.9	9.8	11.8
イオン成分	CI-	<0.0056	<0.01	0.024	<0.016	<0.046	<0.046	0.059	< 0.096	< 0.096	< 0.096	<0.0052	0.070	0.080	<0.043	0.040	0.015	0.030	<0.011	< 0.011	<0.026	< 0.021	0.043	<0.078	0.011
	NO3-	1.0	0.41	2.1	0.55	2.3	2.3	1.3	0.18	<0.099	0.57	1.1	2.2	3.2	2.0	2.2	1.6	2.2	<0.28	0.43	0.14	1.2	1.8	0.44	0.98
	SO42-	2.9	3.7	2.2	3.0	3.8	3.5	2.0	3.2	1.1	2.8	3.5	4.0	4.0	3.1	3.4	3.2	3.9	1.5	1.3	1.6	3.5	1.9	2.5	1.9
	Na ⁺	0.015	0.038	0.024	0.028	0.039	0.033	< 0.044	0.068	0.078	0.18	0.14	0.22	0.050	0.16	0.27	0.17	0.050	<0.022	<0.022	0.021	0.23	0.086	0.11	0.11
	NH₄⁺	1.6	1.5	1.4	1.2	1.9	1.8	1.1	1.2	0.43	1.1	1.5	1.8	2.3	1.4	1.7	1.4	2.3	0.51	0.57	0.57	1.7	1.4	1.0	0.84
	K ⁺	<0.045	0.061	0.052		0.042	0.048	<0.037	0.046	0.012	0.029	0.053	0.070	0.080	<0.58	0.070	0.069	0.090	0.047	0.049	0.031	0.043	0.067	0.10	0.060
	Mg ²⁺	<0.011	0.0071	<0.015		0.0014	0.0016	0.0028	0.0084	0.0044		<0.039	0.028	0.0080	0.017	0.030	0.037	<0.01	0.090	<0.038	<0.0034	0.027	0.0090	<0.0055	0.0093
	0										0.013														
	Ca ²⁺	<0.021	<0.078	0.034	0.023	0.0065	0.0083	0.083	<0.044	<0.044	<0.044	<0.051	0.060	0.030	0.065	0.040	0.036	0.030	<0.040	<0.040	<0.033	0.054	<0.052	<0.032	0.016
無機成分	Na	_	130	69	<21	54	64	60	96	100	210	150	170	50	140	200	170	64	63	31	37	350	210	160	110
	Al	34	150	110		38	36	55	34	<17	<17	20	50	50	<19	50	12	71	15		25	10	<17	9.7	<28
	Si	-	-	-	-	-	-	110	150	1.3	34	53	110	110	-	59	-	120	19		-	61	27	15	-
	K	-	66	100	41	79	80	63	77		47	72	63	76	73	55	49	100	63	35	38	75	110	66	43
	Ca	-	33	200	<170	5.9		31	56	11	37	25	70	50	<24	31	13	41	260	40	31	40	<23	96	<29
	Sc	<0.0088	<0.059	0.019		<0.029		<0.18	< 0.57	< 0.57	<0.57	<3.1	<0.05	<0.05	<0.49				<0.022		0.0060	<0.032	<0.032	<0.016	<0.078
	11	7.9	5.6	ZZZ	ZZZ	3.2	3.1	5.2	4.8	<3.7	<3.7	6.5	3.0	6.0	2.9	3.2	2.5	8.6	0.61	0.58	3.2	1.5	<2.0	0.42	4.5
	V	2.0	1.5	0.83	1.2	2.1	1.9	2.1	2.3	3.4	16	6.0	9.7	1.9	2.9	9.5	15	2.2	1.4	0.92	0.61	16	8.0	11	4.7
	Cr	0.93	0.66	1.6		0.65	0.82	< 0.62	3.0 13	<0.76	<0.76	2.0	2.0 9.8	<1	1.3	0.90	2.6	2.3	<2.3	<0.78	<0.44	0.65	1.1	<2.1	2.2
	Mn	5.6 62	3.9 64	8.0 <24	68	6.8 68	6.3 68	5.7 83	160	<2.8 12	5.2	8.7 120	140	8.8	8.2	7.6	110	11 140	2.3	1.6 13	2.3 34	5.5 48	15 120	3.8	13 56
	re		< 0.059	<0.23				<0.081		< 0.036	<0.036			310	73 <0.14	130	0.070	0.17	0.0051			<0.017	0.041	0.021	
	Co	0.044	1.1	1.4	<0.23 <0.85	<0.11 0.42	<0.11 1.2	0.081	0.093	1.1	4.4	0.13 2.2	0.060	0.060 <0.5	<0.14	2.3	4.5		<0.43	<0.0033	0.018 0.40	5.2	3.2	11	0.030
	INI O	6.2	<5.8	3.1	1.7	0.42	3.9	11	1.8	<1.6	4.4 <1.6	2.2	5.0	5.0	<3.6	2.3	4.3		1.6	<6.7	2.1	3.5		1.6	2.1 4.3
	Cu Z-	75		28		34		33	24	2.6	20	2.0	49	43	22	2.7	27		150	<16.7	12	3.5 42	8.2 59	65	4.3
	Δ1	1.2	0.91	0.68		0.59	0.61	0.72	0.67	0.15	0.28	0.53	1.2	1.0	0.65	0.98	1.0		0.22	0.21	0.25	0.44	0.69	0.32	0.35
	Co.	0.075	1.2	0.03	0.60	0.38	0.01	0.72	0.67	<0.19	0.28	1.1	1.3	1.3	<1.6	<0.92	0.68	6.5	0.22	0.21	0.23	0.44	1.7	0.83	1.2
	Ph	-	0.20	0.75		0.24	0.23	0.78	0.07	<0.15	0.13	0.43	0.20	0.30	<0.4	<1.1	0.08		0.068	0.069	0.21	0.14	0.25	0.03	0.16
	Mo	0.84	0.41	2.2		0.73	1.0	0.16	1.1	<0.098	0.10	0.38	1.2	0.90	0.73	<1.4	1.0		0.000	0.23	0.25	1.4	2.1	1.1	1.4
	Sh	1.3	1.1	ZZZ	ZZZ	0.48	0.75	1.7	0.63	0.12	0.30	0.98	1.2	2.0	1.1	<6.6	0.72	2.2	0.40	0.54	0.56	1.3	1.9	1.4	1.2
	Cs	0.015	<0.049	<0.035		<0.079	<0.079	0.017	0.046	<0.017	0.023	0.082	<0.03	<0.03	<0.26	<9.2	0.012				0.013	0.014	0.046	0.011	0.047
	Ba	0.85	1.5	4.7	1.6	<2.3	<2.3	1.6	1.2	0.10	0.99	1.2	2.6	2.9	2.2	<10	2.2	3.8	1.1	0.68	0.74	2.9	4.6	1.5	3.2
	La	0.054	<0.081	0.039		0.094	0.056	0.069	0.094		0.034	<0.34	0.12	0.10	<0.3	<12	0.061	0.25	0.012	0.013	0.017	0.040	0.17	0.070	0.078
	Ce	0.11	0.085	0.090	0.061	0.16	0.11	0.12	0.20	<0.014	0.074	<0.19	0.20	0.18	<0.23	<13	0.23	0.42	0.025	0.016	0.034	0.051	0.28	0.11	0.14
	Sm	<0.0055	<0.050	0.0037	<0.0019	<0.035	<0.035	<0.013	<0.017	<0.017	<0.017	<0.080	<0.06	<0.06	<0.37	<20	< 0.016	<0.04	<0.0068	<0.0022	0.0020	<0.0027	<0.0097	0.0024	0.0029
	Hf	<0.022	<0.20	<0.023	<0.023	<0.020	<0.020	< 0.0066	<2.8	<2.8	<2.8	0.18	<0.2	<0.2	<0.29	< 0.05	< 0.035	<0.018	<0.0015	< 0.0015	<0.0087	<0.0030	<0.0030	<0.0015	<0.41
	W	0.29	<0.11	0.18	<0.084	<0.040	0.17	0.24	0.45	<0.12	<0.12	<3.3	0.30	0.20	0.14	0.48	0.27	0.48	0.032	0.033	0.11	0.16	0.38	0.065	0.40
	Та	-	0.29	< 0.025	<0.025	<0.028	<0.028	<0.0022	< 0.027	< 0.027	< 0.027	0.29	< 0.06	< 0.06	<0.11	<0.05	< 0.031	<0.03	<0.00079	< 0.00079	-	< 0.0017	<0.0017	<0.00079	<0.090
	Th	<0.0084	<0.10	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.016	< 0.016	<0.016	<0.29	<0.03	<0.03	<0.32	<3.2	< 0.0099	<0.017	<0.031	0.00069	0.0031	<0.0077	<0.0077	<0.00048	<0.024
	Pb	4.9	4.2	4.2	3.5	6.6	6.7	4.9	5.3	<1.4	3.4	9.1	7.5	6.6	3.4	3.3	4.2	8.4	1.4	1.6	3.3	4.7	15	3.0	6.1
	その他(Be )	-	<0.13	_	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.15	-	-	-	-	0.18	-	-	-	-	-	-	-	-	-	-	-	-	0.11	0.14	0.39	-	-
炭素成分	OC1	<0.027	<0.011	0.18	<0.13	0	0	< 0.097	<0.04	<0.04	<0.04	<0.042	<0.2	<0.2	0.11	0.16	0.028	0.080	<0.065	<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	0.70	0.67	1.0		0.70	0.51	0.73	1.0	0.71	0.83	1.0	0.70	0.70	0.83	0.66	0.98	1.1	0.99	0.67	0.37	0.86	0.98	0.90	1.0
	OC3	0.47	0.37	0.82	0.54	0.65	0.60	0.69	0.63	0.40	0.43	0.32	0.50	0.40	0.58	0.44	0.54	0.49	0.69	0.52	0.46	0.45	0.80	0.62	0.91
	OC4	0.36	0.21	0.53	0.41	0.42	0.41	0.35	0.28	0.14	0.16	0.17	0.40	0.30	0.35	0.25	0.32	0.32	0.44	0.39	0.19	0.40	0.61	0.45	0.58
	Ocpyro	0.53	0.92	0.72		0.53	0.48	0.51	0.66	0.24	0.40	0.56	0.40	0.30	0.51	0.42	0.47		0.49	0.44	0.39	0.71	0.55	0.71	0.48
	EC1	0.90	0.89	1.2	0.99	0.72	0.70	0.60	0.79	0.24	0.35	1.1	0.90	0.70	0.86	0.96	0.97	1.4	0.49	0.41	0.51	0.96	1.1	0.73	0.86
	EC2	0.23	1.0	0.96	0.70	0.79	0.80	0.64	0.47	0.20	0.42	0.61	0.50	0.80	0.65	0.25	0.50	0.50	0.72	0.54	0.24	0.91	0.71	0.73	0.84
	EC3	<0.1	0.079	0.070		0.030	0.048	0.023	0.045	0.015	0.025	<0.017	<0.06	<0.06	0.035	0.010	<0.024	0.030	0.027	0.028	0.080	<0.028	<0.034	<0.024	<0.021
	OC	2.1	2.2	3.3	2.4	2.3	2.0	2.3	2.6	1.5	1.8	2.1	1.8	1.4	2.4	1.9	2.3	2.5	2.6	2.0	1.4	2.4	2.9	2.7	3.0
	EC	0.60	1.0	1.5		1.0	1.1	0.75	0.65	0.22	0.40	1.2	1.1	1.2	1.0	0.80	1.0	1.4	0.75	0.54	0.44	1.2	1.3	0.75	1.2
	WSOC	1.3	2.1	1.8	1.8	-	-	-	1.3	< 0.55	<0.55	0.82	-	-	1.8	-	1.9	-	-	-	-	-	-	2.2	-

40

(PM2.5, 炭素成分, イオン成分: μg/m³ 無機成分:ng/m³)

	14 5月2	ロロか	50月2	コロより	<i>-</i>													(PM2.5	,炭素成	分,イオ	ン成分	: μg/m	無機成	分:ng/m	)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	9.7	12.5	16.5	12.0	9.3	8.5	12.2	13.0	7.9	13.1	11.6	10.7	13.7	13.5	14.2	13.1	14.6	12.8	13.3	15.7	19.8	17.0	15.5	17.1
イオン成分	CI-	<0.0056	<0.01	<0.016	<0.016	<0.046	<0.046	0.015	< 0.096	< 0.096	< 0.096	0.047	0.020	0.020	<0.043	<0.02	<0.0091	<0.02	<0.011	< 0.011	<0.026	<0.021	<0.021	<0.078	0.0092
	NO3-	<0.25	0.17	0.12	0.095	0.075	0.097	0.21	0.25	< 0.099	0.17	0.47	0.56	0.57	0.45	0.11	0.37	0.38	<0.28	<0.28	0.23	0.14	0.24	< 0.079	0.19
	SO42-	3.1	4.1	3.0	3.5	3.9	3.1	2.4	3.5	2.4	3.9	4.5	3.6	4.8	4.9	5.4	5.0	5.4	4.2	4.1	4.3	6.2	5.1	4.7	4.9
	Na ⁺	0.023	0.044	0.047	0.034	<0.026	0.046	<0.044	0.083	0.070	0.081	0.11	0.080	0.10	<0.065	0.080	< 0.054	0.10	<0.022	<0.022	0.096	0.10	0.13	0.10	0.17
	NH ₄ ⁺	1.3	1.5		1.2	1.4	1.1	0.90	1.3	0.96	1.6		1.3	1.8	1.7	2.1	1.8	2.3	1.5	1.5	1.5	2.5	2.0	2.0	1.7
	14114	<0.045	0.070		0.046	0.022	0.077	<0.037	0.047	<0.006	0.051	0.078	0.080	0.060	<0.58	0.070	0.063	0.070		0.059	0.072	0.043	0.12	0.059	0.069
	K																								
	Mg ^{∠⊤}	<0.011	0.0072	<0.015	<0.015	0.0011	0.0017	0.0051	<0.0038	<0.0038	0.0060	<0.039	0.013	0.014	0.012	0.020	0.021	0.010	<0.038	<0.038	0.019	0.017	0.020	<0.0055	0.010
	Ca ²⁺	<0.021	<0.078	0.065	0.030	0.0077	0.011	0.10	0.065	<0.044	0.051	<0.051	0.050	0.070	0.062	0.080	0.054	0.040	<0.040	<0.040	0.043	0.092	<0.052	<0.032	0.044
無機成分	Na	-	60	86	<21	200	58	47	78	67	90	57	80	80	100	78	72	100	85	63	120	220	190	140	140
	Al	100	150	350	95	130	45	92	37	<17	44	8.0	70	60	48	100	21	66	36	19	210	21	27	42	35
	Si	-	-	-	-	-	-	280	210	50	120	54	130	130	-	160	-	150	52	31	-	26	62	17	-
	K	-	100	110	56	180	74	55	88	48	86	30	60	58	77	58		72	61	65	130	78	130	70	74
	Ca	-	71		<170	12	7.7	55	82	14	94	8.5	60	70	46	73		46		110	88	250	<23	86	<29
	Sc	<0.0088	< 0.059	0.066	<0.012	<0.029	<0.029	<0.18	< 0.57	<0.57	< 0.57	<3.1	<0.05	<0.05	< 0.49	<0.024	<0.0086	<0.021	<0.022	<0.0058	0.044	< 0.032	<0.032	<0.016	<0.078
	Ti	12	12	ZZZ	zzz	9.6	3.5	7.5	7.1	<3.7	4.8	6.1	4.0	4.0	5.4	5.4	3.2	5.9	1.1	1.2	14	1.5	<2.0	0.85	6.4
	V	1.0	1.3	1.6	1.1	7.6	1.3	1.3	5.4	2.0	17	1.2	3.1	4.1	5.6	7.8	12	6.2	3.3	2.2	2.0	24	6.0	7.8	6.2
	Cr	0.64	0.74		<1.1	1.6	0.73	< 0.62	1.4	< 0.76	0.86	<0.18	<1	<1	1.6	1.1	3.4	1.6	<2.3	<0.78	0.63	1.1	< 0.53	<2.1	0.89
	Mn	2.2	4.4	6.1	4.7	14	4.1	3.7	6.9	<2.8	8.3	2.0	9.3	5.7	6.3	8.0	9.4	5.8	3.5	2.9	5.7	5.4	5.8	4.2	12
	Fe	39	110		78	210	63	87	170	27	310	25	150	100	150	160		120	31	28	150	79	65	47	54
	Co	0.025	< 0.059	<0.23	<0.23	0.30	<0.11	<0.081	0.10	< 0.036	0.065	0.050	<0.05	<0.05	<0.14	<1	0.069	0.056	0.016	0.013	0.067	0.040	0.030	0.028	0.034
	Ni	<0.55	1.7		<0.85	5.8	0.70	0.53	2.2	1.1	4.6		0.70	0.90	<5	2.7		2.3	<0.43	< 0.43	0.87	8.1	2.3	<3.1	1.6
	Cu	1.3	<5.8		1.5	5.2	2.5	1.6	1.9	<1.6	2.6		5.0	3.0	<3.6	1.7		3.6		<6.7	1.9	3.5	3.4	1.6	3.5
	Zn	27	14		21	65	17	12	130	7.2	35		110	23	15	19	20	23		66	19	120	<17	35	32
	As	0.66	0.96	0.84	0.79	1.1	0.76	0.78	0.49	0.49	0.79	<0.20	1.1	1.2	1.3	<0.89	1.0	1.3	0.59	0.66	1.1	0.68	0.95	0.56	0.76
	Se	0.075	1.3		0.65	0.64	0.33	0.77	0.59	0.43	0.93	0.39	0.60	0.90	<1.6	<0.92	0.90	1.7	0.62	0.77	0.78	1.2	1.0	0.98	0.99
	Rb	-	0.45		0.19	0.66	0.24	0.21	0.28	0.13	0.30	0.12	0.20	0.30	<0.4	<1.1	0.22	0.34	0.16	0.15	0.57	0.23	0.33	0.20	0.35
	Mo	0.22	<0.16		0.50	1.5	0.45	0.34	0.27	0.13	0.31	0.11	0.30	0.30	0.52	<1.4	2.0	0.67	0.41	0.39	0.38	1.2	0.73	0.79	<0.82
	Sb	0.78	0.43		ZZZ	0.77	0.51	0.48	0.56	0.14	0.44	0.16	1.0	0.80	0.69	<6.6	0.55	0.91	0.48	0.54	0.64	1.1	0.60	0.49	0.78
	Cs	0.032	0.062		<0.035	0.12	<0.079	0.026	0.044	<0.017	0.051	<0.042	<0.03	<0.03	<0.26	<9.2		0.060	0.021	0.015	0.083	0.018	0.046	0.025	0.063
	Ва	0.72	2.2		2.7	2.3	<2.3	1.4	1.3	0.31	1.6		1.4	1.9	3.6	<10		2.2	1.2	1.2	2.4	2.5	2.1	1.2	1.6
	La	0.048	0.083		0.070	0.18	0.052	0.051	0.10	0.014	0.064	<0.34	<0.09	<0.09	<0.3	<12		0.093		0.031	0.14	0.090	0.056	0.051	0.055
	Ce	0.091	0.16	0.24	0.12	0.31	0.11	0.072	0.13	0.021	0.091	<0.19	0.10	0.11	<0.23	<13		0.15		0.045	0.25	0.13	0.089	0.078	0.12
	Sm	0.0081	<0.050	0.017	0.0049	<0.035	<0.035	<0.013	<0.017	<0.017	<0.017		<0.06	<0.06	<0.37	<20		<0.04		0.0030	0.017	<0.0027	<0.0097	0.0022	0.0029
	Hf	<0.022	<0.20		<0.023	<0.020	0.026	<0.0066	<2.8	<2.8	<2.8	0.23	<0.2	<0.2	<0.29	<0.05		<0.018		<0.0015	0.0099	<0.0030	<0.0030	<0.0015	<0.41
	W	0.26	<0.11	0.20	<0.084	0.78	0.13	0.19	<0.12	<0.12	0.13	<3.3	0.17	0.17	0.13	0.36		0.26	0.049	0.059	0.17	0.12	0.16	0.066	0.36
	Та	-	<0.26		<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	0.27	<0.06	<0.06	<0.11	<0.05		<0.03		<0.00079	-	<0.0017	<0.0017	<0.00079	<0.090
	Th	<0.0084	<0.10		<0.02	<0.079	<0.079	<0.0082	<0.016	<0.016	<0.016	<0.29	0.20	< 0.03	<0.32	<3.2		<0.017		0.0014	0.034	<0.0077	<0.0077	0.00052	<0.024
	Pb	3.3	6.1		4.9	16	6.6	3.7	6.3	2.0	8.0	3.1	13	5.6	4.6	5.6		6.5	4.1	4.1	5.9	5.7	8.2	4.9	7.7
	その他(Be)	-	<0.13	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-	-	-	-
	その他(Cd)	-	0.16		-	-	-	0.11	-	-	-	-	-	-	-	-	-		-	-	0.15	0.14	0.22	-	-
炭素成分	OC1	<0.027	<0.011	<0.13	<0.13	0	0	0.18	<0.04	<0.04	<0.04	<0.042	<0.2	<0.2	0.12	0.13	0.045	0.12		<0.020	<0.040	<0.023	<0.023	<0.013	<0.032
	OC2	0.68	0.49		0.75	0.52	0.36	0.67	0.84	0.28	0.93	0.97	0.60	0.70	0.80	0.80	1.1	0.89	1.1	0.88	0.45	0.95	0.83	0.98	1.1
	OC3	<0.4	0.29		0.40	0.50	0.38	0.64	0.48	0.19	0.55	0.33	0.60	0.30	0.55	0.33	0.51	0.41	0.72	0.62	0.54	0.50	0.62	0.54	0.69
	OC4	0.29	0.12		0.33	0.28	0.19	0.36	0.23	0.083	0.26	0.16	0.40	0.20	0.27	0.24		0.32	0.45	0.48	0.24	0.44	0.49	0.47	0.52
	Ocpyro	0.50	0.74		0.56	0.47	0.33	0.66	0.70	0.32	0.75	0.69	0.30	0.30	0.60	0.52	0.56	0.54	0.75	0.68	0.72	0.81	0.89	0.73	0.83
	EC1	0.70	0.56		0.69	0.47	0.40	0.53	0.62	0.18	0.83	1.1	0.60	0.50	0.66	0.87	0.97	1.0		0.69	0.93	0.90	0.94	0.77	0.87
	EC2	0.20	0.87	0.51	0.58	0.52	0.47	0.52	0.46	0.16	0.60	0.47	0.80	0.60	0.69	0.45	0.52	0.51	0.92	0.96	0.30	1.2	0.74	1.1	0.88
	EC3	<0.1	0.059		0.050	0.035	0	0.055	0.055	0.020	0.065	<0.017	0.20	0.090	0.064	0.030	0.031	0.040		0.020	0.051	<0.028	<0.034	<0.024	<0.021
	OC	1.5	1.6		2.0	1.8	1.3	2.5	2.3	0.87	2.5	2.2	1.6	1.4	2.3	2.0	2.5	2.3	3.0	2.7	2.0	2.7	2.8	2.7	3.1
	EC	0.40	0.75		0.76	0.56	0.54	0.45	0.44	0.040	0.75		1.4	0.90	0.81	0.83	0.96	1.0	0.94	0.99	0.56	1.3	0.79	1.1	0.92
	WSOC	1.1	1.6	1.3	1.6	-	-	-	1.3	0.68	2.3	1.1	-	-	2.1	-	2.1	-	-	-	-	-	-	2.7	-

表4-1-15 期間平均値(5月7日~5月21日主で) (PM2.5 炭素成分 イオン成分・リッ/m³ 無機成分・ng/m³)

_表4−1	-15 期間	半均値	[(5月7	日~5F	121日記	まで)												(PM2.5,	炭素成	分,イオ	`ン成分:	$\mu$ g/m ³	無機成分	分: ng/m³)	)
自	台体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	16.8	17.6	21.3	17.2	15.7	15.9	22.0	17.6	11.1	16.5	12.9	17.2	17.3	16.0	16.9	15.5	18.5	14.1	13.1	15.1	16.6	16.8	14.8	16.0
イオン成	்)CI−	0.051	0.036	0.030	0.021	0.029	0.046	0.054	0.048	0.048	0.052	0.11	0.074	0.055	0.043	0.032	0.041	0.036	0.0055	0.0082	0.022	0.013	0.028	0.039	0.0079
	NO3-	1.1	0.93	1.0	0.70	1.3	1.5	1.1	0.39	0.093	0.42	0.71	1.7	1.8	1.2	0.81	1.1	1.4	0.30	0.36	0.37	0.29	1.1	0.14	0.62
	SO42-	4.6	4.5	3.2	3.9	4.8	4.9	3.3	4.3	3.3	4.3	2.7	4.8	4.7	4.7	5.1	5.0	4.9	4.3	3.6	3.3	4.7	4.4	4.0	4.5
	Na⁺	0.12	0.14	0.066	0.084	0.077	0.093	0.036	0.13	0.11	0.19	0.15	0.21	0.14	0.12	0.23	0.16	0.14	0.035	0.016	0.057	0.13	0.11	0.11	0.13
	NH ₄ ⁺	2.0	1.8	1.4	1.5	2.0	2.0	1.4	1.6	1.2	1.5	0.98	2.0	2.1	1.9	2.1	2.0	2.3	1.6	1.4	1.2	1.9	2.1	1.7	1.6
	V ⁺	0.077	0.10	0.085	0.081	0.081	0.096	0.055	0.072	0.036	0.060	0.17	0.12	0.11	0.29	0.11	0.090	0.11	0.074	0.067	0.073	0.060	0.085	0.088	0.083
	2+	0.017	0.018	0.013	0.001	0.0046	0.0050	0.013	0.012	0.0079	0.000	0.021	0.027	0.019	0.016	0.031	0.030	0.021	0.079	0.019	0.014	0.020	0.003	0.0090	0.015
	Mg ⁻																								
	Ca ²⁺	0.033	0.062	0.11	0.070	0.022	0.022	0.30	0.053	0.026	0.14	0.079	0.091	0.071	0.069	0.10	0.066	0.093	0.042	0.020	0.057	0.099	0.026	0.046	0.069
無機成分	Na	-	160	130	62	54	99		180	134	207	213	174	121	147	167	162	159	104	77	84	268	201	137	122
	Al	104	146	479	128	43	54		94	38	169	46	100	104	86	168	54	179	44	65	180	56	36	54	121
	Si	-			_	-	-	707	383	222	477	70		234	-	331	-	349	76	84		80	68	78	
	K	-	126	182	99	68	96		146	93	131	197	106	96	117	111	90	134	89	79	118	120	120	103	85
	Ca		66	305	85	13	6.9		129	42	263	34	67	64	46	95	32	111	98	113	98	129	65	133	41
	Sc	0.018	0.030	0.098	0.027	0.015	0.015	0.26	0.29	0.31	0.29	0.070		0.025	0.25	0.031		0.037	0.011	0.0082	0.037	0.016	0.016		0.039
	Ti	7.7	9.6	-		3.4	3.9		12	5.3	17	4.2	6.4	6.4	8.8	11	5.3	13	1.9	4.0	13	2.3	1.5	2.6	8.5
	V	3.9	3.0		4.4	2.1	3.5		8.2	4.8	16	2.0		4.4	5.4	12	12	5.6	3.4	2.4	1.4	16	5.9	5.3	5.0
	Cr	0.87	0.93	1.4	1.7	0.71	1.0		2.3	0.66	1.0	0.94	1.4	0.79	1.3	1.2		1.6	1.6	0.92	0.96	1.0	0.48	1.2	1.5
	Mn	5.8	5.9	9.7	8.7	5.1	5.5		10	4.0	11	7.3		6.8	7.2	8.3	11	8.5	3.4	3.3	6.1	4.4	6.8	4.5	9.1
	Fe	100	149	280	155	94	88		226	76	288	94	178	142	140	197		183	43	49	135	61	79	56	60
	Co	0.057	0.058	0.17	0.15	0.097		0.21	0.12	0.028	0.088	0.23	0.070	0.048	0.075	0.50	0.10	0.095	0.023	0.024	0.061	0.017	0.032	0.057	0.046
	Ni	2.1	2.5	2.4	1.4	1.2	1.4		2.9	1.5	4.1	1.1	3.3	1.1	3.8	3.2		2.2	0.42	0.22	0.74	5.2	2.2	3.2	1.7
	Cu	3.7	2.9	3.3 32	3.2 32	1.1 26	3.0 29		2.8 55	1.3	2.0 25	3.9 16		3.7 30	11 21	2.6 25	4.2	4.3	2.1 38	3.4 35	2.4 18	3.8 48	3.9 46	2.0 40	2.8
	<u> </u>	1 2	1.2	1.1	1.2	0.36	0.84		0.95	0.72	0.81	0.85	1.3	1.1	0.98	0.73	1.1	1.5	0.76	0.73	0.87	0.96	1.2	0.82	0.98
	AS C-	0.11	1.1		1.1	0.30	0.55		0.93	0.72	0.69	0.85	1.3	1.1	0.86	0.73	1.0	2.4	0.76	0.73	0.87	0.83	0.88	0.82	0.85
	Rb	- 0.11	0.47		0.33	0.23	0.30		0.44	0.48	0.03	0.50	0.43	0.39	0.33	0.55	0.34	0.52	0.01	0.20	0.45	0.30	0.35	0.70	0.37
	Mo	0.60	0.47	1.4	0.96	0.69	0.50	0.81	0.44	0.14	0.43	0.97	0.43	0.50	0.61	1.6		0.86	0.27	0.26	0.43	0.62	0.69	0.23	1.1
	Sb	2.1	1.0		-	0.30	0.83	1.2	0.81	0.14	0.54	2.1	1.1	1.3	0.96	3.3	0.76	1.4	0.57	0.60	0.74	1.1	0.97	0.53	1.0
	Cs	0.046	0.047		0.042	0.048	0.047		0.066	0.027	0.056	0.053	0.050	0.036	0.13	4.6		0.070	0.022	0.019	0.052	0.026	0.038	0.029	0.050
	Ba	1.4	2.4	9.0	4.6	1.5	1.8		6.3	1.6	3.1	2.0		3.2	3.1	5.0		3.9	1.5	1.4	2.5	2.5	2.4	1.6	2.0
	La	0.091	0.099	0.19	0.13	0.063	0.12		0.16	0.037	0.12	0.15	0.14	0.14	0.15	6.0		0.22	0.048	0.046	0.11	0.068	0.072	0.062	0.076
	Ce	0.15	0.17	0.34	0.21	0.10	0.21	0.33	0.23	0.067	0.19	0.18	0.22	0.20	0.16	6.5	0.18	0.37	0.085	0.079	0.20	0.095	0.11	0.10	0.15
	Sm	0.0049	0.025	0.025	0.0077	0.018	0.018	0.018	0.010	0.0085	0.012	0.16	0.030	0.030	0.19	10		0.020	0.0042	0.0063	0.014	0.0014	0.0054	0.0059	0.0068
	Hf	0.052	0.10	0.012	0.012	0.012	0.013	0.017	1.4	1.5	1.4	0.14	0.10	0.10	0.15	0.025	0.018	0.014	0.0015	0.0012	0.012	0.0028	0.0015	0.0015	0.21
	W	0.37	0.12	0.18	0.18	0.19	0.35	0.19	0.19	0.088	0.097	2.3	0.25	0.18	0.15	0.49	0.45	0.33	0.060	0.040	0.12	0.10	0.20	0.13	0.40
	Та	-	0.22	0.025	0.023	0.014	0.014	0.0039	0.016	0.014	0.014	0.21	0.030	0.030	0.055	0.025	0.016	0.016	0.00040	0.00040	-	0.0011	0.00085	0.00040	0.045
	Th	0.015	0.050	0.051	0.020	0.040	0.040	0.029	0.013	0.0080	0.017	0.080	0.031	0.019	0.16	1.6	0.0055	0.024	0.016	0.0035	0.028	0.0039	0.0039	0.0037	0.026
	Pb	7.6	7.1	6.6	6.6	4.7	6.5	8.1	7.1	3.3	5.5	14	11	7.1	5.6	7.3	7.2	9.0	4.5	4.9	5.2	7.0	9.0	5.7	6.3
	その他(Be)	-	0.065	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	ı	0.24	-	-	-	-	0.23	ı	-	-	-	-	1	-	1	ī	-	-	-	0.16	0.23	0.29	-	-
炭素成分	001	0.096	0.0083	0.14	0.19	0.041	0.014	0.22	0.020	0.020	0.020	0.085	0.10	0.10	0.22	0.16	0.053	0.23	0.033	0.010	0.020	0.012	0.012	0.0076	0.016
	OC2	1.0	0.77	1.1	1.0	0.94	0.82	0.96	1.5	0.89	1.0	1.2	0.75	0.79	0.87	0.89	1.2	1.1	1.1	0.88	0.57	0.90	0.72	0.92	0.90
	OC3	0.64	0.52	1.2	0.70	1.0	0.81	0.96	0.82	0.59	0.75	0.81	0.57	0.55	0.57	0.52	0.64	0.63	0.64	0.58	0.74	0.50	0.55	0.59	0.62
	OC4	0.54	0.25	0.67	0.50	0.63	0.52	0.57	0.38	0.24	0.33	0.47	0.45	0.41	0.35	0.36	0.43	0.46	0.50	0.46	0.33	0.42	0.44	0.48	0.44
	Ocpyro	0.85	1.2	1.2	0.79	0.83	0.74	0.97	1.0	0.72	0.98	1.3	0.47	0.52	0.74	0.67	0.70	0.77	0.89	0.74	0.83	0.74	0.71	0.81	0.74
	EC1	1.3	1.4	1.7	1.2	1.3	1.3	1.2	1.3	0.70	1.1	2.5	1.0	0.89	0.96	1.2	1.3	1.4	0.93	0.75	1.1	0.85	0.78	0.86	0.79
	EC2	0.23	0.99	0.69	0.61	0.60	0.58	0.64	0.62	0.42	0.59	0.49	0.64	0.61	0.66	0.31	0.49	0.36	0.81	0.76	0.35	0.91	0.71	0.85	0.74
	EC3	0.050	0.060	0.068	0.062	0.028	0.028		0.066	0.042	0.075	0.0075	0.081	0.076	0.044	0.020	0.036	0.026	0.016	0.019	0.076	0.019	0.017	0.019	0.017
	oc	3.1	2.8	4.2	3.2	3.5	2.9		3.7	2.4	3.1	3.9	2.1	2.1	2.8	2.6	3.0	3.2	3.1	2.7	2.5	2.5	2.4	2.8	2.7
	EC	0.69	1.2		1.1	1.1	1.2	0.91	0.97	0.45	0.79	1.7	1.2	1.1	0.92	0.87	1.2	1.0	0.86	0.79	0.71	1.0	0.77	0.89	0.80
	WSOC	2.2	2.5	2.3	2.2	-	-	-	1.6	1.1	1.2	1.2	-	-	2.4	-	2.5	-	-	-	-	-	-	2.4	-

※基本は14日間の期間平均値。ただし、欠測期間は該当部分のみ計算から除外。また、検出下限値未満の値については、検出下限値の1/2を用いて期間平均値を算出した。

	10 //12			<u> </u>														•	, , , , , , , , ,		,,,,,,	,			
	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	9.7	5.3	9.1	7.5	3.8	3.9	7.0	10.0	4.5	10.3	4.9	4.6	4.0	4.4	4.9	4.6	4.0	4.4	3.5	2.5	6.9	6.8	4.4	3.3
イオン成分	CI-	0.15	<0.022	< 0.016	< 0.016	< 0.046	< 0.046	0.051	< 0.096	<0.096	< 0.096	0.045	0.080	0.080	<0.081	0.050	0.057	0.030	<0.012	< 0.012	<0.0057	< 0.0082	<0.0082	<0.11	0.014
1.3 = 1,4,5	NO3-	0.32	0.098	0.25	0.11	0.12	0.12	0.11	<0.099	<0.099	<0.099	0.090	0.15	0.11	0.087	0.090	0.093	0.060	0.066	<0.031	<0.018	0.037	0.071	0.081	0.027
	SO42-	1.7	1.6		1.0	1.0	1.3	1.2	3.0	1.0	1.7	1.6	1.4	1.1	1.2	1.5	1.5	1.2	0.69	0.37	0.27	2.7	1.6	1.1	0.88
	3042																								
	Na'	0.29	0.11		0.066	0.069	0.11	0.11	0.25	0.13	0.19	0.16	0.21	0.13	0.14	0.27	0.17	0.15		<0.0063	0.011	0.21	0.11	0.11	0.024
	NH ₄ ⁺	0.34	0.50	0.31	0.30	0.36	0.44	0.25	0.73	0.23	0.25	0.39	0.37	0.24	0.32	0.15	0.37	0.29	0.14	0.062	0.081	0.85	0.53	0.38	0.27
	K ⁺	0.044	0.024	<0.03	< 0.03	0.015	0.023	0.030	0.027	0.011	0.011	0.0047	0.023	0.010	<0.12	0.11	0.020	0.12	0.21	0.19	0.015	0.030	0.11	0.086	<0.0086
	M-2+	0.049	0.0090	<0.015	<0.015	0.0035	0.0046	0.016	0.018	0.0059	0.021	<0.0079	0.026	0.015	0.016	0.030	0.019	0.020	<0.015	0.079	0.0021	0.017	0.012	0.0058	<0.0094
	IVIG																								
	Ca ^c '	0.11	<0.054	0.032	0.050	0.0065	0.0071	0.33	0.23	<0.044	0.15	0.019	0.070	0.040	0.047	0.040	0.026	0.040	<0.035	0.050	0.014	<0.067	< 0.067	<0.068	<0.0095
無機成分	Na	-	14	<21	85	84	76	130	130	110	290	170	190	140	130	220	200	160	55	<10	55	120	220	190	41
	Al	<38	<5.0	140	66	16	<2.5	190	68	<5.8	240	66	15	18	<43	<17	9.0	34	12	27	27	<4.8	<20	14	150
	Si	-	-	-	-	-	-	290	220	31	550	74	30	30	-	44	-	54	19	51	-	<14	<12	9.0	-
	K	_	12	32	52	36	<5.7	46	43	24	55	18	30	26	<33	23	23	33	25	<25	24	16	130	51	18
	Ca	-	<14	<170	<170	4.3	<2.1	300	220	16	430	35	20	20	<66	40	25	39	30	15	<27	51	39	74	<31
	Sc	<0.018	<0.10		<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	<0.023	<0.012	<0.02		<0.0092	0.0055	<0.025	<0.025	<0.0092	<14
	Ti	11	<1.7	ZZZ	ZZZ	1.4	0.79	20	12	1.9	26	6.6	1.7	1.3	5.4	2.2	1.8	4.1	0.70	1.6	<3.6	<1.7	<1.1	<0.41	<2.9
	V	<0.1	0.50	0.89	0.82	0.58	0.72	1.4	8.9	2.1	17	4.0	2.5	1.0	1.7	3.0	5.5	0.99	0.42	0.16	0.13	7.6	5.6	1.4	2.0
	0	<0.84	<0.41		<1.1	<0.12	<0.12	<0.72	1.4	< 0.99	<0.99	<1.8	0.60	0.70	1.7	<0.4	0.62	0.33		<0.52	<0.72	<1.4	<0.60	3.2	<0.45
	Ur M							5.1	5.4					1.2		<1.4				0.74		0.21		0.76	5.9
	IVIN	<0.52	0.93		2.8	1.6	0.57	190		<2.7	9.2	2.0	1.5 46		3.2		4.2	1.4	0.71		2.5	<7.0	5.8		
	Fe -	<17	<37		65	26	<4.3		200	5.0	280	92		38	110	44	38	35		16	30		53	<3.4	16
	Со	<0.62	<0.092		<0.23	<0.11	<0.11	0.11	0.080	<0.022	0.097	<0.26	0.060	<0.03	<0.43	<0.9	0.065	<0.026		0.014	0.016	0.015	0.061	0.012	
	Ni	<7.5	<3.5		<0.85	0.21	<0.19	0.58	2.2	0.60	4.0	1.1	0.70	0.30	1.2	<0.86	2.3	0.39		0.33	0.072	2.6	1.7	0.47	1.1
	Cu	<0.22	<0.57		2.0	2.5	2.9	2.5	<1.4	<1.4	<1.4	<0.88	2.2	2.1	52	<1.1	1.9	1.8		0.29	1.5	0.63	4.7	2.0	<1.3
	Zn	<15	2.9		13	7.3	1.3	8.3	22	3.5	6.6	5.1	4.6	5.4	<13	<1.7	3.9	5.1	9.6	<8.0	6.5	17	67	28	14
	As	<0.077	0.19	0.24	0.22	0.13	<0.097	0.11	0.12	0.043	0.19	<0.17	<0.2	<0.2	<0.7	<0.89	0.14	0.080	<0.013	<0.013	0.075	<0.027	0.35	0.052	<0.22
	Se	<0.02	< 0.33	0.33	0.55	< 0.20	<0.20	<0.10	<0.58	<0.58	<0.58	0.24	0.12	0.13	< 0.66	< 0.99	0.15	0.070	<0.022	<0.022	<0.058	< 0.065	0.53	0.067	<0.23
	Rb	-	<0.077	0.11	0.10	< 0.14	< 0.14	<0.15	0.12	<0.03	0.16	0.064	< 0.09	<0.09	< 0.77	<1.1	0.028	0.070	<0.014	< 0.014	0.055	<0.028	0.16	<0.014	0.031
	Мо	<0.12	<0.23	1.7	0.30	0.22	<0.077	0.080	0.093	<0.068	<0.068	0.57	0.17	0.070	< 0.34	<1.4	0.25	0.040	<0.12	< 0.12	0.070	< 0.014	0.70	<0.12	<3.5
	Sb	< 0.56	0.17	ZZZ	zzz	0.35	0.19	0.33	0.11	< 0.036	< 0.036	0.44	0.24	0.39	1.3	<6.6	0.16	0.23	0.20	0.022	0.29	0.083	2.2	0.065	< 0.40
	Cs	< 0.0034	<0.10	<0.035	<0.035	<0.079	<0.079	<0.0083	<0.012	<0.012	<0.012	<0.26	< 0.03	< 0.03	< 0.51	<9.4	< 0.014	<0.018	<0.0060	<0.0060	0.0061	< 0.012	<0.012	< 0.0060	< 0.0017
	Ba	<0.58	0.41	3.2	7.5	<2.3	<2.3	2.4	6.8	1.8	5.5	0.53	1.7	2.2	1.8	<10	3.8	1.5		0.61	1.0	0.33	2.6	4.3	0.88
	La	<0.019	<0.092		0.046	<0.038	<0.038	0.053	0.25	<0.0093	0.067	0.26	<0.05	< 0.05	<0.51	<12	<0.017	0.027		<0.011	0.0092	0.028	0.047	<0.012	
	Ce	0.10	<0.096	0.078	0.087	<0.018	<0.018	0.11	0.12	<0.01	0.12	<0.21	0.080	0.030	<0.44	<13	0.045	0.12	0.019	<0.012	<0.018	<0.092	<0.092	0.0032	0.011
	Sm	<0.0069	<0.12		0.0035	<0.035	<0.015	<0.013	<0.013	<0.013	0.014	<0.26	<0.04	<0.04	<0.33	<20	<0.014	<0.026		<0.012	0.0014	<0.0057	<0.0057	<0.012	< 0.0017
	Hf	<0.027	<0.12		<0.003	<0.020	<0.030	0.010	<0.16	<0.16	<0.16	<0.13	<0.07	<0.07	<0.48	<0.026	0.028	<0.020		<0.00092	0.0057	<0.0037	<0.0018	<0.012	0.31
	W	<0.027	<0.33	0.023	<0.023	<0.020	<0.020	<0.054	<0.16	<0.16	<0.16	<1.4	<0.07	<0.07	<0.48	<0.020	0.028	<0.03	<0.0032	<0.0032	0.0037	<0.0018	0.0018	0.013	<0.17
	Ta	-	<0.12	< 0.025	<0.084	<0.040	<0.040	<0.0022	<0.00	<0.00	0.038	<0.15	<0.04	<0.04	<0.14	<0.04	< 0.000	<0.04	<0.012	<0.028	- 0.0091	<0.023	<0.0015	<0.013	0.045
	Ti Ti																			<0.00014					
	In Di	<0.031	< 0.15		<0.02	<0.079	<0.079	<0.0082	<0.01	<0.01	0.012	<0.33	< 0.03	<0.03	< 0.37	<3.3	<0.0078	<0.025			0.0026	<0.018	<0.018	<0.00092	0.087
	Pb	<2.5	0.48		1.2	7.8	2.2	1.1	5.2	<0.87	1.6	0.47	0.70	0.70	0.70	<2.3	0.27	0.83	0.35	0.091	1.5	0.077	24	0.38	0.20
	その他(Be)	_	<0.28	-	-	-	-	-	-	-	_	-		-	-	-	-	-	-	-			-	-	-
	その他(Cd)	-	<0.13	-	-	-	-	0.021	-	-	-	-	-	-		-	-	-		-	0.023	<0.015	0.40	-	-
炭素成分	OC1	0.10	<0.085	0.30	0.17	0	0	<0.0040	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	<0.057	0	<0.044	0		<0.032	<0.012	<0.016	<0.053	<0.026	<0.055
	OC2	0.84	0.47		0.61	0.83	0.40	0.56	0.39	0.35	0.31	1.0	<0.9	<0.9	0.35	0.87	0.68	0.63	0.54	0.40	0.23	<0.32	<0.32	0.24	<0.12
	OC3	0.38	0.30	1.3	0.64	0.57	0.42	0.52	0.35	0.28	0.40	0.27	< 0.9	<0.9	0.25	0.33	0.39	0.31	0.48	0.28	0.46	< 0.31	0.54	0.27	0.34
	OC4	0.33	0.17		0.38	0.28	0.23	0.33	0.13	0.10	0.15	0.10	<0.9	<0.9	0.14	0.11	0.15	0.14	0.28	0.16	0.22	0.12	0.36	0.14	0.092
	Ocpyro	0.23	0.62	0.54	0.19	0.15	0.12	0.20	0.21	0.11	0.18	0.17	<0.03	<0.03	0.13	0.060	0.15	0.13	0.22	0.15	< 0.16	0.13	0.34	0.12	0.054
	EC1	0.36	0.55	0.89	0.40	0.20	0.14	0.30	0.29	0.084	0.24	0.25	0.19	0.17	0.15	0.13	0.20	0.18	0.19	0.13	0.24	0.21	0.46	0.18	0.089
	EC2	0.25	0.55	0.63	0.42	0.41	0.25	0.33	0.36	0.11	0.20	0.29	0.28	0.19	0.32	0.12	0.33	0.15	0.28	0.17	0.081	0.43	0.44	0.29	0.26
	EC3	<0.11	0.030		0.061	0.055	0.020	0.036	0.018	0.010	0.019	<0.023	<0.03	<0.03	0.014	0	<0.032	0.010		0.030	0.028	<0.048	<0.010	0.021	<0.016
	OC	1.9	1.6		2.0	1.8	1.2	1.6	1.1	0.84	1.0	1.5	<0.9	<0.9	0.87	1.4	1.4	1.2	1.5	0.99	0.91	0.25	1.2	0.77	0.49
	EC	0.38	0.51		0.69	0.52	0.29	0.47	0.46	0.094	0.28	0.37	0.49	0.36	0.35	0.19	0.38	0.21	0.25	0.18	0.35	0.51	0.56	0.37	0.30
	WSOC	1.3	1.7		0.83	-	-	-	< 0.55	<0.55	<0.55	1.1	-	-	0.48	-	0.76	-	1.2	0.10	-	-	-	0.76	
	11300	1.3	1.7	1.8	0.03				\0.55	\0.00	\0.00	1.1			0.40		0.70		1.2	0.34				0.70	

124 1	1/ /月2	ッロル・	O/712	4050	<u> </u>													(PM2.5	,灰系放	え分, イオ	ン成分	: μg/m	無機风:	分:ng/m	()
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	3.9	8.6	3.4	11.8	8.2	8.3	8.3	9.3	7.0	8.5	ZZZ	8.2	7.2	7.4	6.7	8.2	6.9	5.8	3.8	3.3	9.2	9.9	5.5	7.5
イオン成分	CI-	0.036	<0.022	< 0.016	<0.016	<0.046	<0.046	0.0069	< 0.096	< 0.096	< 0.096	ZZZ	0.040	0.019	<0.081	<0.01	0.014	<0.01	<0.012	<0.012	<0.0057	<0.0082	<0.0082	<0.11	0.0060
	NO3-	0.076	0.086	< 0.051	0.10	0.087	0.11	0.17	< 0.099	< 0.099	<0.099	ZZZ	0.26	0.21	0.090	0.11	0.42	0.060	0.042	0.036	0.076	0.057	0.082	0.061	0.14
	SO42-	0.079	1.6	0.35	1.9	1.5	1.5	1.1	3.3	1.6	2.7	ZZZ	1.6	1.0	1.3	1.7	2.0	1.0	0.79	0.52	0.42	2.0	3.0	0.84	1.6
	Na ⁺	<0.092	0.033	<0.0096	0.026	0.033	0.12	0.077	0.23	0.23	0.28	ZZZ	0.17	0.066	0.092	0.21	0.23	0.070	< 0.0063	< 0.0063	0.0095	0.17	0.25	<0.092	0.11
	NH ₄ ⁺	<0.013	0.58	0.16	0.59	0.64	0.51	0.33	0.87	0.34	0.70	zzz	0.43	0.33	0.42	0.40	0.63	0.28	0.22	0.18	0.16	0.65	1.0	0.33	0.50
	14114	<0.002	0.028	<0.03	<0.03	0.044	0.11	0.056	0.039	0.032	0.027		0.055	0.034	<0.12	0.090	0.057	0.090	0.17	0.14	0.016	0.050	0.067	0.047	0.051
	K 2±											ZZZ													
	Mg ²⁺	0.0060	<0.0049	<0.015		0.0020	0.0055	0.011	0.014	0.019	0.024	ZZZ	0.022	0.0090	0.010	0.030	0.029	0.010	0.084	0.088	0.0015	0.024	0.027	<0.0028	<0.0094
	Ca ²⁺	0.015	<0.054	<0.017	0.027	0.0087	0.019	0.12	0.050	<0.044	0.048	ZZZ	0.11	0.015	0.021	0.050	0.035	0.020	<0.035	<0.035	0.012	0.10	<0.067	<0.068	<0.0095
無機成分	Na	-	21	<21	38	34	52	92	180	250	190	ZZZ	210	110	97	88	93	84	36	<10	<16	260	380	68	110
	Al	150	38	<55	<55	9.9	14	56	28	6.4	<5.8	ZZZ	30	25	<43	<17	5.9		<7.4	16	9.8	31	28	32	40
	Si	-	-	-	-	-	-	83	56	16	33	ZZZ	30	40	-	21	-	37			-	<14	<12	7.0	-
	K	_	110	<8.5	53	13	25	69	46	41		ZZZ	70	62	56	38	29	59	52		10	82	62	64	36
	Ca	-	16	<170	<170	2.2	5.0	80	72	20	56	ZZZ	40	40	<66	23	11	23	<26	<14	<27	120	130	120	<31
	Sc	<0.018	<0.10	<0.012	<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	ZZZ	<0.03	<0.03	<0.26		<0.012				0.0025	<0.025	<0.025	<0.0092	<14
	Ti	12	2.6	ZZZ	ZZZ	0.94	1.9	6.3	3.7	0.77	3.5	ZZZ	2.0	2.0	16	1.7	1.1	4.1	<0.40	0.74	<3.6	<1.7	<1.1	<0.41	4.0
	V	10	0.41	0.21	1.2	0.54	2.7	3.3	14	6.2	30	ZZZ	10	1.1	1.2	3.0	14	1.0	0.72	0.30	0.090	14	18	1.5	2.5
	Cr	1.4	<0.41	<1.1	2.6	0.43	<0.12	0.96	1.9	< 0.99	< 0.99	ZZZ	1.0	1.0	1.3	0.97	0.87	1.0	<0.52	<0.52	<0.72	<1.4	2.6	5.5	<0.45
	Mn	5.0	2.1	0.69	4.8	3.2	5.1	6.4	4.9	<2.7	<2.7	ZZZ	6.4	4.5	6.1	3.0	5.2	5.9	1.2	0.40	3.1	4.5	3.1	1.3	4.8
	Fe	69	<37	<24	61	33	44	120	130	9.4	34	ZZZ	130	84	71	69	78	89	11	<3.9	28	36	34	<3.4	24
	Со	2.8	<0.092	0.26	<0.23	<0.11	<0.11	0.047	0.17		0.028	ZZZ	0.050	0.050	<0.43	<0.9	0.027		0.0071		0.016	0.040	0.045	0.0075	0.094
	Ni	<7.5	<3.5	<0.85	<0.85	<0.19	<0.19	1.3	4.2	1.9	8.3	ZZZ	3.2	0.70	<0.64	1.8	2.5	0.60	0.25	<0.18	0.12	5.0	5.2	0.51	1.4
	Cu	2.5	2.6	< 0.94	2.3	2.1	3.6	4.5	1.8	<1.4	<1.4	ZZZ	4.5	5.3	18	2.0	2.4		2.0	0.87	1.6	3.4	2.0	1.5	1.9
	Zn	27	24	<4		19	28	29	40	3.3	8.0	ZZZ	32	18	17	7.8	9.7		9.5		5.7	50	63	54	25
	As	0.28	0.27	0.21	0.57	0.30	0.32	0.30	0.28	0.14	0.22	ZZZ	0.30	0.20	<0.7	<0.89	0.30		0.067	<0.013	0.12	0.29	0.45	0.12	0.22
	Se	0.11	< 0.33	<0.19	0.73	<0.20	0.25	0.36	<0.58	< 0.58	<0.58	ZZZ	0.40	0.90	<0.66 <0.77	<0.99	0.36	0.54		<0.022	0.14	0.32	0.58	<0.025	<0.23
	Rb	-	0.082	<0.063	0.10	<0.14	<0.14	<0.15	0.16	0.058	0.043	ZZZ	0.19	0.12		<1.1	0.051	0.10	<0.014	<0.014	0.049	0.046	<0.028	0.029	0.11
	Mo Sh	0.65	0.26	0.83	0.78	0.57	0.77	0.66	1.6	<0.068	0.10	ZZZ	4.6	0.40	<0.34	<1.4	0.38	0.34	<0.12	<0.12	0.10	0.52	0.30	0.25	<3.5
	Sb O-	<0.56 0.019	0.57 <0.10	<0.035	<0.035	0.63 <0.079	0.47 <0.079	0.78	0.45	0.28 <0.012	0.097 <0.012	ZZZ	0.85 <0.03	0.78 <0.03	1.0 <0.51	<6.6 <9.4	< 0.014	0.80	<0.0060	0.18 <0.0060	0.74	0.67 <0.012	0.78 <0.012	0.22 <0.0060	0.64
	US D-	2.5	2.5	0.62	3.7	<2.3	2.5	4.5	2.8	1 4	0.48	ZZZ	4.6	5.0	5.0	<10	1 9	3.7	2.3	2.1	1.0038	2.4	2.1	1 4	8.1
	Ва	0.10	<0.092	<0.012		<0.038	<0.038	0.11	0.34	1.7	0.48	ZZZ	0.17	0.12	< 0.51	<12	0.028	0.14			<0.0073	0.051	0.042	<0.012	0.032
	La O	0.10	<0.092	<0.012	0.033	<0.038	0.038	0.11	0.34	0.0093	0.013	ZZZ	0.17	0.12	<0.44	<13	0.028	0.14	0.015	<0.011	<0.0073	<0.092	<0.042	0.012	0.032
	Sm	<0.0069	<0.12	0.0031	<0.0019	<0.018	< 0.035	<0.013	<0.013	<0.014	<0.014	zzz zzz	<0.04	<0.04	<0.44	<20	< 0.082		<0.023	<0.012	0.00081	<0.092	<0.092	<0.014	0.0038
	OIII	<0.003	<0.12	<0.0031	<0.0019	<0.033	<0.033	0.0068	<0.16	0.22	<0.16	ZZZ	<0.04	<0.04	<0.48	<0.026	<0.014	<0.026	<0.0092	<0.0092	0.00081	<0.0037	<0.0037	<0.012	0.0038
	W	0.027	<0.12	0.023		0.020	<0.020	0.0008	<0.16	<0.06	<0.16	ZZZ	0.30	0.090	<0.46	0.020	0.018	0.03	0.00092	<0.0092	0.0027	0.0018	0.046	<0.0010	0.083
	Ta	- 0.078	<0.12	<0.025		<0.028	<0.040	<0.0022	<0.00	<0.027	<0.027	ZZZ	<0.02	<0.090	<0.14	<0.018	< 0.03	<0.03	< 0.020	<0.0014	- 0.11	<0.0011	<0.046	<0.012	<0.039
	Th	< 0.031	<0.15	<0.023	<0.023	<0.020	<0.079	<0.0022	<0.027	<0.027	<0.027	ZZZ	<0.02	<0.02	<0.37	<3.3	<0.0078	<0.025	<0.00082	<0.00082	0.0011	<0.018	<0.018	<0.00092	0.039
	Ph	4.1	3.4	<0.55	1.7	2.9	5.7	3.1	7.4	<0.87	1.3	ZZZ	4.4	2.2	1.5	6.1	0.89	2.2	0.81	0.69	1.5	2.3	4.7	1.0	3.0
	その他(Be)	-	<0.28	-	- '	-	-	-		-	- 1.0	-	-	-	-	-	-	-	-	-	- 1.0	-	- '	-	-
	その他(Cd)	-	0.16	_	-	_	_	0.10	-	-	_	-	-	-	_	_	_	-	-	_	0.029	0.18	0.079	-	-
炭素成分	OC1	<0.088	<0.085	<0.13	0.21	0	0	0.029	<0.04	<0.04	<0.04	zzz	<0.9	<0.9	0.14	0.10	<0.044	0.060	<0.039	<0.032	<0.012	<0.016	<0.053	<0.026	<0.055
150,1015073	OC2	0.96	0.67	0.34	0.90	1.0	0.78	0.93	0.57	0.44	0.47	ZZZ	<0.9	<0.9	0.85	0.95	1.1	1.1	0.67	0.51	0.22	<0.32	<0.32	0.51	0.42
	OC3	0.68	0.67	0.46	0.98	1.1	1.0	0.98	0.58	0.38	0.39	ZZZ	<0.9	<0.9	0.77	0.66	0.80	0.86	0.75	0.54	0.46	0.60	0.47	0.60	0.55
	OC4	0.50	0.37	0.28	0.49	0.59	0.52	0.65	0.25	0.19	0.23	ZZZ	<0.9	<0.9	0.40	0.33	0.40		0.56	0.30	0.22	0.41	0.39	0.40	0.36
	Ocpyro	0.39	1.0	0.040	0.29	0.44	0.23	0.43	0.62	0.34	0.60	ZZZ	0.11	0.11	0.36	0.22	0.32	0.34	0.54	0.15	< 0.16	0.41	0.59	0.43	0.52
	EC1	0.96	0.99	0.19	0.73	0.60	0.85	0.91	0.92	0.32	0.62	ZZZ	0.91	0.59	0.63	0.70	0.90	0.75	0.52	0.25	0.33	0.66	0.57	0.43	0.51
	EC2	0.30	0.86	0.31	0.84	0.81	0.69	0.76	0.57	0.21	0.37	zzz	0.37	0.41	0.69	0.36	0.49	0.39	0.59	0.35	0.16	0.80	0.51	0.39	0.59
	EC3	<0.11	0.061	0.065	0.11	0.055	0.025	0.15	0.044	0.010	0.032	ZZZ	<0.03	<0.03	0.057	0.020	0.040		0.038	0.028	0.059	<0.048	<0.010	<0.016	< 0.016
	OC	2.6	2.7	1.1	2.9	3.1	2.5	3.0	2.0	1.4	1.7	zzz	1.8	1.4	2.5	2.3	2.6	2.7	2.5	1.5	0.90	1.4	1.5	1.9	1.8
	EC	0.87	0.91	0.53	1.4	1.0	1.3	1.4	0.91	0.20	0.42	ZZZ	1.2	0.89	1.0	0.86	1.1	0.82	0.61	0.48	0.55	1.1	0.49	0.39	0.58
	wsoc	1.2	2.1	0.69	2.2	-	-	-	0.98	1.0	<0.55	zzz	-	-	1.7	1	2.1	-	1.9	1.5	-	-	-	1.8	-

4

表4-1-	18 /月2	4ロか	5/月2	り日まり	Z.													(PM2.5	,灰素成	分,イオ	ン成分	: μg/m	無機成:	分:ng/m	)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	16.4	8.4	6.9	11.8	11.0	14.0	14.2	22.3	16.8	16.6	23.7	22.6	16.9	18.7	19.7	20.9	16.0	16.1	17.8	9.3	13.1	10.5	16.5	7.5
イオン成分	CI-	0.0051	<0.022	< 0.016	< 0.016	<0.046	<0.046	0.010	< 0.096	<0.096	< 0.096	<0.043	0.020	0.030	<0.081	0.010	0.013	<0.01	<0.012	< 0.012	0.015	<0.0082	<0.0082	<0.11	<0.0024
	NO3-	0.42	0.073	0.080	0.18	0.085	1.1	0.90	0.14	<0.099	<0.099	1.1	0.49	0.45	0.35	0.19	0.32	0.12	<0.031	0.032	0.092	0.059	0.067	0.12	0.054
	SO42-	3.0	1.8	1.5	2.2	3.0	3.2	3.0	5.1	3.2	4.3	5.0	2.3	2.2	3.9	5.3	6.3	3.0	4.0	6.5	2.0	3.3	2.2	3.2	2.4
	Na⁺	0.033	<0.024	< 0.0096	0.040	0.032	0.036	0.036	0.12	0.13	0.14	0.065	0.039	0.028	0.13	0.25	0.32	0.050	0.074	< 0.0063	0.061	0.21	0.29	0.14	0.056
	NH₄⁺	1.5	0.64	0.40	0.64	1.2	1.5	1.3	1.8	1.1	1.4	2.0	0.89	0.77	1.5	1.7	1.8	1.1	1.4	2.3	0.68	1.1	0.67	1.4	0.78
	K ⁺	0.033	0.077	<0.03	<0.03	0.044	0.046	0.064	0.11	0.090	0.067	0.16	0.047	0.058	0.15	0.18	0.15	0.14	0.16	0.20	0.082	0.098	0.12	0.10	0.035
	NA . 2+	0.0065	<0.0049		<0.015	0.0012	0.00098	0.0073	0.013	0.017	0.015	<0.0079	0.0070	0.0070	0.013	0.040	0.072	<0.01	0.087	0.092	0.017	0.027	0.035	0.011	<0.0094
	IVIg																								
4 1416 (A)	Car	0.021	<0.054	<0.017	0.025	0.0066	0.0082	0.13	0.059	<0.044	0.051	<0.012	0.017	0.030	0.043	0.13	0.12	0.030		<0.035	0.022	<0.067	<0.067	<0.068	<0.0095
無機成分	Na		130		60	19	38	40	150	150	200	85	120	81	77	210	190	54		24	70	300	450	240	30
	AI		29	<55 -	<55 -	5.3	20	77 100	29	6.6	43		40	80 70	<43	48	21	21		15	38 	19	<20 51	15	<17 -
	51							71	85 150	43 110	130		60 140	110	-	140	110	45		12 76		26 150		18	
	K O-		35 35		84 <170	11 <2.1	33 15	100			97		40	60	90	120 140	62	100 24		/b <14	92 <27		150		15
	Ca Ca	0.031	0.21			<0.029	<0.029	<0.18	73 <0.1	20 0.14	86 <0.1	<0.40	<0.03	<0.03	66 <0.26	<0.023	<0.012	<0.02		<0.0092	0.0039	55 <0.025	<33 <0.025	100 <0.0092	<31 <14
	ЭС Т:	<9.4	2.6			1.0	8.4	8.5	8.5	2.1	5.9	3.7	4.0	6.0	6.3	7.3	3.1	5.5		0.0092	10	<1.7	3.7	0.59	<2.9
	\/	2.0	1.9		222 0.98	0.73	1.2	1.5	19	10	32		11	1.7	19	38	40	1.1		1.2	0.65	14	11	11	8.9
	Cr	1.0	0.63		1.5	<0.12	0.62	0.87	5.2	<0.99	1.6		2.0	2.0	2.2	3.1	2.0	1.4		<0.52	0.80	<1.4	<0.60	3.0	<0.45
	Mn	2.0	2.7			2.0	3.7	5.3	11	<2.7	4.3		11	8.2	10	15	33	7.0		1.8	3.1	2.7	3.6	4.0	1.1
	Fe	24	45		65	26	58	120	250	34	86		180	110	160	370	520	88		1.0	31	32	41	28	8.6
	Co	1.7	<0.092	<0.23	<0.23	<0.11	0.12	0.050	0.19	<0.022	0.069	<0.26	0.10	0.20	<0.43	<0.9	0.11	<0.026		0.0083	0.023	0.035	0.065	0.037	<0.074
	Ni	7.7	<3.5		<0.85	0.46	0.60	0.68	5.1	3.1	8.2	3.5	3.8	2.8	5.9	11	11	0.79		0.40	0.36	4.3	3.3	3.5	2.2
	Cu	1.2	2.1		2.6	1.9	3.3	6.7	4.4	1.9	3.0		7.0	5.7	110	5.6	4.9	5.6	2.8	2.1	3.4	3.4	4.0	2.8	<1.3
	Zn	29	12		25	17		23	96	13	15		52	35	32	43	110	22		24	9.9	23	8.6	56	4.0
	As	0.29	<0.17	0.21	0.57	0.17	0.44	0.45	0.47	0.38	0.39	1.0	0.80	0.60	<0.7	<0.89	0.83	0.54	0.28	0.14	0.33	0.31	0.46	0.53	<0.22
	Se	0.055	< 0.33	0.26	0.61	<0.20	0.59	1.1	1.2	<0.58	0.80	1.5	1.7	1.0	0.96	1.7	2.1	1.9	0.35	0.12	0.22	0.49	0.64	0.57	<0.23
	Rb	-	<0.077	< 0.063	0.15	<0.14	<0.14	<0.15	0.28	0.13	0.16	0.31	0.27	0.23	<0.77	<1.1	0.48	0.16	0.064	<0.014	0.097	<0.028	0.054	0.12	0.033
	Мо	0.32	1.1		0.98	0.29	1.2	0.70	2.4	0.16	0.37	3.9	1.7	0.70	0.99	3.5	2.6	0.67	0.34	0.14	0.34	0.39	0.61	0.67	<3.5
	Sb	0.85	0.44		zzz	0.54	0.79	1.1	1.2	0.57	0.68	4.4	1.8	1.3	1.5	<6.6	0.96	1.5		0.46	0.88	0.99	1.0	0.77	<0.40
	Cs	0.0090	<0.10		<0.035	<0.079	<0.079	0.012	0.034	<0.012	<0.012		0.040	<0.03	<0.51	<9.4	0.10	0.023		<0.0060	0.0065	<0.012	<0.012	<0.0060	<0.0017
	Ва	0.77	2.1		3.5	<2.3	3.2	4.2	4.3	2.0	1.6	2.2	6.6	7.7	7.5	<10	2.5	5.1		4.7	8.3	5.9	4.8	3.9	1.2
	La	0.041	<0.092		0.053	<0.038	0.051	0.12	0.34	0.025	0.047	0.17	0.30	0.12	<0.51	<12		0.27		0.014	0.015	0.049	0.076	0.041	0.0083
	Ce	<0.057	0.33	<0.022	0.11	0.035	0.065	0.19	0.18	0.030	0.062	<0.21	0.30	0.25	<0.44	<13	0.14	0.60		0.022	0.023	<0.092	<0.092	0.051	0.016
	Sm	<0.0069	<0.12		0.0024	<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.26	<0.04	<0.04	<0.33	<20	<0.014	<0.026		<0.012	0.0010	< 0.0057	< 0.0057	<0.012	<0.0017
	Hf	0.22	<0.33		<0.023	<0.020	<0.020	0.0067	<0.16	0.65	< 0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.018	<0.05		<0.00092	0.0063	<0.0018	<0.0018	<0.0010	<0.016
	W T	0.26	<0.12 0.98	0.14 <0.025	0.12 <0.025	<0.040 <0.028	7.4 0.034	0.18 <0.0022	1.1 <0.027	0.17 <0.027	0.15 <0.027	<1.4 <0.15	0.30 <0.02	0.20 <0.02	0.15 <0.04	0.28 <0.018	0.27 <0.03	0.29 <0.03		<0.028 <0.0014	0.14	0.048	0.27 <0.0015	0.11 <0.0016	<0.17 <0.039
	TL	<0.031	<0.15		<0.023	<0.028	< 0.034	<0.0022	<0.027	<0.027	<0.027	<0.13	<0.02	<0.02	<0.04	<3.3	<0.03	<0.03		<0.0014	0.0027	<0.0011	<0.0013	<0.00092	<0.039
	Dh	<2.5	2.5		2.5	2.5	6.0	3.4	7.1	1.4	1.8	6.8	8.4	3.5	4.9	4.8	8.8	4.5		2.1	1.3	2.1	7.6	2.8	0.50
	その他(Be)	- \2.5	<0.28	- (0.55			- 0.0	- 3.4		- 1.4	- 1.0	- 0.0	- 0.4	- 3.5	-	- 4.0	- 0.0	- 4.5			- 1.3	- 2.1	7.0		-
	その他(Cd)		<0.28		_	_	_	0.11	_				_	_	_		_		_	_	0.036	0.12	0.15	_	_
炭素成分	OC1	0.16	<0.085	0.18	0.29	0	0	0.14	<0.04	<0.04	<0.04	< 0.039	<0.9	<0.9	0.25	0.16	<0.044	0.32	<0.039	<0.032	<0.012	<0.016	<0.053	<0.026	<0.055
12,50,73	OC2	1.2	0.65		1.1	1.1	0.96	1.1	1.5	1.2	1.1	1.9	1.3	0.90	1.8	1.8	1.7	2.0		1.1	0.46	0.37	<0.32	1.3	0.41
	OC3	1.1	0.71		1.3	1.0	0.86	0.94	1.2	1.1	0.98	0.92	1.0	1.2	1.3	1.1	1.2	1.3		0.75	0.80	0.57	0.74	1.2	0.53
	OC4	0.76	0.32		0.67	0.58	0.52	0.62	0.54	0.55	0.52	0.51	<0.9	<0.9	0.74	0.84	0.76	0.60		0.48	0.34	0.47	0.56	0.68	0.35
	Ocpyro	0.90	1.9		0.51	0.55	0.54	0.85	1.7	1.6	1.6	2.1	0.70	0.57	1.1	0.85	0.84	1.2		0.77	0.50	0.59	0.64	1.1	0.46
	EC1	1.6	1.0	0.52	1.1	0.94	0.89	1.1	3.2	1.8	2.0	4.1	2.1	1.3	2.1	2.3	2.5	1.9	1.3	0.77	0.82	0.88	0.71	1.2	0.44
	EC2	0.21	0.77	0.59	0.90	0.79	1.0	1.0	0.72	0.66	0.56	0.73	0.78	0.77	1.1	0.34	0.68	0.42	1.0	1.3	0.26	1.0	0.47	1.1	0.43
	EC3	<0.11	0.057	0.075	0.10	0.060	0.070	0.11	0.070	0.077	0.064	<0.023	0.050	0.070	0.11	0.020	<0.032	0.030	<0.029	0.039	0.067	<0.048	0.018	0.021	< 0.016
	OC	4.1	3.6	2.3	3.9	3.2	2.9	3.7	4.9	4.5	4.2	5.4	4.0	3.0	5.2	4.8	4.5	5.4	4.9	3.1	2.1	2.0	1.9	4.3	1.8
	EC	0.91	0.000091	0.85	1.6	1.2	1.4	1.4	2.3	0.94	1.0		2.2	1.6	2.2	1.8	2.3	1.2		1.3	0.65	1.3	0.56	1.2	0.41
	WSOC	3.1	2.4	1.2	2.1	-	-	-	3.3	3.1	1.8	3.2	-	-	4.0	-	3.5	-	4.1	3.5	-	-	-	3.0	-

衣4-1-	10 /772	OHW.	ワノカム	ᇬᇎ	-													(PM2.5	,灰茶风	が、イス	ン以分	: μg/m	無機)以	方:ng/m	)
	台体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市		相模原市	山梨県	山梨県	長野県	静岡県	静岡県		浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	40.4	23.7		26.9	23.0	27.0	26.4	20.5	16.1	15.1	25.6	27.6	27.4	25.0	22.4	25.2	24.1	19.8	14.8	15.9	9.6	7.4	22.6	11.8
イオン成分	CI-	0.018	<0.022		<0.016	<0.046	<0.046	0.017	<0.096	<0.096	<0.096	0.098	0.030	0.016	<0.081	<0.01	0.013	0.010		<0.012	0.011	<0.0082	<0.0082	<0.11	0.074
	NO3-	2.1	0.12		0.092	0.11	0.18	0.59	0.10	<0.099	0.13	0.54	0.65	0.21	0.11	0.17	0.47	0.11	0.057	0.055	0.080	0.045	0.085	0.096	0.35
	SO42-	11	6.2		5.2	5.4	6.5	6.0	5.2	3.9	3.9	6.9	4.9	5.8	5.7	6.1	7.4	5.4		2.8	2.7	2.4	1.7	4.9	2.7
	Na'	0.21	0.069		0.067	0.11	0.13	0.21	0.22	0.16	0.27	0.31	0.26	0.15	0.18	0.32	0.40	0.16	0.11	0.017	0.046	0.37	0.35	0.24	0.38
	NH ₄	4.6	2.4		1.7	1.9	2.4	1.9	1.8	1.2	1.2	2.8	1.6	1.9	1.9	2.3	2.3	2.1	1.5	1.0	0.93	0.68	0.43	1.9	0.71
	K ⁺	0.11	0.16	<0.03	0.24	0.15	0.18	0.51	0.098	0.077	0.063	0.16	0.13	0.36	0.20	0.20	0.16	0.19	0.14	0.18	0.11	0.057	0.074	0.41	0.16
	Mg ²⁺	0.020	0.012	<0.015	0.019	0.012	0.013	0.065	0.025	0.018	0.029	0.067	0.038	0.051	0.031	0.050	0.065	0.030	0.085	0.087	0.013	0.035	0.036	0.043	0.047
	Ca ²⁺	0.036	<0.054	0.020	0.045	0.014	0.020	0.23	0.067	< 0.044	0.049	0.086	0.040	0.030	0.044	0.070	0.13	0.030	<0.035	< 0.035	0.022	< 0.067	< 0.067	<0.068	0.034
無機成分	Na	-	62	<21	110	90	120	210	280	140	180	180	430	220	130	240	360	160	210	54	67	490	450	360	170
	Al	130	25	<55	68	22	22	150	20	<5.8	<5.8	17	50	80	<43	31	26	34	16	26	40	14	<20	39	20
	Si	-	-	-	-	-	-	170	100	8.4	110	68	60	60	-	66	-	52	13	12	-	18	<12	13	-
	K	-	170		400	91	110	500	130	110	100	150	210	390	180	140	140	160		100	140	73	86	590	56
	Ca	-	19		<170	3.3	7.1	200	94	22	100	11	60	50	<66	55	77	31		<14	30	<33	44	170	<31
	Sc	<0.018	<0.10		<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	<0.023	<0.012	<0.02		<0.0092	0.0063	<0.025	<0.025	<0.0092	<14
	Ti	15	<1.7		ZZZ	4.1	3.6	15	7.7	2.9	10		5.0	5.0	4.7	5.2	4.8	4.8		0.70	<3.6	<1.7	<1.1	1.7	<2.9
	V	11	2.7		6.3	12	8.2	17	22	8.8	35		30	5.7	6.4	16	48	4.5		1.5	1.2	13	6.4	9.8	6.3
	Gr	2.3	0.77 4.7		1.2 9.6	1.0	1.4	2.0 9.9	3.7 8.2	<0.99 <2.7	1.2	11	3.0	3.0	1.4	2.2	6.2	1.6 5.4		3.2	0.84	<1.4 1.2	< 0.60	6.4	<0.45
	Mn Fe	6.1 160	63		140	6.9 98	8.9 330	240	250	68	4.0 180	8.1 320	13 310	7.0 120	5.6 82	7.7 160	26 720	78		1.5 32	3.5 46	1.2	0.83	3.9	1.3 8.3
	Co	2.6	<0.092	<0.23	<0.23	< 0.11	<0.11	0.12	0.51	<0.022	0.036	<0.26	0.10	0.10	<0.43	<0.9	0.17	0.056		0.011	0.022	0.023	0.025	0.035	<0.074
	Ni	7.9	<3.5	<0.25	1.5	5.0	3.4	5.8	5.7	2.3	9.7	4.6	10	3.9	1.6	5.3	16	1.9		0.54	0.022	4.3	1.7	3.0	1.3
	Cu	4.5	3.8		7.6	6.5	6.6	15	3.0	<1.4	9.5	3.7	9.8	15	18	5.3	8.3	5.6		3.5	5.4	2.2	2.9	12	<1.3
	Zn	48	36		56	39	70	52	42	13	23	26	71	38	26	27	49	23		17	10	<5.7	41	49	9.9
	As	0.69	0.52		1.1	1.4	0.36	1.2	0.32	0.25	0.33	0.83	0.90	0.50	0.75	1.7	1.1	0.56		0.12	0.38	0.30	0.21	0.64	<0.22
	Se	0.22	1.1	0.32	1.6	1.5	0.78	1.5	0.73	<0.58	<0.58	2.5	1.9	1.3	1.4	<0.99	1.3	2.6	0.43	0.15	0.39	0.45	0.30	0.82	<0.23
	Rb	-	0.25	0.093	0.32	0.18	<0.14	0.31	0.20	0.072	0.055	0.52	0.40	0.30	<0.77	<1.1	0.27	0.17	0.064	0.027	0.14	<0.028	0.041	0.14	0.058
	Мо	2.2	0.60	<0.15	1.1	0.86	1.1	1.6	0.98	0.23	0.58	3.9	2.0	0.90	0.57	5.0	4.8	0.53	0.38	<0.12	0.26	0.56	0.31	0.82	<3.5
	Sb	2.5	1.1		zzz	1.3	0.66	4.6	0.68	0.24	0.21	2.0	2.4	3.3	1.4	<6.6	1.3	1.4		0.54	0.78	0.43	1.5		<0.40
	Cs	0.051	<0.10		<0.035	<0.079	<0.079	0.037	0.023	<0.012	<0.012	<0.26	0.050	<0.03	<0.51	<9.4	0.038	<0.018		<0.0060	0.012	<0.012	<0.012		0.0050
	Ba	3.8	7.5		14	6.1	12	36	3.8	0.87	2.5	5.2	15	27	10	<10	5.4	9.6		10	9.2	3.0	1.7	26	4.0
	La	0.33	<0.092		0.13	0.10	0.13	0.25	0.25	0.025	0.032	0.32	0.90	0.13	<0.51	<12	0.16	0.19		0.015	0.028	0.031	0.042	0.049	0.022
	Ce	0.57	<0.096	0.038	0.18	0.16	0.16 <0.035	0.35	0.11	0.017	0.028	<0.21	0.94	0.20	<0.44	<13	0.16	0.35		0.028	0.049	<0.092	<0.092 <0.0057	0.066 <0.012	0.038
	Sm	<0.0069	<0.12 <0.33	0.0059 <0.023	<0.023	<0.035 <0.020	<0.035	<0.013 0.010	<0.013 <0.16	<0.013 <0.16	<0.013	<0.26 <0.13	0.10 <0.07	<0.04 <0.07	<0.33 <0.48	<0.026	<0.014 <0.018	<0.026		<0.012	0.0017	<0.0057 0.0019	<0.0057	<0.012	0.0025 <0.016
	W/	0.027	0.18	<0.023	0.32	0.020	0.020	0.57	0.30	0.18	0.081	<1.4	0.80	0.40	0.45	1.0	0.70	0.36	0.0010	<0.0032	0.0007	0.0013	0.0018	0.22	0.19
	Та	-	<0.37		<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.04	<0.018	<0.03	<0.03		<0.0014	-	<0.0011	<0.0015	<0.0016	<0.039
	Th	< 0.031	<0.15		<0.02	<0.079	<0.079	<0.0082	<0.01	<0.01	<0.01	<0.33	<0.03	<0.03	<0.37	<3.3	<0.0078	<0.025		<0.00082	0.0034	<0.018	<0.018	<0.00092	0.0067
	Pb	8.8	6.5		6.4	13	11	10	4.9	1.8	5.9	7.5	12	5.6	2.6	<2.3	5.0	3.4		1.3	2.3	0.80	15		1.1
	その他(Be)	-	<0.28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.17	-	-	-	-	0.20	-	-	ı	-	-	-	-	-	-	-	-	-	0.067	0.030	0.23	-	-
炭素成分	OC1	0.25	<0.085	0.30	0.86	0.35	0.15	0.071	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	0.37	0.17	<0.044	0.60	<0.039	<0.032	<0.012	<0.016	< 0.053	<0.026	<0.055
	OC2	2.8	1.5		1.9	2.3	2.6	2.6	1.4	1.3	0.86	2.2	1.5	1.7	2.6	2.6	2.3	2.7		1.7	0.70	<0.32	<0.32	1.7	0.64
	OC3	1.6	1.2		1.9	2.2	1.9	1.8	1.0	1.0	0.75	1.0	1.1	1.6	1.8	1.3	1.6	1.7		1.5	1.6	0.44	0.47	1.5	0.85
	OC4	1.5	0.60		1.1	1.1	1.2	1.0	0.48	0.54	0.40	0.51	<0.9	1.0	0.93	0.85	0.90	0.87		0.88	0.53	0.36	0.40	0.90	0.60
	Ocpyro	1.9	2.7		1.6	1.5	1.7	1.8	1.8	1.6	1.3	2.7	1.1	1.2	1.9	1.5	1.2	2.0		1.1	1.2	0.50	0.37	1.5	0.67
	EC1	3.6	3.4		2.6	2.6	3.1	2.8	2.4	1.8	1.6	3.8	2.5	2.3	2.6	2.8	2.8	2.7		1.1	1.5	0.50	0.36	1.6	0.67
	EC2	<0.13 <0.11	1.3 0.051		0.71	0.55 0.050	0.74	0.64	0.63	0.55	0.48	0.60 0.034	0.44 <0.03	0.48	1.1 0.16	0.24	0.51	0.35		0.81	0.48	0.51 <0.048	0.29 <0.010	0.92 <0.016	0.50
	EC3 OC	8.1	6.0		7.4	7.5	7.6	7.3	4.7	0.062 4.4	3.3	6.4	5.0	6.0	7.6	6.4	6.0	0.020 7.9		0.021 5.2	4.0	1.3	1.2	5.6	0.024 2.8
	EC	1.8	2.1		1.8	1.7	2.2	1.7	1.3	0.81	0.85	1.7	1.9	1.6	2.0	1.6	2.1	1.1		0.83	0.91	0.51	0.28	1.0	0.52
	WSOC	6.2	5.3		5.6	- './	-	-	3.2	3.2	0.85		- 1.3	- 1.0	6.5	- 1.0	4.8	- 1.1	5.0	4.8	-	-	-	3.6	- 5.52

衣4-1-	20 /月2	ロロル	5/月2	/ロまり	<i>.</i>													(PM2.5	,灰素放	分,イオ	ン成分	: μg/m	無機以	分:ng/m	· )
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	24.8	20.9	zzz	25.6	28.0	25.0	30.5	32.8	25.5	32.8	21.2	35.3	27.9	26.8	31.3	35.2	28.6	20.5	23.5	16.8	13.2	5.7	16.1	8.5
イオン成分	CI-	0.0033	<0.022	< 0.016	<0.016	<0.046	<0.046	0.015	< 0.096	< 0.096	< 0.096	< 0.043	0.020	0.030	<0.081	0.020	0.012	0.010	<0.012	< 0.012	0.0093	<0.0082	<0.0082	<0.11	0.15
	NO3-	0.054	0.092	0.086	0.077	0.11	0.086	0.29	< 0.099	< 0.099	0.11	0.41	0.44	0.39	0.16	0.14	0.29	0.17	0.099	0.054	0.075	0.070	0.036	0.21	0.39
	SO42-	6.9	6.1	4.3	6.3	8.1	7.5	8.5	9.1	5.2	8.1	7.2	11	8.8	8.3	11	12	8.4	3.8	5.7	2.4	3.2	3.2	2.7	1.9
	Na ⁺	0.13	0.094	< 0.0096	0.11	0.19	0.12	0.14	0.13	0.13	0.16	0.12	0.24	0.27	0.23	0.33	0.30	0.30	0.12	0.065	0.048	0.41	0.38	0.27	0.36
	NH₄⁺	2.7	2.3	1.7	2.2	3.1	2.6	3.1	3.4	2.0	2.9	3.2	3.9	3.0	2.8	4.2	4.2	3.1	1.2	2.1	0.85	0.83	0.90	1.0	0.53
	14114	0.10	0.085		0.15	0.26	0.16	0.13	0.12	0.10	0.17	0.061	0.18	0.24	0.19	0.28	0.21	0.36		0.16	0.069	0.16	0.054	0.15	0.060
	K 2±																								
	Mg ²	0.019	0.011	<0.015	0.022	0.014	0.0087	0.024	0.016	<0.0038	0.025	0.039	0.034	0.047	0.037	0.050	0.050	0.050		0.091	0.011	0.057	0.044	0.031	0.038
	Ca ²⁺	0.020	<0.054	0.14	0.049	0.025	0.017	0.082	0.047	<0.044	0.076	0.041	0.040	0.050	0.051	0.050	0.062	0.040	0.11	0.043	0.022	< 0.067	< 0.067	<0.068	0.022
無機成分	Na	-	110	ZZZ	120	140	110	160	190	130	240	100	260	310	230	260	260	290	180	98	74	560	43	340	320
	Al	67	28	zzz	<55	27	18	55	29	14	83	7.0	40	40	<43	46	37	80		25	37	34	<20		24
	Si	-	-	-	-	-	-	76	48	30	150	14	60	50	-	58		56		16	-	<14	<12		-
	K	-	100		180	150	100	170	180	140	240	82	170	230	210	200	200	300		99	93	240	17		58
	Ca	-	21		<170	6.4	5.8	52	77	31	120	<10	40	50	<66	48	50	50		63	34	120	51		<31
	Sc	<0.018	1.3		<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	<0.023	<0.012	<0.02	<0.0092	<0.0092	0.0072	<0.025	<0.025	<0.0092	<14
	Ti	<9.4	1.9		zzz	2.1	2.6	5.8	7.7	6.2	12	2.7	3.0	3.0	4.1	5.2	3.6	6.1	1.1	1.7	5.3	<1.7	<1.1	0.62	<2.9
	V	6.5	3.4	ZZZ	5.3	7.6	5.1	8.9	24	14	37	11	13	9.9	12	19	24	6.9		3.7	1.2	16	4.8	10	4.6
	Cr	2.4	0.76		1.7	1.4	0.76	2.7	3.5	1.2	1.8		3.0	2.0	1.8	3.1	5.6	1.8		<0.52	0.88	7.9	<0.60	2.3	<0.45
	Mn	3.0	2.5		4.6	8.3	4.3	6.0	7.4	4.2	6.8	2.2	6.9	6.2	5.7	8.5	12	4.7		2.0	3.0	1.3	0.98	1.6	0.92
	Fe	81	51	ZZZ	99	140	83	160	200	120	230	58	200	130	130	230	430	100		25	50	19	12	10	13
	Co	0.99	<0.092	ZZZ	<0.23	0.23	<0.11	0.068	0.17	0.033	0.097	<0.26	0.10	0.080	<0.43	<0.9	0.11	0.067		0.019	0.020	0.036	<0.010		<0.074
	Ni	<7.5	<3.5		1.3	6.8	1.4	3.4	6.2	4.0	9.5	3.6	4.8	3.6	3.7	5.9		3.3		1.4	0.55	9.9	1.3		1.7
	Cu	3.5	2.2	ZZZ	3.7	7.1	4.7	5.5	4.3	3.4	5.5	1.7	15	7.4	23	5.4		8.0		2.8	5.0	6.8	<0.48		<1.3
	Zn	47	16		34	49	120	39	38	26	33		48	36	32	35	56	30		55	12	27	28		13
	As	0.44	0.37	ZZZ	0.51	0.70	0.30	0.58	0.44	0.43	0.62	0.47	0.70	0.60	<0.7	<0.89	0.85	0.47	0.42	0.28	0.60	0.39	0.13		<0.22
	Se	0.12	2.4		1.1	1.5	0.74	1.6	1.6	0.95	1.5	1.1	2.3	2.4	1.8	1.3	2.5	1.8		0.38	0.46	0.32	0.15		0.32
	Rb	-	0.20		0.22	0.14	<0.14	0.22	0.24	0.13	0.26	0.13	0.40	0.30	<0.77	<1.1	0.37	0.29		0.036	0.16	<0.028	<0.028	0.072	0.083
	Мо	1.1	0.86		0.93	2.0	1.4	1.3	2.0	1.4	1.2	0.89	1.6	1.3	1.3	1.8	5.1	0.71		0.26	0.27	1.2	0.095	0.46	<3.5
	Sb	1.3	0.98		ZZZ	1.5	1.1	1.4	0.88	0.56	0.97	2.3	1.5	1.5	1.4	<6.6	1.5	1.8		0.61	1.5	0.76	0.22	0.63	0.60
	Cs	0.022	<0.10			<0.079	<0.079	0.041	0.044	0.015	0.033	<0.26	0.060	<0.03	<0.51	<9.4	0.080	0.042		<0.0060	0.021	<0.012	<0.012		0.0075
	Ва	4.8	4.0			9.6	6.1	8.9	3.7	2.4	5.5	3.4	8.6	13	13	<10	9.5	13		4.1	5.4	11	0.68	6.9	5.1
	La	0.16	0.21			0.12	0.10	0.34	0.38	0.093	0.20	<0.13	0.80	0.20	<0.51	<12	0.36	0.22		0.034	0.031	0.058	0.014	0.043	0.033
	Ce	0.30	1.5		0.077	0.17	0.042	0.22	0.12	0.059	0.15	<0.21	0.24	0.17	<0.44	<13	0.23	0.27		0.048	0.057	<0.092	<0.092	0.043	0.043
	Sm	<0.0069	<0.12			<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.26	<0.04	<0.04	<0.33	<20	<0.014	<0.026		<0.012	0.0024	<0.0057	<0.0057	<0.012	0.0038
	Hf	0.036	<0.33	ZZZ	<0.023	<0.020	<0.020	0.0083	<0.16	<0.16	<0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.018	<0.05		<0.00092	0.012	<0.0018	<0.0018	0.0010	<0.016
	W	1.0	0.43	ZZZ	0.34	0.59	<0.040	0.48	1.1	0.34	0.37	<1.4	0.60	0.50	0.26	0.49	0.79	0.35		0.047	0.088	0.11	0.032	0.17	<0.17
	Та	-	0.87			<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.04	<0.018	<0.03	<0.03		<0.0014	-	<0.0011	<0.0015		<0.039
	Th	<0.031	<0.15		<0.02	<0.079	<0.079	<0.0082	<0.01	<0.01	<0.01	<0.33	<0.03	0.040	<0.37	<3.3	<0.0078	<0.025		<0.00082	0.0033	<0.018	<0.018		<0.0057
	Pb	6.3	3.7	ZZZ	3.9	25	7.8	7.0	8.9	4.3	6.1	2.6	7.9	5.2	4.8	6.7	9.7	4.3	2.3	1.9	2.8	2.3	0.83	2.2	3.2
	その他(Be)	-	<0.28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	<0.13		-	-	-	0.16	-	-	-	-	-	-	-	_	-	_	-	-	0.10	0.089	<0.015	-	-
炭素成分	OC1	0.18	<0.085	0.60	0.40	0.26	0.10	0.10	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	0.24	0.20	<0.044	0.29		<0.032	<0.012	<0.016	<0.053	<0.026	<0.055
	OC2	2.0	1.3		1.8	2.5	2.1	2.6	1.7	1.7	2.2	1.9	2.2	1.3	2.1	2.7	3.1	3.1		2.0	0.79	0.39	<0.32	1.5	0.44
	OC3	1.3	0.83		1.5	1.7	1.5	1.3	1.1	1.1	1.6	0.76	1.2	1.1	1.1	1.1	1.5	1.2	2.0	1.6	1.7	0.79	0.37	1.5	0.55
	OC4	1.2	0.46		1.1	1.3	0.94	0.94	0.48	0.55	0.69	0.34	1.2	<0.9	0.67	1.5		0.91		0.93	0.60	0.57	0.29	1.0	0.37
	Ocpyro	1.4	2.4		1.7	1.7	1.6	2.4	2.5	2.4	3.0	3.1	1.5	1.4	1.8	1.6		1.9		1.6	1.3	0.70	0.35		0.40
	EC1	1.9	2.6		2.4	2.7	2.7	3.2	3.5	2.9	4.2		2.7	2.2	2.0	2.8	3.9	3.0		1.7	1.4	0.83	0.34	1.2	0.36
	EC2	0.17	1.1		0.60	0.57	0.74	0.98	0.82	0.81	0.75	0.56	0.53	0.51	1.1	0.31	0.66	0.17		1.4	0.49	0.59	0.35	0.85	0.28
	EC3	<0.11	0.051		0.055	0.070	0.050	0.11	0.068	0.078	0.066	<0.023	0.040	<0.03	0.092	0.020	0.040	0		0.032	0.14	<0.048	<0.010		<0.016
	oc	6.1	5.0		6.5	7.5	6.2	7.3	5.8	5.8	7.5	6.1	6.0	5.0	5.9	7.1	8.1	7.4		6.1	4.4	2.5	1.0	5.2	1.8
	EC	0.67	1.4		1.4	1.6	1.9	1.9	1.9	1.4	2.0	0.26	1.8	1.4	1.4	1.5	2.2	1.3		1.5	0.73	0.72	0.34	0.88	0.24
	WSOC	5.2	5.2	ZZZ	5.0	-	-	-	5.3	5.0	5.3	3.5	-	-	5.5	-	7.2	-	6.1	6.3	-	-	-	5.2	-

衣4-1-	21 /712	1000	ロノガム	ᇬᇎ	<u>.</u>													(PM2.5	,灰茶放	が、イス	ン成分	: μg/m	無機成?	分:ng/m	)
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市		相模原市	山梨県	山梨県	長野県	静岡県	静岡県		浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	23.2	17.8		21.1	23.0	21.0	21.7	16.2	10.7	13.7	15.5	19.8	21.5	15.6	14.0	15.6	20.6		17.3	12.7	11.2	12.0	11.0	10.0
イオン成分	CI-	0.018	<0.022		<0.016	<0.046	<0.046	0.071	<0.096	<0.096	<0.096	<0.043	0.21	0.23	<0.081	0.020	<0.01	0.020		<0.012	0.010	<0.0082	<0.0082	<0.11	0.076
	NO3- SO42-	0.68	0.30 5.9	0.20	0.26	0.84 7.6	0.59	0.46 6.7	<0.099	<0.099	<0.099	0.12	0.27	0.28	0.12	0.090	0.11 5.5	0.35		0.085	0.13	0.055	0.037 4.5	0.36	0.40 3.4
	SU42-	7.8 0.30	0.25		5.4 0.24	0.22	7.0 0.23	0.26	4.5 0.27	4.1 0.28	4.8 0.37	4.7 0.28	5.1 0.30	6.3 0.38	4.6 0.33	4.6 0.51	0.44	5.7 0.41	3.4 0.22	3.9 0.14	0.050	4.4 0.60	0.065	0.38	
	Na ·																								0.45
	NH ₄	3.4	2.1		1.8	2.9	2.6	2.3	1.3	1.1	1.2		1.7	2.1	1.5	1.1	1.5	1.8		1.3	0.66	1.1	1.8		1.0
	K ⁺	0.049	0.057		0.095	0.12	0.091	0.10	0.066	0.059	0.046	0.056	0.067	0.13	<0.12	0.11	0.091	0.18		0.13	0.052	0.051	0.060	0.074	0.045
	Mg ²⁺	0.040	0.027	<0.015	0.032	0.015	0.016	0.036	0.032	0.033	0.050	0.044	0.035	0.051	0.035	0.070	0.068	0.050	0.099	0.090	0.0087	0.069	0.017	0.041	0.054
	Ca ²⁺	0.021	<0.054	0.036	0.041	0.016	0.018	0.10	0.062	< 0.044	0.092	0.027	0.040	0.040	0.049	0.090	0.079	0.050	<0.035	< 0.035	0.028	0.12	< 0.067	<0.068	0.042
無機成分	Na	1	280	<21	270	140	190	270	230	200	500	300	520	480	280	400	400	400	280	180	85	770	110	670	240
	Al	62	23	78	67	23	11	54	<5.8	<5.8	130	17	26	50	<43	29	24	37	<7.4	16	43	31	<20	<7.7	<17
	Si	-	-	-	-	-	-	88	66	8.4	230	18	50	40	-	64	-	58	<12	24	-	21	21		-
	K	-	75			130	57	110	97	71	70	96	100	140	75	83	70	150		63	78	53	100	95	18
	Ca	-	27			4.9	6.9	60	100	24	160		50	50	86	88	58	48		<14	41	<33	150		<31
	Sc	<0.018	0.11		<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	0.16		<0.03	<0.03	<0.26	<0.023	<0.012	<0.02		<0.0092	0.0073	<0.025	<0.025		<14
	Ti	<9.4	5.0			2.0	2.3	5.8	6.1	1.4	10		3.0	3.0	3.0	3.7	3.2	4.5		1.2	<3.6	1.9	1.3		<2.9
	V	7.8	5.3			6.3	5.5	8.7	12	9.2	24		15	7.6	6.1	9.7	18	6.9		2.6	0.96	13	3.9		3.5
	Cr	1.7	<0.41			1.1	0.65	1.4	1.2	<0.99	< 0.99	2.2	1.0	2.0	< 0.67	2.2	2.9	1.2		<0.52	<0.72	12	< 0.60	2.1	< 0.45
	Mn F-	1.6 <17	2.1 42			4.2 83	3.6	5.8	5.3 140	<2.7	4.0 140		6.6 160	5.8 110	4.6 85	5.0 130	8.3 170	5.5 110		1.4 19	3.7 47	1.3	7.1 73		2.7
	Fe	<0.62	<0.092	0.39		<0.11	65 <0.11	130 0.051	0.18	<0.022	0.073	<0.26	0.060	0.050	<0.43	<0.9	0.059	0.040		0.017	0.017	0.031	0.035		11 <0.074
	Ni.	<7.5	<3.5		1.9	2.7	1.9	3.0	3.3	2.4	5.6	2.5	5.0	2.6	1.2	3.7	6.5	2.5		0.017	0.017	10	1.3		1.1
	Cu	1.3	1.8			6.1	2.9	3.9	1.5	<1.4	<1.4	1.7	3.4	4.9	33	4.1	3.0	5.0		1.5	3.4	2.0	4.3		<1.3
	7n	<1.5	9.5		41	42	44	26	210	6.1	6.6		42	28	18	14	26	32		22	9.9	<5.7	7.9		8.6
	As	0.84	0.41		0.44	0.58	0.30	0.52	0.19	0.12	0.29	0.52	0.70	0.40	<0.7	<0.89	0.39	0.42		0.15	0.37	0.20	1.2		<0.22
	Se	0.076	2.0	0.55	0.88	1.2	0.45	1.2	<0.58	<0.58	<0.58	1.2	1.2	1.3	1.1	< 0.99	0.82	0.63	0.18	0.25	0.33	0.25	1.0		<0.23
	Rb	-	0.13	0.15	0.27	<0.14	<0.14	0.20	0.082	0.051	0.15	0.28	0.20	0.29	<0.77	<1.1	0.14	0.22	0.026	0.020	0.13	<0.028	0.14	0.053	0.061
	Мо	0.22	0.35	0.22	0.70	1.4	0.87	0.94	0.24	0.54	0.31	1.0	1.3	0.70	<0.34	<1.4	1.1	0.77	0.14	<0.12	0.32	1.2	0.59	0.28	<3.5
	Sb	< 0.56	0.51	ZZZ	ZZZ	1.4	1.8	0.94	0.18	0.095	0.17	1.5	0.75	1.7	0.86	<6.6	0.62	2.0	2.1	1.5	0.65	0.31	0.87	0.38	<0.40
	Cs	<0.0034	<0.10		<0.035	<0.079	<0.079	0.028	<0.012	<0.012	<0.012	<0.26	<0.03	<0.03	<0.51	<9.4	0.019	0.025		<0.0060	0.013	<0.012	<0.012		0.0025
	Ва	0.93	3.0		7.6	7.9	2.4	6.1	1.1	0.71	1.5	2.6	4.5	7.1	4.2	<10	3.2	7.7		2.2	3.1	1.8	3.9	2.9	2.1
	La	0.028	<0.092		0.11	0.12	0.042	0.16	0.097	0.0094	0.089	0.21	0.20	0.20	<0.51	<12	0.23	0.15		0.018	0.034	0.022	0.048		0.023
	Ce	<0.057	<0.096	0.070	0.11	0.098	<0.018	0.14	0.031	<0.01	0.080	<0.21	0.17	0.20	<0.44	<13	0.067	0.16		0.027	0.056	<0.092	<0.092	0.038	0.026
	Sm	<0.0069	<0.12			<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.26	<0.04	<0.04 <0.07	<0.33	<20	<0.014	<0.026		<0.012	0.0016	<0.0057	<0.0057	<0.012	<0.0017
	HT	<0.027 0.087	<0.33 0.93	<0.023 0.086	<0.023 0.33	<0.020 0.49	<0.020 <0.040	0.0072 0.35	<0.16 <0.06	<0.16 <0.06	0.57 <0.06	<0.13 <1.4	<0.07 0.30	0.40	<0.48 <0.14	<0.026 0.17	<0.018 0.24	<0.05 0.36		<0.00092 0.032	0.0064	<0.0018 0.045	<0.0018 <0.025	0.15	<0.016 <0.17
	Ta	- 0.067	<0.37		<0.025	<0.028	<0.040	0.0028	<0.027	<0.027	<0.00	<0.15	<0.02	<0.02	<0.14	<0.018	<0.03	<0.03		<0.0014	- 0.000	<0.0011	<0.025		<0.039
	Th	<0.031	<0.15		<0.023	<0.028	<0.028	<0.0028	<0.027	<0.027	<0.027	<0.13	<0.02	<0.02	<0.04	<3.3	<0.03	<0.025		<0.0014	0.0034	<0.0011	<0.0013		<0.0057
	Ph	<2.5	2.6		4.3	11	5.7	5.5	5.2	2.1	2.0	4.5	5.6	5.0	2.7	6.9	4.4	5.6		1.8	2.1	0.98	5.7	1.4	0.67
	その他(Be)	-	<0.28	-		- '	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	その他(Cd)	-	<0.13	-	-	-	-	0.11	-	-	-	-	-	-	-	-	-	-	-	-	0.069	0.66	0.20	- 1	-
炭素成分	OC1	0.14	<0.085	0.50	0.28	0.13	0	0.066	<0.04	<0.04	<0.04	< 0.039	<0.9	<0.9	0.10	0.090	<0.044	0.18	< 0.039	< 0.032	<0.012	< 0.016	< 0.053	<0.026	< 0.055
	OC2	1.5	0.99	1.2	1.3	1.6	1.2	1.9	0.71	0.50	0.42	1.8	1.1	1.0	1.4	0.88	1.5	2.2	1.4	1.7	0.61	< 0.32	0.47	0.84	0.52
	OC3	0.66	0.71	1.2	1.2	1.2	0.97	1.1	0.62	0.38	0.31	0.73	<0.9	0.90	0.85	0.61	0.93	1.1	1.2	1.4	1.3	< 0.31	0.48	0.61	0.34
	OC4	0.75	0.36	0.64	0.72	0.79	0.62	0.74	0.31	0.22	0.22	0.33	<0.9	< 0.9	0.52	0.26	0.50	0.64	0.81	0.83	0.49	0.20	0.38	0.45	0.25
	Ocpyro	1.1	1.8		1.3	1.3	1.1	1.6	1.0	0.61	0.68	1.4	0.82	0.88	0.97	0.60	0.86	1.3		1.2	0.71	0.32	0.60	0.63	0.36
	EC1	1.4	2.0		2.0	2.1	1.8	2.1	1.2	0.55	0.56	2.2	1.5	1.6	1.3	1.1	1.6	2.2		1.2	1.2	0.43	0.59	0.68	0.35
	EC2	0.20	0.96		0.81	0.81	0.75	0.94	0.63	0.35	0.39	0.51	0.69	0.57	0.69	0.23	0.56	0.26		1.0	0.41	0.85	0.71		0.35
	EC3	<0.11	0.052		0.10	0.050	0.050	0.081	0.074	0.035	0.029	<0.023	0.10	<0.03	0.065	0	0.062	0		0.024	0.11	<0.048	<0.010		0.020
	00	4.2	3.9		4.8	5.0	3.9	5.4	2.6	1.7	1.6	4.3	3.0	3.0	3.8	2.4	3.8	5.4		5.1	3.1	0.52	1.9	2.5	1.5
	EC	0.53 3.3	1.2		1.6 3.6	1.7	1.5	1.5	0.90	0.33	0.30	1.3	1.5	1.3	1.1 3.3	0.73	1.4	1.2	0.97 3.4	1.0 5.0	1.0	0.96	0.70	0.56	0.36
	WSOC	3.3	3.6	4.2	3.6	-	-	- 1	1./	1.2	0.68	2.2	-	-	3.3	_	2.8	-	3.4	5.0	-	-	1	1.9	-

20.1		· • • • •	2,,,,																			,			
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	27.9	26.9	16.6	23.2	26.0	25.0	26.5	23.7	15.0	24.3	21.5	27.4	29.2	26.3	26.2	23.9	28.9	22.2	26.8	12.3	26.3	22.0	23.0	15.2
イオン成分	CI-	0.0052	<0.022	< 0.016	< 0.016	<0.046	< 0.046	0.0072	< 0.096	< 0.096	< 0.096	< 0.043	0.12	0.20	<0.081	0.010	< 0.01	0.010	<0.012	<0.012	0.010	<0.0082	<0.0082	< 0.11	0.0054
	NO3-	0.19	0.26	0.11	0.18	0.17	0.11	0.16	<0.099	<0.099	0.10	0.15	0.17	0.21	0.17	0.10	0.088	0.36	0.084	0.16	0.081	0.069	0.066	0.072	0.072
	SO42-	9.5	8.7	2.2	6.2	9.3	9.2	9.0	9.1	4.6	8.3	9.0	6.1	6.1	9.5	11	9.8	9.6	6.2	8.9	3.9	7.4	8.0	6.0	3.5
	Na ⁺	0.18	0.14	<0.0096	0.070	0.090	0.15	0.14	0.18	0.12	0.19	0.30	0.15	0.063	0.23	0.40	0.31	0.25	0.082	0.058	0.048	0.23	0.067	0.23	0.083
		3.8	3.2	0.80	2.2	3.3	3.3	3.2	3.3	1.7	2.9	3.4	2.2	2.3	3.3	4.0	3.3	3.8	2.2	3.3	1.4	2.6	3.0	2.4	1.3
	NH ₄ ⁺																								
	ΚŤ	0.078	0.054	<0.03	0.033	0.078	0.099	0.086	0.12	0.047	0.091	0.039	0.072	0.065	<0.12	0.16	0.12	0.15	0.10	0.13	0.039	0.067	0.087	0.094	0.053
	Mg ²⁺	0.022	0.012	<0.015	<0.015	0.0058	0.0071	0.019	0.021	0.0095	0.024	0.029	0.019	0.0090	0.027	0.050	0.051	0.030	0.088	0.087	0.0084	0.038	0.018	0.020	<0.0094
	Ca ²⁺	0.023	< 0.054	0.020	0.037	0.014	0.018	0.080	0.057	< 0.044	0.11	0.047	0.030	0.030	0.050	0.14	0.068	0.030	0.044	0.043	0.019	0.13	0.069	<0.068	0.078
無機成分	Na	-	140	<21	88	180	77	140	270	180	270	180	300	280	240	320	270	250	120	86	74	350	180	320	13
// (M. (M. / M. / )	ΔΙ	<38	29	<55	<55	14	<2.5	61	34	17	25	13	29	40	<43	49	28	35	7.9	<7.4	29	31	26	18	<17
	C:	-			-	- 17	-	100	71	8.4	160	12	60	50	-	110		55	<12	11		56	41	27	-
	V	_	77	37	77	65	36	100	150	66	130	74	120	120	96	100	86		60	59	57	120	120	120	<11
	N .			<170	<170	4.0	<2.1	77	67		180				140			44				200			
	Ca		34			<0.029				20		<10	30	50		130 <0.023	59		38	<14	51		<33	230	<31
	Sc	<0.018	<0.10	<0.012	<0.012		<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26		<0.012			<0.0092	0.0051	<0.025	<0.025		<14
	11	<9.4	2.7	ZZZ	ZZZ	1.6	0.95	8.0	5.2	< 0.67	8.4	2.3	2.0	3.0	4.7	4.6	3.0	4.9	0.56	0.89	<3.6	5.2	4.2	1.0	<2.9
	V	6.6	4.2	1.1	2.8	5.6	2.9	5.4	9.5	8.5	30	7.6	7.0	14	15	45	18	10	2.5	3.0	2.2	24	19	7.8	2.3
	Cr	<0.84	0.53	<1.1	1.5	0.69	<0.12	1.5	1.7	< 0.99	1.3	<1.8	2.0	2.0	1.3	1.8	1.6	1.5	0.55	<0.52	0.97	<1.4	< 0.60	1.2	<0.45
	Mn	3.7	3.2	2.6	5.6	4.2	2.5	5.4	9.2	<2.7	10	3.0	9.4	9.0	8.8	9.7	9.1	8.8	2.2	2.5	5.4	5.2	8.3	3.7	0.72
	Fe	34		40	76	73	34	120	180	47	300	74	110	190	210	240	160	160	28	29	44	110	110	36	5.3
	Со	1.8		<0.23	<0.23	< 0.11	<0.11	0.055	0.052	0.024	0.095	<0.26	0.060	0.070	<0.43	<0.9	0.072		0.016	0.018	0.028	0.064	0.072	0.043	< 0.074
	Ni	<7.5	<3.5	<0.85	0.96	2.1	0.40	2.2	3.0	2.6	6.5	2.6	2.6	4.4	4.4		6.2		0.93	1.0	0.88	7.5	5.4	2.5	0.31
	Cu	2.5	3.0	1.1	2.9	3.7	2.7	4.4	4.3	<1.4	2.3	2.3	4.7	5.0	52	4.3	3.1	4.5	2.0	1.7	3.8	3.8	4.6	2.6	<1.3
	Zn	32	24	8.7	24	43	29	37	35	12	27	17	37	41	38	32	32	41	21	26	12	64	55	74	3.0
	As	1.4	1.4	0.49	1.0	0.25	0.46	1.1	0.86	0.33	0.72	1.2	1.5	1.2	1.2	<0.89	1.1	1.0	0.33	0.46	0.48	0.58	1.8	0.57	0.34
	Se	0.16	1.8	0.48	0.84	0.47	0.29	1.2	0.73	<0.58	1.2	1.2	1.3	1.7	1.7	< 0.99	1.2	1.2	0.35	0.58	0.45	1.1	2.0	0.85	0.56
	Rb	-	0.17	0.11	0.15	< 0.14	<0.14	0.19	0.30	0.098	0.33	0.16	0.24	0.30	<0.77	<1.1	0.27	0.25	0.037	0.055	0.13	0.094	0.25	0.12	0.041
	Мо	0.67	0.33	0.20	0.48	0.97	0.70	0.88	0.73	0.41	0.39	0.72	0.80	1.0	0.58	<1.4	0.71	0.83	0.20	0.26	0.41	0.51	0.88	0.49	<3.5
	Sb	<0.56	0.98	ZZZ	ZZZ	0.75	0.40	1.3	1.1	0.33	0.43	2.1	1.7	1.3	1.4	<6.6	0.99	1.4	0.81	0.68	0.89	1.5	1.8	0.90	<0.40
	Cs	0.0099	<0.10	<0.035	< 0.035	<0.079	<0.079	0.032	0.037	<0.012	0.051	<0.26	<0.03	0.030	<0.51	<9.4	0.039		<0.0060	<0.0060	0.013	<0.012	<0.012		0.0038
	Ra	1.5	2.4	2.0	5.2	2.8	<2.3	3.9	2.8	0.58	1.8	2.3	4.0	5.5	5.8	<10	2.6		1.2	2.1	2.4	4.8	4.9	3.5	0.64
	l a	0.057	<0.092	0.021	0.065	0.068	<0.038	0.21	0.30	0.080	0.10	<0.13	0.20	0.40	<0.51	<12	0.18	0.29	0.47	0.037	0.031	0.14	0.11	0.061	0.0096
	Co	<0.057	<0.096	0.036	0.068	0.11	<0.018	0.17	0.48	0.020	0.083	<0.10	0.13	0.30	<0.44	<13	0.13	0.27	0.042	0.037	0.058	0.19	0.17	0.076	0.019
	Sm	<0.0069	<0.030	<0.0019	0.0044	<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.26	<0.04	<0.04	<0.33	<20	<0.014		<0.012	<0.012	0.0014	<0.0057	<0.0057	<0.012	<0.0017
	OIII	<0.0003	<0.12	<0.023	<0.023	<0.033	<0.033	0.0067	<0.16	<0.013	<0.013	<0.20	<0.04	<0.04	<0.48	<0.026	<0.014	<0.020	0.0012	<0.0092	0.0014	0.0044	<0.0037	<0.012	<0.0017
	III	0.027		0.023	0.023	0.020	<0.020	0.0007	0.18	0.10	0.16	<1.4	0.30	0.30	<0.46	0.020	0.23	0.03	0.0012	0.042		0.0044	0.0018	0.0010	<0.010
	VV T-	- 0.14	0.48 <0.37	<0.025	<0.025	<0.028	<0.040	<0.0022	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.14	<0.018	< 0.03	<0.03	<0.008	< 0.042	0.14	<0.0011	<0.0015	<0.0016	<0.17
	ı a																								
	I h	<0.031	<0.15	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.01	<0.01	<0.01	<0.33	<0.03	<0.03	<0.37	<3.3	<0.0078		<0.00082	<0.00082	0.0046	<0.018	<0.018	<0.00092	<0.0057
	Pb	6.1	5.4	1.6	4.1	7.5	6.0	5.8	5.1	2.4	7.2	5.2	8.5	8.7	7.3	7.1	6.3	6.7	2.0	3.7	2.8	3.9	9.7	3.1	0.52
	その他(Be)	_	<0.28	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		-	-	-	-
	その他(Cd)	-	0.26		-	-	-	0.24	-	-	-	-	-	-	-	-		-		-	0.10	0.14	0.25	-	-
炭素成分	OC1	0.17	<0.085	0.17	0.37	0	0	0.066	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	0.16	0.14	<0.044	0.50	<0.039	0.036	<0.012	<0.016	<0.053	<0.026	<0.055
	OC2	1.8	1.2	0.77	1.7	1.8	1.6	2.0	0.97	0.68	0.90	1.4	1.1	1.0	1.6	1.5	1.9	2.1	1.5	1.7	0.47	1.1	0.59	1.6	1.2
	OC3	0.83	0.75	0.73	1.3	1.1	1.0	0.96	0.75	0.43	0.66	0.59	<0.9	<0.9	0.72	0.62	0.95	0.93	1.1	1.1	0.57	1.0	0.61	1.1	0.83
	OC4	1.0	0.37	0.51	0.71	0.79	0.64	0.73	0.33	0.22	0.34	0.25	< 0.9	<0.9	0.48	0.57	0.59	0.89	0.76	0.75	0.25	0.75	0.48	0.81	0.57
	Ocpyro	1.3	2.4	0.59	1.4	1.4	1.4	1.9	1.5	0.99	1.5	1.3	1.1	0.96	1.1	1.1	1.2	1.7	1.2	1.2	0.63	1.2	0.81	1.5	0.90
	EC1	2.1	2.6	0.74	1.9	1.9	1.7	2.3	1.9	0.90	1.9	2.3	1.8	1.3	1.6	2.5	2.4	3.0	1.2	1.2	0.90	1.4	0.86	1.6	0.92
	EC2	0.17	1.4	1.1	1.4	1.1	1.2	1.2	0.80	0.51	0.76	0.49	0.81	0.77	1.2	0.33	0.58	0.28	1.7	1.9	0.40	1.7	1.1	1.3	0.88
	EC3	<0.11	0.046	0.085	0.10	0.065	0.055	0.12	0.073	0.039	0.088	<0.023	0.040	0.080	0.10	0.010	0.054	0.010	0.057	0.045	0.086	<0.048	<0.010	0.041	0.018
	ос	5.1	4.7	2.8	5.5	5.1	4.6	5.7	3.6	2.3	3.4	3.5	3.0	3.0	4.1	3.9	4.6	6.1	4.6	4.8	1.9	4.1	2.5	5.0	3.5
	EC	0.97	1.6	1.3	2.0	1.7	1.6	1.7	1.3	0.46	1.2	1.5	1.6	1.2	1.8	1.7	1.8	1.6	1.8	1.9	0.76	1.9	1.2	1.4	0.92
	WSOC	4.8		2.0			-	-	2.4	1.6	2.1	2.1	-	-	4.8		4.2		4.6	5.7	-	-	-	4.7	-
		7.0	J.1	0	0					0					0		7.2		0	0.7					

衣4-1-	23 / <del>   </del> 2	ינו ם פ	<b>ワ/</b> 用り	ᄓᄆᇎᇈ	-													(PM2.5	,灰茶放	が、イス	ン以分	: μg/m	無機以	万:ng/m	)
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	19.6	16.5	17.3	19.1	20.0	18.0	19.7	19.3	14.1	21.3	18.0	21.0	26.9	22.5	19.8	21.0	25.8	28.3	27.8	17.5	31.3	29.1	27.8	26.2
イオン成分	CI-	0.0022	<0.022	<0.016	<0.016	<0.046	<0.046	0.0081	<0.096	<0.096	< 0.096	<0.043	0.020	0.040	<0.081	<0.01	<0.01	0.010		<0.012	0.028	<0.0082	0.0091	<0.11	0.0048
	NO3-	0.043	0.14	0.084	<0.051	0.11	0.074	0.22	<0.099	<0.099	<0.099	0.085	0.17	0.54	0.15	0.050	0.094	0.20		0.078	0.18	0.029	0.12	0.053	0.20
	SO42-	6.4	5.0	4.7	5.2	7.3	6.2	5.9	6.4	5.3	8.3	6.8	3.2	11	9.3	9.3	9.0	12		11	7.2	13	11	8.8	7.8
	Na [⁺]	0.16	0.081	0.063	0.095	0.12	0.10	0.14	0.13	0.13	0.12	0.11	0.083	0.18	0.13	0.27	0.23	0.22	0.12	0.082	0.051	0.18	0.080	0.14	0.098
	NH ₄ ⁺	2.5	1.9	1.7	1.7	2.7	2.2	2.1	2.3	2.0	2.9	2.6	1.0	3.8	3.1	3.5	3.1	4.4	3.5	4.0	2.5	5.0	4.4	3.7	3.2
	K ⁺	0.078	0.046	0.057	0.034	0.092	0.079	0.095	0.089	0.074	0.077	0.047	0.067	0.11	<0.12	0.12	0.083	0.14	0.13	0.13	0.035	0.051	0.11	0.10	0.10
	Mg ²⁺	0.018	0.0074	< 0.015	0.016	0.0075	0.0066	0.016	0.018	0.013	0.015	0.025	0.013	0.022	0.017	0.040	0.031	0.020	0.090	0.083	0.0081	0.031	0.022	0.0076	<0.0094
	Ca ²⁺	0.015	<0.054	0.029	0.10	0.016	0.016	0.060	0.068	<0.044	0.10	0.025	0.030	0.040	0.042	0.080	0.051	0.020	0.047	< 0.035	0.025	0.086	0.076	<0.068	0.040
無機成分	Na	-	110	64	87	78	96	140	230	140	170	130	220	220	180	190	130	200	180	120	86	280	130	220	56
	Al	<38	22	59	<55	14	35	60	52	11	52	11	30	40	<43	27	7.6	28	12	15	37	47	75	9.4	<17
	Si	-	-	-	-	-	-	110	110	29	160	4.9	60	80	-	73	-	56	23	15	-	65	47	21	-
	K	-	65	61	61	38	55	110	130	87	110	75	180	110	77	68	56	100	79	67	64	100	170	130	52
	Ca	-	25	<170	<170	<2.1	8.4	53	120	19	150	<10	30	40	91	61	21	50		<14	44	56	<33	89	<31
	Sc	<0.018	<0.10	<0.012	<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	<0.023	<0.012	<0.02		<0.0092	0.013	<0.025	<0.025		<14
	Ti	<9.4	<1.7	ZZZ	ZZZ	1.6	3.6	6.3	10	2.8	8.1	1.7	3.0	3.0	12	3.2	2.1	4.8		1.5	4.1	2.1	6.6		<2.9
	V	4.6	2.7	2.6	3.5	3.5	3.6	4.8	8.2	7.0	31		6.6	11	12	13	14	12		4.7	3.9	48	13		5.7
	Cr	3.8	<0.41	<1.1	<1.1	0.89	3.6	1.6	3.8	< 0.99	< 0.99	<1.8	2.0	1.0	1.6	0.85	0.73	1.8		<0.52	1.5	<1.4	1.8	1.7	1.2
	Mn	13	2.3	4.2 70	3.0	4.1	3.4	5.8	10	<2.7	5.8		6.4	6.6	7.1	4.6	4.6	7.1		2.6	4.8	3.6	10		4.4
	Fe	100 <0.62	<37 <0.092	<0.23	45 <0.23	79 <0.11	79 <0.11	120 0.047	260 0.070	<0.022	180 0.079		150 0.060	130 0.070	190 <0.43	110	70 0.034	0.062		0.028	55 0.039	85 0.11	160 0.089	51 0.057	25 <0.074
	UO NI:	<7.5	<3.5	<0.23	1.1	1.5	1.8	2.3	2.4	1.7	7.6	2.3	2.8	4.0	3.9	<0.9 3.4	3.3	4.6		1.6	1.6	15	3.9	3.7	2.4
	Cu	6.5	1.5	1.8	1.6	3.8	2.9	4.1	3.3	<1.7	2.1		5.9	5.5	22	1.6	2.5	4.0		2.9	3.5	3.7	6.2	3.0	6.2
	7n	32	1.3		1.0	28	2.9	39	24	5.3	28		41	33	26	1.0	19	4.5		33	24	33	190	50	24
	As	0.68	0.62	0.74	0.74	1.1	0.53	0.77	0.46	0.39	0.70		1.0	1.0	0.83	<0.89	0.54	0.92		0.64	1.5	0.79	3.0	0.89	0.64
	Se	0.10	0.62	0.82	0.78	0.98	0.37	0.85	<0.58	0.65	0.62	1.4	1.3	1.4	1.2	<0.99	0.69	0.97	0.88	0.66	0.96	1.6	2.5	1.2	0.50
	Rb	-	0.17	0.14	0.15	<0.14	<0.14	0.21	0.29	0.11	0.24	0.15	0.40	0.30	<0.77	<1.1	0.11	0.26		0.089	0.21	0.12	0.36	0.22	0.15
	Мо	0.69	<0.23	0.37	0.47	1.1	0.83	0.71	1.6	0.16	0.34	0.49	0.70	0.70	0.45	<1.4	0.50	0.66	0.38	0.26	0.63	0.69	1.1	0.55	<3.5
	Sb	2.7	0.83	ZZZ	ZZZ	1.0	0.81	1.5	0.91	0.22	0.42	1.3	1.1	1.2	1.1	<6.6	0.54	1.3	0.74	0.83	0.88	1.1	1.7	1.3	0.69
	Cs	0.012	<0.10	< 0.035	<0.035	<0.079	<0.079	0.027	0.030	<0.012	0.029	<0.26	0.050	<0.03	<0.51	<9.4	<0.014	0.053	<0.0060	<0.0060	0.024	<0.012	<0.012	<0.0060	0.025
	Ва	2.4	1.6	3.4	3.5	<2.3	2.8	4.2	3.9	2.6	1.9	2.0	12	4.9	4.6	<10	1.0	4.2		2.5	1.8	3.5	3.3	3.7	2.7
	La	0.092	<0.092	0.076	0.042	0.069	0.040	0.16	0.14	0.027	0.085	<0.13	0.20	0.30	<0.51	<12	0.052	0.26		0.052	0.044	0.14	0.11	0.079	0.055
	Се	0.061	<0.096	0.073	0.053	0.064	<0.018	0.17	0.14	0.018	0.078	<0.21	0.15	0.21	<0.44	<13	0.074	0.30	0.11	0.052	0.054	0.18	0.17	0.071	0.069
	Sm	<0.0069	<0.12	0.0043	0.0037	<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.26	<0.04	<0.04	<0.33	<20	<0.014	<0.026		<0.012	0.0027	< 0.0057	< 0.0057	<0.012	0.0025
	Hf	<0.027	< 0.33	<0.023	<0.023	<0.020	<0.020	<0.0066	<0.16	<0.16	< 0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.018	<0.05		0.0011	0.017	0.0032	<0.0018	0.0011	<0.016
	W T-	0.16	0.19 <0.37	0.15 <0.025	0.19 <0.025	0.26 <0.028	<0.028	0.24 <0.0022	1.3 <0.027	0.071 <0.027	0.084 <0.027	<1.4 <0.15	0.30 <0.02	0.40 <0.02	<0.14 <0.04	0.16 <0.018	0.16 <0.03	0.36 <0.03	0.10 <0.0014	0.055	0.19	0.11 <0.0011	0.24 <0.0015	0.21 <0.0016	0.42 <0.039
	Ta	<0.031	<0.37	<0.023	<0.023	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.13	<0.02	<0.02	<0.04	<3.3	<0.03	<0.03		<0.0014	0.0054	<0.0011	<0.0013	<0.00092	<0.039
	Dh	4.4	3.3	3.9	3.0	6.7	7.0	6.1	4.7	<0.87	5.4	3.8	9.9	5.7	4.3	4.2	1.9	5.7		5.0	7.0	4.3	14	5.1	4.0
	その他(Be)		<0.28	-	-	- 0.7	- 7.0	-		-	-	- 0.0		-	-	- 7.2	-	- 0.7	-	-	- 7.0	-	- 14	-	-
	その他(Cd)	-	<0.13	-	-	_	-	0.17	_	_	-	-	_	-	-	_	-	-	-	_	0.19	0.15	0.50	-	
炭素成分	OC1	0.11	<0.085	0.17	0.23	0	0	0.076	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	<0.057	0.070	<0.044	0.090	< 0.039	< 0.032	0.014	<0.016	< 0.053	<0.026	<0.055
	OC2	1.4	0.97	0.77	1.3	1.2	1.0	1.7	0.90	0.59	0.78	1.4	<0.9	<0.9	1.1	0.90	1.7	1.5		1.4	0.45	0.56	0.75	1.4	1.6
	OC3	0.85	0.66	0.65	1.1	0.86	0.84	0.95	0.71	0.42	0.62	0.58	<0.9	<0.9	0.38	0.37	0.81	0.41	1.0	0.79	0.50	0.52	0.71	1.0	1.1
	OC4	0.82	0.32	0.48	0.64	0.59	0.52	0.63	0.34	0.22	0.32	0.27	< 0.9	< 0.9	0.27	0.26	0.45	0.33	0.80	0.61	0.16	0.36	0.48	0.63	0.66
	Ocpyro	0.97	1.5	0.71	1.3	1.1	0.80	1.3	1.3	0.85	1.3	1.3	0.77	0.76	0.76	0.68	1.1	0.91	1.5	1.1	0.64	0.86	1.0	1.3	1.2
	EC1	1.6	1.6		2.0	1.4	1.4	1.7	1.7	0.69	1.6		1.5	1.3	1.0	1.3	1.9	1.9		1.1	0.85	0.92	1.1	1.3	1.3
	EC2	0.19	1.1	1.0	0.90	1.0	0.84	1.2	0.73	0.52	0.75	0.52	0.64	0.96	0.87	0.34	0.67	0.34		1.8	0.45	1.4	1.4	1.8	1.5
	EC3	<0.11	0.064	0.075	0.10	0.070	0.060	0.095	0.081	0.068	0.094	<0.023	0.040	0.070	0.072	0.010	0.054	0		0.060	0.093	<0.048	<0.010	0.018	<0.016
	OC	4.2	3.5	2.8	4.6	3.8	3.2	4.7	3.3	2.1	3.0	3.6	2.8	2.6	2.5	2.3	4.1	3.2		3.9	1.8	2.3	2.9	4.3	4.6
	EC	0.83	1.3	1.1 2.8	1.7 2.7	1.4	1.5	1.7	1.2	0.43	1.1	1.4 2.2	1.4	1.5	1.2 2.7	0.97	1.5	1.3	1.7	1.9 4.8	0.75	1.5	1.5	1.8	1.6
	WSOC	3.2	3.2	2.8	2./	-	-	- 1	2.3	1./	1.3	2.2	_	- 1	2./	_	2.9	-	4./	4.8	-	_	_	4.0	-

衣4-1-	24 /月3	ロロル	<u>り/月3</u>	コロより	<i>-</i>													(PM2.5	,灰素放	分,イオ	ン成分	: μg/m	無機以	分:ng/m	-7)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	20.5	17.1	14.7	22.3	22.0	20.0	24.9	27.2	15.3	25.4	22.8	25.4	25.0	23.5	25.4	25.6	24.5	19.8	23.8	23.0	28.6	35.7	24.2	31.2
イオン成分	CI-	<0.0013	<0.022	< 0.016	< 0.016	<0.046	<0.046	0.018	< 0.096	<0.096	< 0.096	< 0.043	0.030	0.060	<0.081	0.010	<0.01	<0.01	<0.012	< 0.012	0.020	<0.0082	<0.0082	<0.11	0.0058
	NO3-	0.35	0.058	0.073	0.068	0.17	0.20	0.70	0.15	<0.099	<0.099	0.16	0.26	0.69	0.15	0.070	0.24	0.12	0.037	0.053	0.13	0.025	0.040	<0.052	0.31
	SO42-	7.2	6.2	4.1	7.1	7.9	7.0	7.9	9.0	6.1	10	11	4.0	9.8	10	13	13	9.9	7.0	10	10	12	15	8.1	9.7
	Na⁺	0.18	0.051	0.013	0.062	0.090	0.066	0.11	0.086	0.052	0.21	0.081	0.059	0.13	0.12	0.20	0.17	0.15	0.031	0.035	0.083	0.092	0.065	<0.092	0.077
	NH₄⁺	2.3	2.2	1.5	2.5	3.0	2.6	2.8	3.1	2.2	3.4	4.0	1.4	3.5	3.5	4.9	4.4	3.8	2.5	3.7	3.4	4.5	6.6	3.6	4.1
	K ⁺	0.080	0.066	0.048	0.064	0.12	0.12	0.13	0.14	0.060	0.11	0.053	0.049	0.11	<0.12	0.14	0.094	0.12		0.13	0.073	0.072	0.11	0.096	0.088
	NA . 2+	0.048	0.0068	<0.015	<0.015	0.0098	0.0032	0.016	0.019	0.0054	0.028	0.018	0.0080	0.019	0.015	0.030	0.031	0.020		0.084	0.012	0.026	0.015	<0.0028	<0.0094
	- 2+																								
4 1416 13 A	Car	0.21	<0.054	0.022	0.045	0.016	0.017	0.14	0.25	<0.044	0.14	0.029	0.020	0.030	0.040	0.10	0.063	0.030		0.037	0.030	0.11	<0.067	<0.068	0.033
無機成分	Na		54		80	110	67	110	150	64	180	83	180	160	130	150	170	170		63	120	140	140	85	49
	AI	<38 -	28	<55 -	<55 –	16 -	18	120 200	63 160	<5.8 8.4	91 170	13 14	29 60	40 60	<43 -	41 86	20	46 64		26 16	47	48 20	<20 24	<7.7 23	<17 -
	21		82		- 88	53	77	150	200	8.4 70	130	83	140	110	73	75	89	98		65	110	130	200	110	
	C-	_	26		<170	4.2	4.7	150	130	11	140	15	40	30	73 68	88	47	35		<14	39	50	43	<14	56 <31
	Ca Co	<0.018	<0.10		0.026	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	<0.023	<0.012	<0.02		<0.0092	0.0084	<0.025	<0.025	<0.0092	<14
	Ti Ti	19	2.5		ZZZ	1.9	3.3	14	8.7	5.8	8.5	2.5	4.0	3.0	7.6	4.0	3.1	5.2		0.69	<3.6	<1.7	1.3	0.53	<2.9
	V	<0.1	2.4		3.2	3.6	3.2	7.2	13	9.9	30		15	10	13	19	29	12		3.2	4.9	31	30	12	10
	Cr	<0.84	<0.41		<1.1	1.1	0.68	1.9	4.0	< 0.99	<0.99	<1.8	2.0	1.0	1.4	2.5		1.2		<0.52	0.96	<1.4	<0.60	0.57	0.68
	Mn	<0.52	2.6		6.4	4.4	5.6	8.5	8.8	<2.7	5.0	4.0	9.2	6.1	6.3	7.2		6.5		2.1	6.7	4.7	9.4	4.4	3.6
	Fe	<17	96		82	68	80	220	250	26	160	100	200	100	130	190	170	110		35	71	56	120	27	24
	Со	<0.62	<0.092	<0.23	<0.23	<0.11	0.12	0.099	0.090	<0.022	0.086	<0.26	0.090	0.060	<0.43	<0.9	0.13	0.059	0.032	0.017	0.067	0.081	0.14	0.050	<0.074
	Ni	<7.5	<3.5	<0.85	0.88	1.7	1.5	3.1	4.7	2.6	8.7	4.0	5.1	3.4	3.7	6.6	9.8	4.0	1.4	1.2	1.9	8.9	8.3	3.5	2.2
	Cu	0.25	4.7	1.2	2.4	3.6	3.4	7.6	3.2	<1.4	2.1	1.8	6.3	4.2	32	2.5	4.2	4.8	2.5	3.9	4.6	6.4	6.8	2.3	2.0
	Zn	<15	14	15	26	34	42	44	28	8.0	18	16	46	29	24	26	29	30	11	16	42	33	72	9.5	29
	As	<0.077	0.78		0.79	0.72	0.51	0.70	0.55	0.35	0.55	0.80	1.0	0.80	0.91	<0.89	0.84	0.95		0.57	1.9	1.7	4.1	1.2	1.2
	Se	<0.02	1.6		0.88	1.2	0.45	1.1	1.4	<0.58	0.67	1.6	1.7	1.5	1.9	1.0	1.7	2.3		0.73	1.3	1.6	3.2	1.0	0.57
	Rb	-	0.20		0.21	<0.14	<0.14	0.27	0.35	0.10	0.21	0.22	0.30	0.26	<0.77	<1.1	0.23	0.22		0.049	0.37	0.17	0.47	0.17	0.19
	Mo	<0.12	<0.23		0.50	1.1	0.89	0.89	1.6	0.15	0.29	1.5	1.3	0.70	0.57	<1.4	1.7	0.68		0.15	0.59	0.59	1.0	0.58	<3.5
	Sb	<0.56 <0.0034	0.87 <0.10		<0.035	1.1 <0.079	0.83 <0.079	1.7 0.031	0.98	0.22 <0.012	0.41	1.3 <0.26	1.6 0.050	1.1 <0.03	1.0 <0.51	<6.6 <9.4	0.95	0.034		0.60	1.3 0.041	1.3 <0.012	2.4 <0.012	0.77 <0.0060	0.74
	Os Da	<0.0034	2.5		5.1	2.3	3.4	5.5	3.6	1 1	2.1	2.1	6.0	5.2	4.2	<10	3.2	3.9		1.5	3.1	3.3	4.4	2.5	2.2
	Da La	<0.019	<0.092		0.090	0.078	0.067	0.23	0.25	0.020	0.073	0.19	0.40	0.16	<0.51	<12	0.11	0.19		0.023	0.053	0.10	0.097	0.045	0.047
	Ce	<0.057	< 0.032	0.042	0.085	0.070	0.044	0.27	0.18	0.014	0.077	<0.21	0.40	0.18	<0.44	<13	0.16	0.13	0.043	0.023	0.090	0.13	0.037	0.050	0.060
	Sm	<0.0069	<0.12		0.0034	<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.26	<0.04	<0.04	<0.33	<20	<0.014	<0.026		<0.012	0.0044	<0.0057	<0.0057	<0.012	0.0050
	Hf	0.15	<0.33	<0.023	<0.023	<0.020	<0.020	0.010	<0.16	<0.16	<0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.018	<0.05		<0.00092	0.0065	0.0022	0.0025	<0.0010	<0.016
	W	<0.074	0.14	<0.084	0.10	0.22	3.2	0.28	1.4	0.14	0.15	<1.4	0.30	0.20	<0.14	0.22	0.42	0.29	0.064	<0.028	0.20	0.18	0.74	0.15	0.36
	Та	-	< 0.37	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.04	<0.018	<0.03	<0.03	<0.0014	<0.0014	-	<0.0011	<0.0015	<0.0016	<0.039
	Th	<0.031	<0.15	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.01	<0.01	<0.01	< 0.33	<0.03	<0.03	< 0.37	<3.3	<0.0078	<0.025	<0.00082	<0.00082	0.0077	<0.018	<0.018	<0.00092	<0.0057
	Pb	<2.5	6.4	3.8	4.4	7.7	13	6.9	5.6	3.3	5.9	5.4	8.9	4.7	4.6	6.1	5.0	5.4	3.9	4.5	12	7.1	16	5.2	5.1
	その他(Be)	-	<0.28	-	-	-	-	-	_	-	_	-		_	-		-	_	_	-	-	_	-	-	-
W + - A 1	その他(Cd)	-	0.16		-	-	-	0.20	-	-		-	-	-			-	-	-	-	0.29	0.26	0.57	-	-
炭素成分	001	0.12	<0.085	0.20	0.26	0	0	0.17	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	0.16	0.090	<0.044	0.13		<0.032	<0.012	<0.016	<0.053	<0.026	<0.055
	OC2 OC3	1.3 0.86	0.96	0.96	1.4 1.1	1.6 0.98	1.2 0.95	1.3 0.81	0.83	0.60	1.3 0.85	1.6 0.59	1.2 <0.9	<0.9 <0.9	1.1 0.43	0.90	1.6 0.71	1.5 0.42		1.1 0.69	0.58 0.52	0.69 0.51	0.69 0.73	1.2 0.75	1.5
	OC3	0.86	0.81		0.65	0.98	0.95	0.81	0.83	0.39	0.85	0.59	<0.9	<0.9	0.43	0.33	0.71	0.42		0.69	0.52	0.51	0.73	0.75	0.92
	_	1.2	1.7		1.3	1.0	0.62	1.2	1.9	0.20	1.6		0.91	0.80	0.40	0.30	0.44	1.1		0.48	0.20	0.35	1.0	0.53	0.67 1.3
	Ocpyro EC1	1.9	2.1		2.0	1.9	1.8	1.6	2.8	0.67	1.9		1.9	1.2	1.1	1.4	1.8	1.8		0.91	1.1	0.74	1.0	1.1	1.4
	EC2	0.19	1.2		1.2	0.96	0.99	1.4	0.77	0.61	0.62	0.59	0.81	0.94	1.1	0.34	0.66	0.35		1.5	0.45	1.5	1.5	1.5	1.8
	EC3	<0.11	0.072		0.12	0.060	0.055	0.078	0.069	0.077	0.12		0.060	0.070	0.11	0.010	0.033	0.55		0.074	0.083	<0.048	0.024	0.058	0.045
	OC	4.2	3.6		4.7	4.2	3.7	4.1	4.3	2.1	4.1	4.1	3.0	2.6	3.0	2.3	3.6	3.5		3.2	2.0	2.3	3.0	3.5	4.4
	EC	0.89	1.7		2.0	1.9	1.9	1.9	1.7	0.48	1.0	1.3	1.9	1.4	1.4	1.0	1.6	1.1		1.6	0.97	1.6	1.7	1.7	1.9
	WSOC	3.4	3.0	2.3	3.2	-	-	-	2.7	1.7	2.1	2.1	-	-	2.8	_	2.6	-	3.4	4.0	-	-	-	3.9	-

	,,,,		2071.																,			,			
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査:	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	30.8	23.1	24.6	30.5	31.0	30.0	31.3	39.7	26.4	31.4	28.6	37.0	32.3	30.0	33.8	33.6	31.2	35.8	30.3	26.6	33.5	38.9	35.2	38.2
イオン成分	CI-	0.0020	<0.022		< 0.016	< 0.046	< 0.046	0.015	< 0.096	<0.096	< 0.096	< 0.043	0.050	0.030	<0.081	<0.01	<0.01	<0.01	<0.012	<0.012	0.012	<0.0082	<0.0082	<0.11	0.0078
1-3 = 19073	NO3-	0.20	0.090	0.41	0.16	0.20	0.23	0.54	<0.099	<0.099	<0.099	0.20	1.7	0.40	0.11	0.030	0.043	0.10		<0.012	0.084	0.012	0.033	<0.052	0.15
	SO42-	11	8.6		11	14	13	13	15	1.0.000	15	15	13	15	16	18	18	15		14	11	14	19	15	14
	3042-									0.000															
	Na [⊤]	0.073	0.081	0.040	0.089	0.079	0.081	0.10	0.14	0.069	0.19	0.073	0.14	0.11	0.074	0.15	0.13	0.11	0.051	0.012	0.064	0.064	0.074	0.097	0.087
	NH ₄ ⁺	4.4	3.1	2.6	3.7	5.3	5.3	4.7	5.4	4.7	5.1	4.8	4.4	5.3	5.4	6.0	6.0	5.6	6.0	4.7	3.6	5.7	9.9	6.7	5.5
	K ⁺	0.097	0.18	0.10	0.11	0.14	0.13	0.11	0.13	0.058	0.092	0.19	0.11	0.13	<0.12	0.20	0.16	0.16	0.17	0.12	0.092	0.079	0.20	0.14	0.14
	NA . 2+	0.012	0.0092	<0.015	0.017	0.0071	0.0067	0.016	0.014	<0.0038	0.029	0.024	0.013	0.016	0.011	0.030	0.049	0.010		0.082	0.012	0.015	0.029	0.0031	<0.0094
	ivig																								
	Ca ²	0.025	<0.054	0.039	0.061	0.017	0.020	0.15	0.12	<0.044	0.29	0.044	0.15	0.040	0.039	0.20	0.087	0.040	0.041	<0.035	0.038	< 0.067	0.10	<0.068	0.054
無機成分	Na	-	96	27	120	79	80	110	280	73	140	99	160	140	100	110	150	120	93	52	98	150	130	140	55
	Al	<38	32	75	76	19	20	130	140	8.2	89	23	40	30	<43	59	25	43	11	13	75	34	<20	9.8	<17
	Si	-	-	-	-	-	-	230	280	38	180	35	90	80	-	170	-	85	19	17	-	21	21	23	-
	K	-	120	100	150	73	87	130	200	92	120	150	140	120	100	110	110	120	110	62	140	210	360	160	79
	Ca		24	<170	<170	4.7	13	170	350	23	150	33	40	40	77	180	67	45		<14	56	200	35	<14	<31
	Sc	<0.018	<0.10		0.024	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	<0.023	<0.012	<0.02		<0.0092	0.016	<0.025	<0.025		<14
	T:	14	3.0		ZZZ	2.5	3.6	14	20	3.2	9.5	4.7	4.0	3.0	9.3	7.4	4.0	4.9		1.1	<3.6	3.3	2.0	1.1	4.0
	\/	12	6.4		11	3.9	13	14	29	20	32	14	31	16	21	30	33	16		3.5	3.5	42	38	24	11
	v o					0.87		1.7		< 0.99			2.0			2.3	7.8			<0.52			< 0.60	1.8	
	Ur	2.1	0.75		1.9		1.3		3.1		2.1			2.0	1.0			1.2			1.0	<1.4			0.59
	Mn	7.1	5.4		8.4	6.2	6.1	7.9	16	5.4	9.2	8.2	9.4	6.9	6.3	9.2	15	6.6		2.4	6.5	7.2	8.5	6.1	5.5
	Fe	100	73		140	92	110	220	640	60	130	190	190	100	100	160	220	100	52	32	82	86	100	48	30
	Co	<0.62	<0.092		<0.23	<0.11	<0.11	0.12	0.24	0.056	0.12	<0.26	0.10	0.080	<0.43	<0.9	1.6	0.079		0.028	0.075	0.14	0.16	0.10	
	Ni	<7.5	<3.5		3.3	1.7	4.7	4.8	8.1	5.7	8.7	4.9	10	5.2	6.0	9.3	12	5.4		1.2	1.5	13	11		3.5
	Cu	4.1	3.3		4.8	4.1	38	5.3	6.8	2.5	3.8		5.6	5.7	31	4.2	5.3	4.6		2.5	5.4	6.0	9.0		2.7
	Zn	30	30		43	38	63	41	89	25	35		52	36	32	37	41	31	27	31	40	97	55	23	36
	As	1.5	0.95	0.98	1.7	0.70	0.64	1.6	1.6	1.0	1.5	2.1	2.0	2.2	1.9	2.2	1.9	1.8		1.1	2.3	2.5	4.3	2.1	1.6
	Se	0.24	1.7	0.89	1.7	0.90	1.1	1.8	2.0	1.2	1.5	2.8	2.7	3.0	1.7	1.7	1.9	2.0	1.1	0.71	1.5	2.4	3.7	1.6	0.73
	Rb	-	0.28	0.21	0.38	<0.14	0.21	0.29	0.68	0.23	0.32	0.64	0.50	0.40	<0.77	<1.1	0.38	0.32	0.18	0.083	0.44	0.31	0.54	0.28	0.30
	Mo	0.66	0.39	0.62	1.1	3.4	0.81	0.68	1.1	0.38	0.59	1.5	0.90	0.70	0.63	<1.4	1.6	0.60	0.47	0.22	0.96	0.86	0.94	1.3	<3.5
	Sb	1.2	1.2	ZZZ	zzz	1.4	0.63	1.4	1.2	0.56	0.89	2.3	1.5	1.6	1.2	<6.6	1.3	1.5	1.7	0.67	1.8	1.5	1.9	1.2	1.0
	Cs	0.066	<0.10	<0.035	0.058	<0.079	<0.079	0.053	0.11	0.037	0.058	<0.26	0.10	0.040	< 0.51	<9.4	0.074	0.054	<0.0060	< 0.0060	0.052	<0.012	<0.012	<0.0060	0.044
	Ва	3.4	4.1	4.6	8.7	4.0	7.1	8.7	5.3	1.1	4.6	2.4	4.8	5.1	4.2	<10	3.2	4.2	2.9	1.3	4.9	4.7	8.4	3.8	3.2
	l a	0.14	0.11		0.17	0.094	0.17	0.21	0.33	0.040	0.10	0.18	0.30	0.20	<0.51	<12	0.096	0.17		0.031	0.070	0.11	0.099	0.080	0.065
	Ce	0.24	<0.096	0.11	0.19	0.14	0.15	0.34	0.26	0.051	0.12	<0.21	0.28	0.28	<0.44	<13	0.12	0.32	0.098	0.047	0.12	0.13	0.11	0.092	0.11
	Sm	<0.0069	<0.12		0.0053	<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.26	<0.04	<0.04	<0.33	<20	<0.014	<0.026		<0.012	0.0057	<0.0057	<0.0057	<0.012	0.0025
	Hf	<0.027	0.66		<0.023	<0.020	<0.020	0.0095	<0.16	<0.16	<0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.014	<0.05		<0.00092	0.018	0.0036	<0.0018	<0.0010	<0.016
	w	0.39	0.20		0.23	0.15	1.3	0.33	0.51	0.32	0.49	<1.4	0.40	0.40	0.18	0.46	0.70	0.29	0.17	0.038	0.30	0.20	0.22	0.37	0.75
	Ta	-	< 0.37		<0.025	<0.028	0.039	0.0026	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.04	<0.018	<0.03	< 0.03	0.0020	< 0.0014	-	< 0.0011	< 0.0015	< 0.0016	<0.039
	Th	<0.031	<0.15		<0.023	<0.028	< 0.039	<0.0020	0.027	<0.027	<0.027	<0.13	<0.02	<0.02	<0.37	<3.3	<0.0078	<0.025		<0.00014	0.012	<0.0011	<0.0013	<0.00092	<0.0057
	Dh	13	7.1		9.1	8.3	31	9.9	14	6.2	6.8	13	14	10	7.8	8.7	9.7	8.5	7.9	4.0	14	12	16		7.5
	PD その他(Be)	-	<0.28	J.1	- 9.1	-	-	- 9.9	- 14	- 0.2	- 0.0	-	- 14	-	- 7.0	- 0.7	-	- 0.0	- 7.9	- 4.0	- 14	- 12	- 10	- 9.5	- 7.5
					_	_	_		_		_	_		_		_				_					
中ませい	その他(Cd)		0.19			- 0	-	0.26		<0.04	<0.04	<0.039		<0.9			<0.044			<0.032	0.66	0.54	0.53		
炭素成分	001	0.10	<0.085		0.41		- 0	0.047	<0.04				<0.9		0.20	0.020		0.10			0.019	<0.016	<0.053	<0.026	<0.055
	OC2	1.8	1.1		1.9	1.6	1.5	1.7	1.2	0.76	0.84	1.8	1.3	1.1	1.1	1.1	1.6	1.8		1.4	0.77	0.89	0.56	1.3	1.6
	OC3	0.67	0.68		0.90	0.68	0.74	0.57	0.90	0.53	0.61	0.65	<0.9	<0.9	0.35	0.32	0.72	0.42		1.1	0.69	0.62	0.62	0.74	1.0
	OC4	0.89	0.32		0.74	0.62	0.62	0.53	0.32	0.19	0.29	0.29	<0.9	<0.9	0.34	0.34	0.50	0.48		0.65	0.27	0.45	0.49	0.55	0.70
	Ocpyro	1.3	2.1		1.7	1.1	1.0	1.2	1.1	0.38	0.83	1.4	0.74	0.95	0.73	0.62	0.82	1.0		1.2	1.0	0.92	0.92	1.1	1.4
	EC1	2.1	2.5		2.9	2.0	2.3	1.4	2.4	0.84	1.2	2.3	1.8	1.7	1.0	1.6	1.9	1.9		1.3	1.5	1.1	1.1	1.3	1.5
	EC2	0.16	1.3		1.1	0.83	0.94	1.3	0.74	0.56	0.60	0.51	0.80	0.74	1.0	0.34	0.59	0.46	1.8	1.9	0.62	1.4	1.2	1.6	1.8
	EC3	<0.11	0.062	0.075	0.11	0.035	0.035	0.11	0.060	0.026	0.062	<0.023	0.060	0.040	0.14	0	<0.032	0.010	0.044	0.031	0.12	<0.048	<0.010	0.026	0.020
	oc	4.8	4.2	4.3	5.7	4.0	3.9	4.0	3.5	1.9	2.6	4.1	3.0	3.0	2.7	2.4	3.6	3.8	4.6	4.4	2.7	2.9	2.6	3.7	4.7
	EC	0.96	1.8	1.5	2.4	1.8	2.3	1.6	2.1	1.0	1.0	1.4	1.9	1.5	1.4	1.3	1.7	1.4	1.8	2.0	1.2	1.6	1.4	1.8	1.9
	WSOC	3.6	3.7	4.0	3.8	-	-	-	2.5	2.0	1.4	2.5	-	-	2.8	-	2.9	-	4.8	4.7	_	-	-	4.1	-

124-1-	-Z0 0月1	מיתם	ᆼᇊᅩᆮ	まじ														(PM2.5,	,灰茶以	:ガ, 1 4	ン成分:	: μg/m	無機)以	分:ng/m	)
自治	合体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	38.5	38.2	18.9	29.5	30.0	32.0	31.5	30.7	27.5	30.9	35.4	39.8	26.7	29.8	35.5	32.9	25.4	26.0	29.7	22.4	32.7	32.9	29.4	37.8
イオン成分	CI-	0.0032	<0.022	< 0.016	< 0.016	<0.046	<0.046	0.015	<0.096	< 0.096	<0.096	0.14	0.020	0.020	<0.081	0.010	<0.01	0.020	<0.012	<0.012	0.014	0.21	<0.0082	<0.11	0.0081
	NO3-	0.15	0.16	0.19	0.094	0.10	0.079	0.16	<0.099	<0.099	<0.099	0.26	0.43	0.18	0.11	0.040	0.048	0.080	0.033	< 0.031	0.082	0.021	0.014	<0.052	0.082
	SO42-	17	17	5.8	10	12	14	11	17	14	16	18	8.7	11	13	18	15	9.7	10	14	8.1	17	18	12	14
	Na ⁺	0.088	0.13	0.014	0.063	0.065	0.069	0.091	0.11	0.065	0.26	0.15	0.063	0.065	< 0.069	0.18	0.12	0.060	0.015	0.013	0.047	0.25	0.077	<0.092	0.076
	NH₄ ⁺	6.0	5.8	1.9	3.6	4.4	4.9	3.9	6.2	4.7	5.4	6.8	3.0	3.4	4.3	6.7	5.1	3.8	3.8	4.7	2.8	7.3	9.1	4.9	5.3
	K114	0.14	0.95	0.076	0.21	0.44	0.50	0.43	0.14	0.10	0.11	0.53	0.11	0.57	0.29	0.26	0.20	0.36	0.23	0.37	0.15	0.13	0.10	0.27	0.21
	K 2+																								
	Mg	0.017	0.076	<0.015	0.020	0.017	0.019	0.040	0.012	<0.0038	0.039	0.064	0.011	0.046	0.023	0.030	0.031	0.030	0.086	0.098	0.016	0.025	0.019	0.012	0.0097
	Ca ²⁺	0.031	<0.054	0.028	0.045	0.016	0.018	0.074	0.097	<0.044	0.42	0.099	0.020	0.040	0.047	0.19	0.062	0.030	0.066	<0.035	0.043	0.15	0.072	<0.068	0.095
無機成分	Na	-	150	<21	100	59	78	100	130	77	150	100	190	80	57	140	110	72	58	53	78	140	120	110	88
	Al	<38	120	56	87	41	40	120	60	19	110	25	90	80	<43	82	22	92	34	29	83	30	<20	22	75
	Si	-	-	-	-	-	-	150	110	77	290	71	120	70	-	200		86	15		-	19	51	19	
	K	-	900	75	260	300	380	480	160	130	150	190	240	530	250	180	180	360	230	290	210	260	170	370	210
	Ca	-	65	<170	<170	6.3	8.0	95	98	30	210	40	80	30	88	180	31	40			48	330	<33	150	57
	Sc	<0.018	<0.10	<0.012	0.031	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	0.024	<0.012		<0.0092		0.013	<0.025	<0.025		<14
	Ti	<9.4	7.1	ZZZ	ZZZ	3.1	2.9	9.7	8.3	3.8	11	5.9	5.0	5.0	4.7	8.4	3.4	8.3	1.0	2.4	3.9	1.8	1.7	1.3	9.6
	V	21	16	3.8	7.0	5.9	15	12	21	20	30	16	36	7.1	12	29	23	6.7	5.2	4.8	2.8	35	21	13	19
	Cr	2.5	2.5	<1.1	<1.1	0.52	1.5	2.2	1.3	1.4	< 0.99	2.7	2.0	2.0	1.1	3.5	1.8	1.6	<0.52	<0.52	1.2	<1.4	0.86	1.3	0.49
	Mn	33	8.0	3.3	6.0	4.4	5.1	7.4	7.5	6.2	9.7	9.0	11	7.6	6.0	10	11	4.6	3.1	2.7	5.7	6.6	5.2	5.1	6.0
	Fe	230	120	58	110	59	83	130	230	78	160	190	220	83	140	210	140	76	35	59	80	75	82	45	55
	Со	< 0.62	0.11	<0.23	<0.23	<0.11	<0.11	0.096	0.18	0.075	0.12	<0.26	0.20	0.060	<0.43	<0.9	0.090		0.040		0.060	0.13	0.11		0.10
	Ni	36	4.9	<0.85	2.4	2.2	5.9	4.0	7.1	5.4	8.1	5.6	12	2.5	2.9	9.3	6.6		2.6	1.6	1.2	10	6.1	4.2	7.1
	Cu	6.3	22	1.9	7.3	12	12	17	4.2	4.4	5.4	5.1	8.9	19	290	6.7	6.8	12	6.5	8.3	6.6	7.1	4.6	6.5	6.4
	Zn	54	50	16	36	41	43	52	48	40	42	43	72	33	34	47	36	22	23	43	36	160	38	62	48
	As	2.5	2.6	0.83	1.5	1.3	0.67	1.8	1.9	1.7	2.2	2.7	2.9	1.4	1.6	2.0	2.0		1.1	1.2	1.8	3.2	3.2	2.2	2.7
	Se	0.31	2.6	0.86	1.6	1.5	1.2	2.2	1.8	1.5	2.0	3.4	3.1	1.3 0.29	1.5	1.6	2.9		0.77	0.80	1.2	2.8	2.7	1.6	1.9
	KD		0.62	0.16	0.33	0.14	0.25	0.37	0.60	0.34	0.50	0.76	0.70		<0.77	<1.1	0.39	0.28	0.17	0.13	0.38	0.43	0.34	0.36	0.54
	Sb	1.1 1.6	0.67 7.0	0.29	0.78	0.95 4.3	1.1	1.1 3.9	0.62	0.38	0.49 1.0	1.4 2.6	1.1 2.3	0.50 7.3	<0.34 3.0	<1.4 <6.6	2.4 1.8	0.41 4.4	0.28	0.24 3.1	0.64 1.4	0.79	0.63 0.85	0.59	<3.5 1.8
	Co.	0.097	<0.10	<0.035	222 0.041	<0.079	<0.079	0.052	0.091	0.052	0.063	0.31	0.10	<0.03	<0.51	<9.4	0.072	0.033		<0.0060	0.041	<0.012	<0.012	<0.0060	0.090
	Ds Do	6.2	46	3.0	15	18	17	38	4.2	1.3	1.9	3.9	9.3	34	8.3	<10	4.4	21	11	16	12	7.3	5.3	15	11
	La	0.17	0.18	0.035	0.20	0.11	0.16	0.23	0.22	0.069	0.092	0.25	0.30	0.13	< 0.51	<12	0.037	0.20	0.034	0.031	0.062	0.085	0.054	0.055	0.15
	Co	0.17	0.18	0.033	0.20	0.11	0.10	0.23	0.22	0.003	0.032	<0.21	0.42	0.13	<0.44	<13	0.037	0.26	0.054	0.031	0.002	0.085	<0.092	0.065	0.13
	Sm	<0.0069	<0.12	0.0034	0.0057	<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.21	<0.42	<0.04	<0.44	<20	<0.014		<0.012	<0.012	0.0052	< 0.0057	<0.032	<0.012	0.0088
	Hf	<0.027	<0.33	<0.0034	<0.023	<0.020	<0.020	0.010	<0.16	0.22	<0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.018	<0.020		0.00093	0.0032	<0.0018	0.0020	<0.0010	<0.016
	w	0.48	0.30	0.098	0.17	0.072	<0.040	0.36	0.30	0.28	0.25	<1.4	0.40	0.20	<0.14	0.45	0.29	0.19	0.064	0.036	0.0001	0.21	0.0020	0.21	0.59
	Ta	-	<0.37	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.04	<0.018	<0.03	<0.03	<0.0014	<0.0014		< 0.0011	<0.0015	<0.0016	<0.039
	Th	< 0.031	<0.15	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.01	<0.01	<0.01	<0.33	<0.03	<0.03	<0.37	<3.3	<0.0078	<0.025	0.0011	<0.00082	0.010	<0.018	<0.018	<0.00092	<0.0057
	Pb	15	16	3.8	8.3	13	13	13	12	9.4	13	16	19	9.1	7.2	15	8.9	7.5	5.5	5.4	8.4	13	10	9.1	13
	その他(Be)	-	<0.28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.68	-	-	-	-	0.27	-	-	-	-	-	-	-	-	_	-	_	-	0.26	0.47	0.38	-	-
炭素成分	OC1	0.089	<0.085	0.40	0.76	0.20	0	0.098	<0.04	<0.04	<0.04	< 0.039	< 0.9	< 0.9	0.31	0.11	<0.044	0.24	< 0.039	< 0.032	0.022	< 0.016	< 0.053	< 0.026	<0.055
	OC2	1.7	1.3	1.4	1.7	2.2	1.6	2.3	1.1	0.73	0.61	1.9	1.4	1.1	1.4	1.3	1.9	2.0	1.6	1.2	0.91	0.72	< 0.32	1.2	1.2
	OC3	0.49	0.78	0.83	1.2	1.1	0.81	0.87	0.74	0.55	0.52	0.69	<0.9	<0.9	0.64	0.49	0.88	0.72	1.0	0.69	0.89	0.53	0.42	0.72	0.74
	OC4	0.75	0.36	0.71	0.99	0.95	0.75	0.78	0.26	0.17	0.21	0.35	< 0.9	<0.9	0.43	0.49	0.55	0.70	0.67	0.59	0.35	0.46	0.33	0.70	0.58
	Ocpyro	1.2	2.4	1.3	2.0	1.3	1.2	1.6	0.86	0.38	0.57	1.8	0.88	0.97	1.1	0.76	1.1	1.2	1.5	1.1	1.2	0.81	0.66	1.2	1.3
	EC1	2.0	3.4	1.6	2.9	2.2	2.3	2.4	1.9	0.88	1.1	2.7	2.0	1.6	1.4	2.1	2.4	2.0	1.6	1.2	1.6	0.90	0.64	1.3	1.3
	EC2	0.18	0.95	0.91	0.80	0.53	0.53	0.84	0.84	0.43	0.52	0.51	0.70	0.61	0.93	0.37	0.55	0.38	1.2	1.4	0.52	1.2	0.84	1.3	1.5
	EC3	<0.11	<0.022	0.11	0.11	0.055	0	0.086	0.053	0.011	0.024	<0.023	0.050	0.11	0.081	0	<0.032	0.040	0.031	0.036	0.12	<0.048	<0.010	<0.016	0.025
	ОС	4.2	4.8	4.6	6.7	5.8	4.4	5.6	3.0	1.8	1.9	4.7	3.0	4.0	3.9	3.2	4.4	4.9	4.8	3.6	3.4	2.5	1.4	3.8	3.8
	EC	0.98	2.0	1.3	1.8	1.5	1.6	1.7	1.9	0.94	1.1	1.4	1.8	1.3	1.3	1.7	1.9	1.2	1.3	1.5	1.0	1.3	0.82	1.4	1.5
	WSOC	3.9	4.5	2.9	4.1	-	-	-	2.6	1.7	2.0	2.8	- 1	- 7	3.9	-	3.5	-	4.2	4.1	-	-	-	4.4	- 1

衣4-1-	2/0月2	ロルり	ᅇᄼᆸᇰᇋ	3 & C														(PM2.5	,灰茶风	が、イス	ン以分	: μg/m	無機成	分:ng/m	1)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	28.5	25.1	13.3	19.0	18.0	22.0	23.1	26.8	24.1	30.0	30.8	26.3	24.0	28.8	31.0	32.9	24.1	30.5	30.9	20.0	33.6	24.0	38.0	34.1
イオン成分	CI-	0.0037	<0.022	<0.016	<0.016	<0.046	<0.046	0.019	<0.096	<0.096	< 0.096	<0.043	0.014	0.020	<0.081	0.010	<0.01	0.010		<0.012	0.017	<0.0082	<0.0082	<0.11	0.0090
	NO3-	0.031	0.092	<0.051	<0.051	0.078	0.068	0.23	<0.099	<0.099	<0.099	0.10	0.10	0.13	0.10	0.020	0.053	0.080	0.039	0.033	0.085	0.019	0.023	<0.052	0.035
	SO42-	11	9.9		4.4	7.1	8.3	7.1	14	12	14	15	6.5	11	15	18	17	10		15	6.0	18	13		14
	Na ⁺	0.073	0.058	0.012	0.017	<0.026	0.081	0.073	0.10	0.060	0.10	0.11	0.047	0.078	0.12	0.16	0.17	0.13	0.032	0.031	0.030	0.068	0.056	<0.092	0.081
	NH₄ ⁺	4.1	3.4	1.3	1.5	2.5	3.0	2.5	5.4	4.2	4.7	5.6	2.2	3.6	5.0	6.7	5.6	4.1	4.9	5.2	2.1	8.9	4.8	7.7	5.6
	K ⁺	0.15	0.20	0.071	0.082	0.21	0.28	0.19	0.16	0.091	0.11	0.14	0.11	0.23	0.18	0.27	0.18	0.21	0.17	0.19	0.068	0.089	0.073	0.20	0.14
	Mσ ²⁺	0.016	0.015	<0.015	<0.015	0.0073	0.0096	0.018	0.011	<0.0038	0.012	0.032	0.011	0.022	0.016	0.020	0.037	0.020	0.086	0.090	0.0085	0.016	0.013	0.0087	<0.0094
	C=2+	0.023	<0.054		0.028	0.0079	0.017	0.15	0.075	<0.044	0.23	0.074	0.030	0.040	0.071	0.090	0.080	0.040		0.045	0.033	<0.067	0.12		0.072
無機成分	Na	-	65		37	29	40	190	130	66	130	110	110	99	80	120	180	110	58	77	54	130	100	120	40
71 186 196 7J	ΔΙ	39	45		<55	14	34	270	47	18	110	51	90	50	<43	61	41	67		21	60	35	25		
	Si Si		_ 43	- \	- (33	- 14		360	200	88	430		100	90	- 140	130	- 41	120		21	-	32	25		- \
	K	_	230	75	160	140	170	210	170	120	160	200	190	180	130	150	170	200		150	100	180	130		70
	Ca	_	33		<170	3.3	13	290	150	28	310		60	40	<66	67	71	59		29	42	94	<33	110	
	Sc	0.020	<0.10		<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	<0.023	<0.012	<0.02		<0.0092	0.012	<0.025	<0.025		<14
	Ti	<9.4	4.6		ZZZ	1.8	2.8	25	9.9	4.4	15		4.0	3.0	4.5	5.4	7.2	5.9		1.9	14	3.5	<1.1		<2.9
	v	7.5	5.3		3.9	2.6	4.8	4.8	13	11	17		12	7.3	11	16	26	7.5		6.3	2.2	22	17		
	Cr	0.95	0.65		<1.1	1.9	0.98	1.5	1.4	<0.99	1.4		2.0	1.0	0.74	0.97	2.7	1.5		<0.52	1.4	<1.4	1.7		-
	Mn	4.6	4.3		14	2.6	3.6	8.1	8.0	5.6	12		7.7	4.5	4.8	6.5	24	5.5		3.3	4.1	4.7	6.2		
	Fe	51	100		75	35	60	300	280	66	200		120	80	63	100	530	100	33	43	64	76	91		15
	Co	<0.62	<0.092		<0.23	<0.11	<0.11	0.17	0.28	0.057	0.12		0.10	0.070	<0.43	<0.9	0.35	0.071	0.039	0.051	0.041	0.10	0.080	0.080	
	Ni	<7.5	<3.5		0.89	1.8	1.9	1.8	4.9	3.0	4.8	4.4	4.2	2.5	2.3	4.1	10	2.8	1.7	2.1	0.95	6.7	4.7		2.0
	Cu	5.7	6.6		4.1	7.3	6.8	9.0	4.1	3.5	4.3	5.5	7.8	6.6	17	4.2	18	6.4		6.2	3.5	5.5	5.0		
	Zn	54	120		150	22	42	34	41	34	40		72	34	32	40	64	39		46	25	50	25		
	As	1.7	1.4		0.95	0.88	0.52	1.0	1.7	1.8	2.4		2.0	1.6	1.9	2.8	3.2	1.9		1.6	1.2	3.4	3.2		
	Se	0.25	3.3	0.53	0.89	1.1	0.99	1.1	2.0	0.96	2.2		1.9	1.7	1.5	1.9	2.2	1.4	0.94	1.2	0.82	2.9	2.7	1.9	
	Rb	-	0.28	0.13	0.20	<0.14	<0.14	0.29	0.48	0.34	0.51	1.0	0.40	0.30	<0.77	<1.1	0.52	0.36	0.14	0.19	0.25	0.36	0.37	0.37	0.19
	Мо	0.80	0.43	0.23	0.50	1.3	0.86	2.1	0.46	0.29	0.38	2.7	0.80	1.6	0.49	<1.4	1.8	0.64	0.24	0.27	0.45	0.62	0.42	0.61	<3.5
	Sb	1.7	1.6	ZZZ	ZZZ	1.7	0.46	1.4	0.93	0.78	0.95	3.0	1.8	1.8	1.3	<6.6	1.5	1.7	0.78	0.88	0.81	1.0	1.1	0.86	<0.40
	Cs	0.043	<0.10	< 0.035	<0.035	<0.079	<0.079	0.039	0.062	0.045	0.059	0.26	0.040	0.030	<0.51	<9.4	0.066	0.049	<0.0060	<0.0060	0.027	<0.012	<0.012	<0.0060	0.021
	Ва	7.5	9.4	3.3	8.1	6.6	11	16	3.9	1.2	1.8	3.7	8.3	9.3	3.8	<10	13	9.4	3.6	2.7	3.5	3.1	2.7	6.7	2.1
	La	0.077	<0.092	0.037	0.071	<0.038	0.063	0.15	0.080	0.035	0.060	0.25	0.16	0.10	<0.51	<12	0.080	0.13	0.028	0.035	0.046	0.091	0.047	0.049	0.022
	Се	<0.057	< 0.096	0.056	0.12	0.025	0.086	0.24	0.10	0.062	0.12	<0.21	0.24	0.14	<0.44	<13	0.12	0.22	0.040	0.054	0.083	0.12	<0.092	0.050	0.035
	Sm	<0.0069	<0.12	0.0038	0.0030	<0.035	<0.035	<0.013	<0.013	<0.013	< 0.013	< 0.26	<0.04	<0.04	<0.33	<20	< 0.014	< 0.026	<0.012	< 0.012	0.0038	< 0.0057	< 0.0057	<0.012	0.0025
	Hf	0.16	<0.33	<0.023	<0.023	<0.020	<0.020	0.019	<0.16	<0.16	< 0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.018	<0.05	0.0012	0.0010	0.0068	0.0024	<0.0018	<0.0010	<0.016
	W	0.32	<0.12	<0.084	0.086	0.18	0.15	0.24	0.18	0.12	0.19	<1.4	0.30	0.20	<0.14	0.27	0.34	0.29	0.045	0.053	0.13	0.11	0.078	0.11	<0.17
	Та	-	< 0.37	<0.025	<0.025	<0.028	<0.028	0.0024	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.04	<0.018	<0.03	<0.03	<0.0014	<0.0014	-	<0.0011	<0.0015	<0.0016	<0.039
	Th	<0.031	<0.15		<0.02	<0.079	<0.079	0.013	<0.01	<0.01	<0.01	< 0.33	<0.03	<0.03	<0.37	<3.3	<0.0078	<0.025	0.0012	<0.00082	0.0073	<0.018	<0.018	0.0012	<0.0057
	Pb	7.7	6.9	2.3	4.3	5.5	8.2	5.7	9.2	10	10	23	16	9.3	7.1	9.9	12	9.0	5.3	6.1	5.2	11	12	9.1	3.7
	その他(Be)	-	<0.28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	その他(Cd)	-	0.19	-	-	-	-	0.15	-	-	-	-	-	-	-	-	-	-	-	-	0.17	0.39	0.37	-	-
炭素成分	OC1	0.16	<0.085	0.29	0.27	0	0.096	0.061	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	0.21	0	<0.044	0.16		<0.032	0.021	<0.016	<0.053	<0.026	<0.055
	OC2	1.6	1.1		1.3	1.5	1.5	1.8	1.1	0.52	0.55	1.6	1.2	<0.9	1.1	1.0	1.4	1.6		1.3	0.82	0.66	<0.32	1.2	0.66
	OC3	0.71	0.59		0.88	0.99	0.84	0.91	0.75	0.46	0.55	0.63	<0.9	<0.9	0.44	0.34	0.71	0.39	1.0	0.96	0.96	0.55	0.26	0.71	0.44
	OC4	0.81	0.31		0.62	0.63	0.67	0.61	0.24	0.14	0.20		<0.9	<0.9	0.39	0.33	0.43	0.39	0.66	0.63	0.37	0.38	0.22	0.53	0.33
	Ocpyro	1.2	3.3		1.3	1.3	1.2	1.4	1.0	0.33	0.58	1.6	0.98	0.85	0.87	0.73	0.80	0.92	1.4	1.3	1.3	0.72	0.34	1.0	
	EC1	1.9	2.1		1.6	1.5	1.7	1.6	1.8	0.59	1.1	2.3	1.6	1.2	1.2	1.5	1.7	1.5		1.4	1.3	0.83	0.49		0.77
	EC2	0.23	1.3		1.0	0.83	0.67	0.85	0.72	0.54	0.57	0.52	0.72	0.74	0.88	0.28	0.50	0.34	1.5	1.9	0.66	1.2	0.57	1.5	
	EC3	<0.11	0.060	0.14	0.11	0.075	0.040	0.099	0.054	0.019	0.10	<0.023	0.070	0.080	0.11	0	<0.032	0		0.039	0.19	<0.048	<0.010		-
	OC .	4.5	5.3		4.4	4.4	4.3	4.8	3.1	1.5	1.9	4.1	3.0	2.4	3.0	2.4	3.3	3.5	4.9	4.2	3.5	2.3	0.82	3.4	
	EC	0.95	0.16		1.4	1.1	1.2	1.1	1.6	0.82	1.2	1.2	1.4	1.1	1.3	1.1	1.4	0.92	1.5	2.0	0.85	1.3	0.72	1.6	
	WSOC	4.3	4.0	1.9	2.3	-	-	- 1	2.2	1.0	1.1	2.4	-	-	2.9	-	3.0	-	4.4	4.2	-	-	1 - 1	2.4	-

20.																		,	, , , , , , , , ,		,,,,,,	,			
自治	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査は	地点名	土浦	直岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多座	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	30.5	31.9	19.7	20.4	27.0	29.0	29.9	28.9	20.9	29.2	26.0	31.1	30.5	28.1	27.2	29.2	30.4	28.2	28.2	20.0	25.0	17.2	26.0	26.4
イオン成分	CI-	0.0015	<0.022		< 0.016	< 0.046	<0.046	0.017	< 0.096	< 0.096	< 0.096	<0.043	0.030	0.040	<0.081	0.010	<0.01	<0.01	<0.012	<0.012	0.026	<0.0082	<0.0082	<0.11	0.0054
173 2 192.73	NO3-	0.028	0.10		0.079	0.14	0.095	0.25	0.11	<0.099	<0.099	<0.049	0.25	0.35	0.14	0.040	0.037	0.080	0.047	0.060	0.020	0.018	0.017	<0.052	0.0034
	SO42-	14	15		8.2	13	14	12	13	11	13	15	17	14	14	13	14	13	12	14	5.2	13	8.8	12	12
	Na [⁺]	0.079	0.092	0.016	0.038	0.076	0.066	0.13	0.13	0.041	0.13	0.088	0.13	0.12	0.098	0.11	0.15	0.12	0.038	0.029	0.017	0.059	0.050	<0.092	0.075
	NH ₄ ⁺	5.0	5.2	2.0	2.9	4.9	5.2	4.1	5.1	3.7	4.2	5.7	5.1	5.0	4.5	4.9	4.7	5.1	4.6	4.8	1.9	5.0	3.2	5.0	4.7
	V ⁺	0.10	0.12	0.089	0.082	0.15	0.14	0.14	0.13	0.078	0.080	0.14	0.17	0.19	0.13	0.18	0.16	0.19	0.18	0.17	0.053	0.084	0.065	0.11	0.095
	N 2±																								
	Mg ²	0.013	0.014	<0.015	<0.015	0.0068	0.0066	0.024	0.021	<0.0038	0.018	0.021	0.021	0.022	0.015	0.020	0.035	0.020	0.091	0.086	0.0055	0.014	0.0097	<0.0028	<0.0094
	Ca ²⁺	0.028	<0.054	0.031	0.029	0.022	0.023	0.26	0.18	<0.044	0.33	0.067	0.080	0.050	0.061	0.15	0.11	0.040	0.035	0.042	0.026	< 0.067	< 0.067	<0.068	0.076
無機成分	Na	-	110	<21	82	69	77	120	120	60	150	83	160	150	110	110	160	140	88	65	70	100	78	120	20
	Al	<38	49	74	<55	25	31	200	82	19	400	31	70	60	<43	82	56	84	23	35	49	31	<20	18	<17
	Si	-	-	-	-	-	-	360	250	110	770	70	150	140	-	210	-	150		30	-	60	14	23	
	K		130	100	120	84	100	190	170	110	150	150	170	180	150	130	180	170		110	87	160	89	140	
	Co		53		<170	8.9	7.7	230	160	37	490	42	70	50	68	170	100	61	65	<14	47	<33	<33	21	<31
	Ca Ca	<0.018	<0.10		<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1	<0.40	<0.03	<0.03	<0.26	0.024	<0.012	<0.02		<0.0092	0.0098	<0.025	<0.025	<0.0092	<14
	30 T:																		-						
	11	34	3.1		ZZZ	1.6	4.2	21	15	4.1	31	5.2	5.0	5.0	7.6	7.0	9.9	7.5		2.5	<3.6	3.2	<1.1	1.2	
	V	7.8	6.5		5.3	7.9	11	8.4	14	11	18	9.2	19	8.9	8.4	12	20	10		5.6	2.0	16	7.8	8.0	
	Cr	<0.84	0.84		<1.1	0.87	0.99	1.6	1.4	< 0.99	1.2	2.6	2.0	2.0	1.2	1.3	9.6	1.6		0.59	1.2	<1.4	<0.60	0.81	<0.45
	Mn	4.2	5.6		6.4	5.2	6.2	8.9	12	4.2	15	7.8	12	7.7	8.9	7.7	24	8.6		3.5	5.1	5.9	5.3	5.1	3.9
	Fe	52	88	81	74	79	99	250	290	63	370	150	230	110	120	150	410	110	76	48	66	71	88	37	14
	Co	< 0.62	<0.092	<0.23	<0.23	< 0.11	< 0.11	0.18	0.19	0.054	0.17	< 0.26	0.10	0.10	< 0.43	< 0.9	0.21	0.088	0.050	0.046	0.034	0.089	0.042	0.068	<0.074
	Ni	<7.5	<3.5	1.2	2.0	3.3	4.5	3.1	4.6	2.8	5.2	3.5	6.6	3.1	5.0	4.0	8.9	3.5	1.9	1.9	1.0	4.6	2.6	2.5	1.2
	Cu	5.0	4.3	3.3	3.5	5.9	5.0	8.0	6.3	3.5	5.5	4.3	7.0	7.3	8.6	4.0	13	7.0	4.2	3.2	3.5	5.4	4.1	6.9	2.3
	Zn	22	47	17	43	99	61	47	110	30	36	36	85	45	40	37	84	48	38	53	23	21	18	28	
	As	1.7	1.7	0.94	1.3	1.7	0.87	2.2	1.9	1.8	1.9	2.4	2.8	2.6	2.5	2.1	2.6	2.5		1.4	0.92	3.3	2.1	2.6	
	Se	0.17	2.4	0.84	1.2	1.1	1.5	1.7	2.0	1.6	1.6	2.4	2.8	2.5	2.6	1.6	2.5	2.6		0.98	0.75	2.9	1.6	1.8	
	Rb	-	0.37		0.28	0.19	0.25	0.37	0.57	0.28	0.53	0.67	0.60	0.50	<0.77	<1.1	0.58	0.48		0.14	0.21	0.39	0.18	0.38	0.13
	Mo	0.35	0.41		0.94	2.8	1.2	1.1	0.43	0.24	0.37	0.92	1.0	1.1	0.39	<1.4	3.3	0.65	0.33	0.28	0.45	0.52	0.24	0.49	<3.5
	SP.	1.2	1.2		ZZZ	1.1	0.42	2.0	1.1	0.66	0.83	2.0	1.6	2.3	1.7	<6.6	1.5	2.1	0.89	0.72	1.8	1.4	0.61	0.99	<0.40
	Co	0.047	<0.10		< 0.035	0.13	<0.079	0.061	0.074	0.038	0.062	<0.26	0.080	0.050	<0.51	<9.4	0.091	0.072		<0.0060	0.030	<0.012	<0.012	<0.0060	0.016
	D ₂	2.2	3.3		3.1	4.7	4.7	12	3.6	1.5	2.9	2.5	4.7	7.8	5.7	<10	4.0	6.6		2.9	3.1	2.7	3.0	2.5	0.85
	Da L	0.077	<0.092		0.062	<0.038	0.093	0.15	0.20	0.033	0.14	0.19	0.20	0.14	<0.51	<12	0.083	0.14		0.039	0.042	0.066	0.035	0.048	0.83
	La											<0.19													
	Ce	0.17	0.11	0.087	0.10	0.11	0.19	0.28	0.15	0.054	0.24		0.30	0.20	<0.44	<13	0.13	0.26	0.053	0.055	0.068	<0.092	<0.092	0.054	0.021 <0.0017
	Sm	<0.0069	<0.12		0.0058	<0.035	<0.035	<0.013	<0.013	<0.013	0.025	<0.26	<0.04	<0.04	<0.33	<20	<0.014	<0.026		<0.012	0.0039	<0.0057	<0.0057	<0.012	
	Hf	<0.027	< 0.33		<0.023	<0.020	<0.020	0.012	<0.16	<0.16	<0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.018	<0.05		0.0013	0.0071	0.0033	0.0021	<0.0010	
	W	0.15	0.26		0.13	0.098	1.3	0.29	0.16	0.11	0.12	<1.4	0.30	0.30	<0.14	0.19	0.47	0.29		0.037	0.16	0.087	<0.025	0.14	<0.17
	Та	-	<0.37	<0.025	<0.025	<0.028	<0.028	0.0046	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.04	<0.018	<0.03	<0.03		<0.0014	-	<0.0011	<0.0015	<0.0016	<0.039
	Th	<0.031	<0.15		<0.02	<0.079	<0.079	<0.0082	<0.01	<0.01	0.025	<0.33	<0.03	0.090	<0.37	<3.3	<0.0078	<0.025		<0.00082	0.0063	<0.018	<0.018	0.0017	
	Pb	11	10		7.0	15	16	11	9.4	7.9	8.8	14	15	11	9.6	9.9	13	11	7.4	5.7	4.9	13	7.1	11	3.0
	その他(Be)	-	<0.28	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	_	-	-	-
	その他(Cd)	-	0.30	-	-	-	-	0.30	-	-	-	-	-	-	-	-	-	-	-	-	0.13	0.41	0.23	-	-
炭素成分	OC1	<0.088	<0.085		0.27	0	0	0.069	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	<0.057	0	<0.044	0.26		<0.032	<0.012	<0.016	<0.053	<0.026	<0.055
	OC2	1.5	1.0	1.3	1.4	1.4	1.2	1.4	0.77	0.47	0.38	1.5	1.0	< 0.9	1.2	0.90	1.5	2.0	1.6	1.1	0.78	0.39	< 0.32	0.89	0.59
	OC3	0.38	0.55	1.0	0.67	0.55	0.58	0.56	0.65	0.36	0.40	0.50	<0.9	<0.9	0.37	0.38	0.71	0.52	0.97	0.67	0.92	< 0.31	0.24	0.49	0.35
	OC4	0.67	0.29	0.71	0.54	0.46	0.51	0.50	0.23	0.12	0.23	0.23	< 0.9	< 0.9	0.32	0.30	0.42	0.63	0.60	0.47	0.37	0.26	0.18	0.38	0.29
	Ocpyro	0.98	1.9	1.5	1.5	0.94	1.0	1.2	0.94	0.19	0.47	1.2	0.74	0.85	0.92	0.68	0.68	1.1	1.3	0.99	1.2	0.30	0.27	0.91	0.51
	EC1	1.6	2.3		2.2	1.7	2.0	1.4	1.5	0.43	0.74	1.7	1.6	1.3	1.1	1.4	1.9	2.2		1.0	1.2	0.64	0.36	0.89	0.69
	EC2	0.21	1.3		0.96	0.91	0.88	1.2	0.90	0.47	0.47	0.52	0.74	0.68	1.1	0.43	0.47	0.36	1.3	1.5	0.70	1.1	0.52	1.1	0.60
	EC3	<0.11	0.079		0.11	0.030	0.035	0.074	0.091	0.024	0.031	<0.023	0.040	0.040	0.078	0.020	<0.032	0.020	0.058	0.038	0.18	<0.048	0.016	0.017	
	OC C	3.6	3.7		4.4	3.4	3.3	3.7	2.6	1.1	1.5	3.4	2.5	2.2	2.8	2.3	3.3	4.5	4.5	3.2	3.3	0.048	0.010	2.7	1.7
			1.8		1.8	1.7		1.5	1.6	0.73	0.77		1.6	1.2		1.2	1.7	1.5			0.88	1.4	0.69	1.1	
	EC	0.83				1./	1.9	1.5				1.0	1.6	1.2	1.4	1.2		1.5		1.5	0.88	1.4	0.63		
	WSOC	2.9	4.3	2.8	2.5	-	-	-	1.3	0.58	0.64	1.9	-	-	3.0	-	2.7	-	4.1	4.0	-	-	-	1.9	_

204-1-	Z9 0月4	ロルっち	10 H 2 F	3 & C														(PM2. 5	,灰系以	分, 17	ン以分	: μg/m	無機成:	方:ng/m	1)
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	17.5	19.0		17.6	23.0	28.0	24.4	15.1	4.3	15.0	10.8	19.2	22.0	17.0	10.7	11.6	21.6		20.6	25.1	21.5	3.2	23.1	19.6
イオン成分	CI-	0.0017	<0.022		<0.016	<0.046	<0.046	0.015	<0.096	<0.096	< 0.096	<0.043	0.030	0.030	<0.081	<0.01	<0.01	<0.01	<0.012	<0.012	0.020	<0.0082	<0.0082	<0.11	0.0039
	NO3-	0.026	0.12		<0.051	0.077	0.067	0.22	<0.099	<0.099	<0.099	0.10	0.13	0.18	0.10	0.050	0.055	0.070		0.036	0.093	0.025	0.030	<0.052	0.024
	SO42-	7.0	8.2		6.5	10	8.6	9.1	4.5	1.8	3.6	5.1	7.6	9.7	7.9	5.4	5.5	9.0		8.7	7.7	11	0.66	10	8.1
	Na ·	0.078	0.11		0.045	0.077	0.078	0.10	0.13	0.067	0.11	0.097	0.12	0.091	0.075	0.14	0.13	0.090		<0.0063	0.023	<0.056	0.19		0.060
	NH ₄ [*]	2.6	2.8		2.3	3.5	2.8	3.1	1.5	0.55	1.1	2.0	2.6	3.3	2.6	2.2	1.7	3.5		3.1	2.7	3.8	0.14	4.4	3.2
	K ⁺	0.051	0.12	0.070	0.052	0.12	0.23	0.096	0.057	0.021	0.030	0.23	0.13	0.10	<0.12	0.10	0.083	0.12	0.14	0.12	0.075	0.075	0.026	0.13	0.067
	Mg ²⁺	0.012	0.016	<0.015	<0.015	0.0066	<0.00063	0.018	0.016	0.0041	0.014	0.015	0.019	0.015	0.011	0.020	0.025	0.010	0.081	0.082	0.0085	0.012	0.011	<0.0028	<0.0094
	Ca ²⁺	0.020	<0.054	0.038	0.030	0.017	< 0.0053	0.29	0.11	<0.044	0.17	0.034	0.060	0.040	0.044	0.080	0.058	0.030	<0.035	< 0.035	0.047	< 0.067	< 0.067	<0.068	0.027
無機成分	Na	-	93	<21	73	130	76	120	200	63	180	100	150	110	93	100	120	110	69	37	52	84	150	100	37
	Al	42	37	83	<55	31	26	260	83	<5.8	210	16	40	40	<43	31	21	61	20	23	100	32	72	17	<17
	Si	-	-	-	-	-	-	460	260	21	550		90	100	-	88	-	130		23	-	31	<12		-
	K	-	120		96	150	160	140	90	25	80		140	110	63	61	64	110		58	140	120	29		44
	Ca	-	35		<170	8.9	7.3	350	180	11	420		60	50	120	71	50	56		<14	76	52	280	120	<31
	Sc	<0.018	<0.10		<0.012	<0.029	<0.029	<0.18	<0.1	<0.1	<0.1		<0.03	<0.03	<0.26	<0.023	<0.012	<0.02		<0.0092	0.023	<0.025	<0.025		<14
	Ti	26	1.9		ZZZ	3.3	2.6	27	14	< 0.67	25		4.0	4.0	7.1	3.4	3.4	6.7		1.9	15	2.6	<1.1	1.2	<2.9
	V	7.4 <0.84	6.4		4.2 <1.1	6.0 1.3	7.0	6.2	15 1.2	3.9	15 <0.99		1.0	6.5 1.0	5.7 0.98	6.0	1.2	6.4		2.9	2.4	21 <1.4	1.0 <0.60	8.5 2.4	4.3
	Mn	2.4	0.78 4.9		4.5	6.1	3.1 5.2	1.8 9.9	8.4	<0.99 <2.7	11		8.7	5.5	6.0	0.44 2.5	7.4	1.5 5.2		1.5 2.2	1.3 5.9	4.5	1.8		0.59 3.5
	Fe	36	73		64	83	95	300	330	11	310	110	180	84	95	110	110	86		33	98	52	1.0		17
	Co	<0.62	<0.092		<0.23	<0.11	<0.11	0.19	0.21	<0.022	0.11		0.090	0.070	<0.43	<0.9	0.044	0.062		0.032	0.053	0.084	0.018	0.13	
	Ni	<7.5	<3.5		1.4	3.5	2.5	2.3	4.2	1.2	3.7	2.0	4.4	2.3	0.85	1.7	4.2	2.5		0.88	1.0	6.1	0.43	2.8	1.5
	Cu	1.6	3.4		2.3	6.9	6.5	5.5	2.9	<1.4	<1.4	1.6	5.2	5.4	12	1.9	6.2	4.7		2.2	4.1	4.5	<0.48	5.6	1.5
	Zn	<15	28	15	20	47	39	37	89	3.6	9.9	20	56	36	24	13	18	32	36	24	27	29	98		20
	As	0.71	0.88	0.83	1.3	1.1	0.73	1.4	0.63	0.18	0.43	0.87	1.5	1.5	1.0	<0.89	0.75	1.4	1.3	0.71	1.4	2.2	<0.027	2.2	0.83
	Se	0.11	0.89	0.75	0.94	0.98	0.72	1.2	<0.58	<0.58	<0.58	1.6	1.7	2.3	<0.66	<0.99	0.54	1.4	1.1	0.48	0.93	1.9	< 0.065	1.6	0.42
	Rb	-	0.24		0.23	0.20	0.14	0.25	0.28	<0.03	0.22	0.48	0.40	0.29	<0.77	<1.1	0.12	0.28		0.075	0.30	0.27	<0.028	0.30	0.16
	Мо	0.24	0.37		0.63	1.5	1.1	0.91	0.22	<0.068	<0.068	<0.45	1.8	0.50	<0.34	<1.4	0.41	0.39		0.15	0.50	0.37	<0.014	0.50	<3.5
	Sb	1.3	1.0		ZZZ	1.1	0.62	1.5	0.53	0.051	0.19	1.1	1.3	1.3	1.0	<6.6	0.52	1.5		0.54	1.2	1.1	0.049	0.91	<0.40
	Cs	0.017	<0.10		<0.035	<0.079	<0.079	0.050	0.034	<0.012	0.018	<0.26	0.040	<0.03	<0.51	<9.4	<0.014	0.040		<0.0060	0.035	<0.012	<0.012		0.020
	Ва	1.5 0.068	5.7 <0.092		2.5 0.046	7.6 <0.038	0.090	0.13	5.0 0.18	<0.0093	0.068	1.4 0.23	4.4 0.14	4.8 0.10	3.3 <0.51	<10 <12	2.2 0.058	4.3 0.19		1.7 0.018	5.1 0.057	2.6 0.079	0.24	2.8 0.046	2.0 0.017
	La Ca	0.068	0.092	0.041	0.046	0.038	0.090	0.13	0.18	<0.0093	0.068	<0.21	0.14	0.10	<0.44	<13	0.038	0.19		0.018	0.057	0.079	<0.010	0.046	0.017
	Sm	<0.0069	<0.11		0.0053	<0.035	<0.035	<0.013	<0.013	<0.013	<0.013	<0.21	<0.04	<0.04	<0.44	<20	<0.014	<0.026		<0.012	0.0069	<0.0057	<0.092	<0.012	<0.0017
	Hf	<0.027	<0.33	<0.023	<0.023	<0.020	<0.020	0.015	<0.16	<0.16	<0.16	<0.13	<0.07	<0.07	<0.48	<0.026	<0.014	<0.05		<0.00092	0.026	0.0053	<0.0018		<0.016
	W	<0.074	<0.12	0.11	0.11	0.18	1.6	0.25	0.25	<0.06	<0.06	<1.4	0.20	0.20	<0.14	0.070	0.088	0.14		<0.028	0.17	0.033	<0.025	0.53	<0.17
	Та	-	< 0.37	<0.025	<0.025	<0.028	<0.028	0.0036	<0.027	<0.027	<0.027	<0.15	<0.02	<0.02	<0.04	<0.018	<0.03	<0.03	<0.0014	< 0.0014	-	< 0.0011	< 0.0015		<0.039
	Th	<0.031	<0.15	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.01	<0.01	<0.01	< 0.33	<0.03	0.050	< 0.37	<3.3	<0.0078	<0.025	0.0013	<0.00082	0.013	<0.018	<0.018	<0.00092	<0.0057
	Pb	7.7	5.9	4.4	4.7	14	11	8.3	7.1	1.9	2.6	7.8	9.5	7.1	4.7	2.3	3.0	6.6	6.1	3.5	8.2	8.4	0.13	9.1	3.7
	その他(Be)	-	<0.28	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-			-
8	その他(Cd)	-	0.14	-		-	-	0.22	-	-	-	-	-	-	-	-	-	-	-		0.22	0.29	<0.015		
炭素成分	OC1	<0.088	<0.085	0.51	0.32	0	0	0.12	<0.04	<0.04	<0.04	<0.039	<0.9	<0.9	<0.057	0	<0.044	0.13		<0.032	<0.012	<0.016	<0.053	<0.026	<0.055
	OC2	1.2	0.79	1.8	1.3	1.4	1.0	1.3	0.46	0.24	0.20	1.2	<0.9	<0.9	0.80	0.55	0.96	1.6		0.90	0.99	0.39	<0.32	0.75	0.46
	OC3	0.44 0.57	0.48		0.64	0.68	0.62	0.62 0.51	0.41	0.096	0.18	0.32	<0.9	<0.9 <0.9	0.23	0.19	0.39	0.37		0.52	1.2	0.33 0.26	0.21	0.42	0.34
	OC4	0.57	1.4		0.60	0.52 0.99	0.50	1.1	0.18	<0.075 <0.095	0.12	0.14 0.64	<0.9 0.59	0.72	0.17 0.55	0.090	0.20	0.33		0.45 0.83	0.45 1.7	0.26	0.11 0.026	0.33 0.75	0.23 0.49
	Ocpyro EC1	1.3	1.4		2.0	1.5	1.5	1.1	0.83	0.095	0.34	0.64	1.2	1.0	0.55	0.25	0.36	1.5		0.83	2.0	0.42	0.026	0.75	0.49
	EC2	0.23	1.0		0.80	0.93	0.88	1.1	0.69	0.034	0.34	0.73	0.69	0.90	0.03	0.45	0.46	0.45		1.2	0.72	1.1	0.033	0.70	0.48
	EC3	<0.11	0.045		0.11	0.085	0.025	0.13	0.087	<0.01	0.023	<0.023	0.050	0.14	0.065	0.20	<0.032	0.010		0.045	0.19	<0.048	<0.010		<0.016
	OC	3.0	2.9		4.1	3.6	2.9	3.7	1.9	0.34	0.84	2.3	2.2	2.1	1.8	1.1	1.9	3.4		2.7	4.3	1.4	0.35	2.2	1.5
	EC	0.75	1.2		1.7	1.5	1.7	1.4	0.83	0.23	0.36	0.66	1.4	1.3	0.91	0.46	0.76	0.99	1.3	1.2	1.2	1.4	0.25	0.92	0.61
	WSOC	2.0	3.0		2.1	-	-	-	0.75	< 0.55	0.81	0.93	-	-	1.7	-	1.3	-	3.8	2.8	-	-	-	2.6	-

± 4 1 00	期間平均値(7月22日~8月5日まで)	
754-I-3U	期间半均間(/月//日~8月5日まじ)	

(PM2.5, 炭素成分, イオン成分: μg/m³ 無機成分: ng/m³)

表4-1-	30 期间	平均堰	!(/ <u>/</u> ]2	2 <u>日∼8</u>	<u> 月 5 日 5</u>	もで)												(PM2.5,	炭素成	分,イオ	⁻ ン成分:	$\mu$ g/m ³	無機成り	分:ng/m³)	)
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都		神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県		浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	23.7 0.018	20.2 0.011	14.6 0.0080	20.5 0.0080	21.0 0.023	21.7 0.023	22.8 0.020	23.0 0.048	16.3 0.048	21.8 0.048	21.9 0.038	24.7 0.051	23.0 0.060	21.7	22.0 0.013	0.011	22.3 0.011	0.0060	21.3 0.0060	16.2 0.014	21.1 0.019	18.2 0.0045	21.6 0.055	19.8
イオン成分	NO3-	0.018	0.011	0.0080	0.0080	0.023	0.023	0.020	0.048	0.048	0.048	0.038	0.031	0.060	0.14	0.013	0.011	0.011	0.0060	0.0060	0.014	0.019	0.0045	0.055	0.027
	SO42-	8.1	7.3	3.7	5.8	7.7	7.7		8.4	6.3	8.1	9.3	6.6	8.1	8.6	9.7	9.7	8.1	7.2	8.2	4.9	8.8	7.8	7.5	6.9
	No ⁺	0.14	0.094	0.017	0.073	0.090	0.10		0.16	0.12	0.19	0.15	0.14	0.13	0.15	0.25	0.23	0.16	0.067	0.035	0.042	0.21	0.15	0.13	0.14
	NILL +	3.1	2.6	1.3	2.0	2.8	2.8	2.5	3.0	2.1	2.7	3.5	2.2	2.8	2.9	3.5	3.2	3.1	2.6	2.9	1.7	3.4	3.3	3.2	2.6
	NH ₄ ⁺	0.079								0.064	0.077		0.094	0.17		0.17	0.13		0.16		0.066	0.078	0.090		0.089
	K 2±		0.15	0.052	0.086	0.14	0.16	0.15	0.10			0.14			0.19			0.18		0.17				0.14	
	Mg ² ⁺	0.021	0.016	0.0075	0.013	0.0083	0.0077	0.023	0.018	0.0096	0.025	0.030	0.020	0.025	0.020	0.036	0.042	0.023	0.081	0.087	0.0095	0.029	0.022	0.013	0.014
- 100 B 11	Ca ²⁺	0.043	0.027	0.034	0.044	0.014	0.016	0.16	0.11	0.022	0.16	0.046	0.053	0.037	0.046	0.10	0.074	0.034	0.037	0.029	0.027	0.069	0.053	0.034	0.042
無機成分	Na	-	103	16	96	89	84		191	122	212	132	229	184	138	190	200	166	117	66	71	277	192	220	91
	Al O:	50 –	36	56	44	20	21	129	53	9.6	113	23	44	48	_	43	25	49	14	21	48	30	23	17	
	ν 5ι		159	- 55	139	95	99	198 177	144 137	37 85	280 117	39 114	73 146	69 173	119	104 106	108	75 149	19 100	19 89	96	28 135	23 130	19 182	53
	Co		30	92	85	4.5	7.4		137	22	214	22	47	43	89	96	52	43	43	16	39	98	62	98	18
	Sc	0.011	0.16		0.011	0.015	0.015	0.090	0.050	0.056	0.058	0.20	0.015	0.015	-	0.013	0.0060	0.010	0.0046	0.0046		0.013	0.013	0.0046	7.0
	Ti	12	2.8	ZZZ	ZZZ	2.1	3.1	13	9.8	2.9	13	4.1	3.6	3.5	6.9	4.9	3.8	5.5	0.90	1.4	4.8	2.1	1.8	0.93	2.4
	V	7.5	4.6	1.9	4.4	4.8	6.0		16	10	27	9.8	16	7.7	10	18	23	7.3	4.8	3.1	2.0	23	14	9.8	6.9
	Cr	1.4	0.66	0.78	1.1	0.87	1.1	1.6	2.5	0.61	1.0	2.8	1.8	1.6	1.3	1.8	3.3	1.4	0.48	0.58	0.94	2.0	0.71	2.4	0.40
	Mn	6.2	3.7	3.3	6.3	4.5	4.6	7.2	8.7	2.7	7.7	5.6	8.5	6.2	6.4	7.0	14	5.9	2.6	2.1	4.5	3.8	5.4	3.7	3.3
	Fe	69	61	55	85	70	87	187	259	46	197	142	173	105	120	162	269	98	36	30	57	54	71	30	19
	Со	0.91	0.051	0.15	0.12	0.068	0.064	0.10	0.19	0.028	0.093	0.13	0.091	0.077	-	0.45	0.22	0.052	0.030	0.024	0.037	0.070	0.068	0.054	0.046
	Ni	6.6	2.0	0.70	1.4	2.4	2.2		4.7	2.8	7.0	3.4	5.4	3.0	3.3	5.6	7.7	2.7	1.7	1.1	0.87	7.7	4.1	3.0	2.1
	Cu	3.2	4.4	1.8	3.6	5.3	7.2		3.6	1.8	3.3	2.8	6.7	7.1	51	3.7	6.2	5.6	3.3	3.0	4.0	4.3	4.2	4.3	2.0
	Zn	29 0.91	0.87	13 0.55	39 0.91	38	46 0.48	36 0.98	65 0.82	16 0.64	0.89	1.3	51	32 1 1	29 1.4	27 1.1	1.2	30	0.68	0.60	20	44 1 4	60	43 1.2	19 0.71
	AS So	0.91	1.5	0.55	1.0	0.79 0.91	0.48	1.2	1.1	0.64	0.89	1.3	1.3	1.1	1.4	1.1	1.5	1.0 1.5	0.68	0.60	0.96 0.68	1.4	1.8 1.5	0.99	0.71
	Rb	- 0.14	0.22	0.13	0.22	0.11	0.00	0.23	0.33	0.00	0.26	0.41	0.36	0.28	-	0.55	0.28	0.25	0.005	0.065	0.00	0.16	0.21	0.33	0.43
	Mo	0.65	0.44	0.51	0.73	1.3	0.92	0.98	1.0	0.32	0.39	1.5	1.4	0.78	0.66	1.3	2.0	0.57	0.27	0.18	0.43	0.63	0.56	0.55	1.8
	Sb	1.1	1.3	ZZZ	ZZZ	1.3	0.75		0.82	0.39	0.52	2.0	1.5	1.9	1.4	3.3	1.0	1.6	0.90	0.81	1.1	0.97	1.2	0.81	0.51
	Cs	0.028	0.050	0.018	0.022	0.046	0.040	0.036	0.045	0.017	0.030	0.15	0.048	0.021	-	4.7	0.046	0.035	0.0030	0.0030	0.023	0.0060	0.0060	0.0030	0.021
	Ва	2.7	6.8	2.6	6.8	5.3	6.1	12	3.9	1.3	2.5	2.6	6.8	9.9	5.8	5.0	4.3	7.1	3.5	3.9	4.6	4.0	3.4	6.1	3.3
	La	0.097	0.072	0.038	0.085	0.062	0.076	0.18	0.24	0.034	0.083	0.19	0.31	0.17	-	6.0	0.11	0.18	0.069	0.026	0.038	0.075	0.059	0.045	0.036
	Ce	0.17	0.19	0.060	0.12	0.091	0.089	0.23	0.17	0.031	0.10	0.11	0.29	0.19	-	6.5	0.12	0.32	0.057	0.035	0.063	0.091	0.073	0.052	0.057
	Sm	0.0035	0.060	0.0045	0.0038	0.018	0.018		0.0065	0.0065	0.0084	0.13	0.026	0.020	-	10	0.0070	0.013	0.0060	0.0060	0.0031	0.0029	0.0029	0.0060	0.0026
	HT.	0.050 0.28	0.20 0.24	0.012 0.10	0.012 0.17	0.010 0.21	0.010		0.080	0.14	0.12	0.065 0.70	0.035 0.34	0.035 0.27	0.26	0.013	0.010	0.025 0.26	0.0012	0.00064	0.0096 0.14	0.0023	0.0012 0.17	0.00058	0.035 0.24
	Ta	- 0.20	0.24	0.10	0.17	0.014	0.017		0.49	0.10	0.16	0.75	0.010	0.010	- 0.20	0.0090	0.015	0.20	0.00079	0.00070	- 0.14	0.00055	0.00075	0.00080	0.021
	Th	0.016	0.075	0.010	0.010	0.040	0.040	0.0047	0.0056	0.0050	0.0069	0.17	0.015	0.025	-	1.7	0.0039	0.013	0.00081	0.00071	0.0059	0.0090	0.0090	0.00060	0.012
	Pb	6.4	5.7	2.6	4.6	10.0	10		7.6	3.7	5.6	8.5	10.0	6.3	5.0	6.4	6.3	5.8	3.6	3.3	5.3	5.8	10	5.3	3.5
	その他(Be)	-	0.14	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.18	-	-	-	-	0.18	-	-	-	1	-	-	-	-	-	-	-	-	0.17	0.27	0.28	-	-
炭素成分	OC1	0.12	0.043	0.32	0.36	0.067	0.025	0.080	0.020	0.020	0.020	0.020	0.45	0.45	0.21	0.082	0.022	0.22	0.020	0.017	0.0097	0.0080	0.027	0.013	0.028
	OC2	1.5	1.0	1.1	1.4	1.6	1.3	1.7	1.00	0.72	0.78	1.6	1.1	0.80	1.3	1.3	1.6	1.8	1.5	1.3	0.63	0.49	0.32	1.1	0.81
	OC3	0.78	0.68	0.92	1.1	1.1	0.93	0.92	0.76	0.53	0.63	0.63	0.59	0.66	0.69	0.58	0.88	0.76	1.1	0.90	0.90	0.49	0.49	0.83	0.63
	OC4	0.80	0.35	0.58	0.71	0.70	0.63		0.32	0.25	0.31	0.30	0.50	0.49	0.44	0.47	0.53	0.54	0.73	0.59	0.34	0.39	0.37	0.57	0.43
	Ocpyro EC1	1.1	1.9 2.1	1.00	1.2 1.9	1.1	0.97	1.3	1.2	0.76 0.90	1.0 1.4	1.6	0.78 1.7	0.79 1.3	0.94	0.74 1.6	0.91	1.1	1.2	0.97	0.87	0.62 0.78	0.57 0.63	0.98	0.73 0.77
	ECI	0.20	1.1	0.92	0.89	0.79	0.79	1.17	0.71	0.90	0.53	0.53	0.64	0.66	0.92	0.31	0.55	0.34	1.3	1.0	0.46	1.1	0.63	1.0	0.77
	EC3	0.20	0.053		0.89	0.79	0.039	0.98	0.71	0.039	0.059	0.53	0.046	0.057	0.92	0.0086	0.031	0.012	0.034	0.039	0.46	0.024	0.0081	0.020	0.015
	OC	4.3	4.0		4.8	4.5	3.9		3.3	2.3	2.8	4.1	3.1	2.9	3.5	3.2	3.9	4.5	4.5	3.7	2.7	1.9	1.6	3.5	2.6
	EC	0.88	1.3	1.3	1.7	1.5	1.6		1.4	0.63	0.90	1.2	1.6	1.3	1.3	1.2	1.6	1.1	1.2	1.3	0.84	1.2	0.80	1.2	0.90
	WSOC	3.5	3.7	2.5	3.2	-	-	-	2.3	1.7	1.5	2.4	-	-	3.3	-	3.2	-	4.0	4.0		-	-	3.2	-
								※ 其 木 / +	14日間の				四/十元 少	如公のみ	計算から除	外。また		R値未満σ	値につい	ケル 栓	山下阳庙	ひ1/2左田	ハイ加門	平均値を算	5 H-1 t-

※基本は14日間の期間平均値。ただし、欠測期間は該当部分のみ計算から除外。また、検出下限値未満の値については、検出下限値の1/2を用いて期間平均値を算出した。

20.		<u> </u>		,														,	,		,,,,,,	,			
自治	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	15.5	ZZZ	15.3	16.2	19.0	16.0	17.4	14.0	8.8	14.0	12.4	13.9	14.6	15.5	16.1	14.7	17.3	26.5	20.9	28.5	24.9	29.5	25.4	29.4
イオン成分	CI-	0.27	ZZZ	0.071	0.038	<0.046	0.080	0.33	0.11	<0.096	< 0.096	0.073	0.22	0.090	0.15	0.16	0.19	0.21	0.060	0.077	0.056	0.033	0.12	<0.016	<0.018
1-3 = 19073	NO3-	0.92	ZZZ	1.6	0.96	1.3	1.5	1.6	0.90	0.10	0.60	0.66	1.2	0.82	1.1	1.5	1.6	0.79	1.2	1.1	1.3	0.92	1.5	0.29	0.79
	SO42-	2.2		2.2	2.8	2.9	3.0	2.6	2.6		2.2	3.0	2.0	3.5	3.5		2.6	4.2			8.3	7.6			8.7
	5042-		ZZZ							1.8						3.5				7.5			8.3	7.1	
	Na [⁺]	0.24	ZZZ	0.021	0.050	0.10	0.21	0.19	0.13	0.041	0.054	0.22	0.27	0.24	0.16	0.28	0.38	0.25	0.13	0.060	0.068	0.25	0.22	0.16	0.17
	NH ₄ ⁺	0.96	ZZZ	1.3	1.3	1.3	1.3	1.3	1.0	0.68	1.1	0.94	0.93	1.3	1.5	1.1	1.2	1.6	3.5	3.1	3.3	3.1	3.7	2.7	3.3
	K ⁺	0.16	ZZZ	0.11	0.15	0.11	0.17	0.15	0.11	0.068	0.095	0.15	0.12	0.13	0.10	0.34	0.14	0.22	0.32	0.26	0.21	0.15	0.15	0.16	0.17
	2+	0.028		<0.015	<0.015	0.0083	0.034	0.024	0.015	<0.0038	<0.0038	0.026	0.034	0.031	<0.024	0.040	0.039	0.040		<0.036	0.011	0.025	0.023	0.023	0.016
	Mg ⁻		ZZZ																						
	Ca ²⁺	0.031	ZZZ	0.026	0.046	0.017	0.045	0.072	0.049	<0.044	<0.044	0.063	0.040	0.040	0.055	0.11	0.049	0.050	<0.063	< 0.063	0.058	0.089	0.063	0.29	<0.062
無機成分	Na	-	ZZZ	27	63	220	130	190	230	77	240	350	330	260	200	220	330	260	190	93	100	320	310	290	240
	Al	24	ZZZ	<55	<55	61	33	98	43	<15	31	27	40	50	28	18	15	53	88	25	140	56	27	170	82
	Si	-	-	-	-	-	-	170	220	100	140	43	70	80	-	120	-	130	68	18	-	57	61	95	-
	K	_	ZZZ	120	140	270	170	160	200	140	180	190	140	130	140	160	160	170	260	140	280	250	250	250	230
	Ca	_	ZZZ	<170	<170	4.2	6.6	79	120	21	63	31	40	50	58	110	36	66		30	94	<87	190	350	56
	Sc	0.025	ZZZ	<0.012	<0.012	<0.029	<0.029	<0.18	<0.079	<0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023	<0.029		<0.012	0.027	<0.12	<0.12	<0.022	<0.059
	T:	2.1				0.68		11	14	4.1	5.7	3.2	5.0	3.0	7.7	6.6	3.7	5.2	1.6	1.1	11	2.6	2.3	4.7	9.9
	11		ZZZ	222 0.54	ZZZ		1.9	0.96	1.7		0.81			0.80				1.0			1.2				
	V	0.93	ZZZ		1.1	1.0	1.1			0.76		1.3	0.70		1.5	5.3	4.3			0.99		4.1	3.9	3.2	3.2
	Cr	< 0.49	ZZZ	<1.1	1.4	2.7	2.5	1.9	1.8	<0.57	< 0.57	<0.73	1.2	<0.9	1.2	2.0	1.5	1.4		<1.0	1.1	<3.3	2.7	3.3	3.7
	Mn	12	ZZZ	7.1	11	9.5	6.5	8.5	18	2.9	6.5	6.7	5.7	5.1	9.3	16	7.3	15		3.4	9.4	8.4	8.7	9.3	13
	Fe	96	ZZZ	77	72	130	22	140	250	48	120	87	90	90	150	370	110	140		30	130	76	120	110	190
	Co	<0.011	ZZZ	<0.23	<0.23	<0.11	<0.11	0.066	<0.048	<0.048	0.052	<0.45	<0.1	<0.1	<0.21	< 0.94	0.063	0.040		0.020	0.061	0.040	<0.22	0.070	0.33
	Ni	<1.1	ZZZ	<0.85	<0.85	<0.19	1.2	0.89	0.92	<0.21	1.3	0.90	<0.9	<0.9	<0.15	2.3	2.0	0.70	<5.0	<0.52	0.84	1.3	1.4	1.2	2.3
	Cu	8.0	ZZZ	2.0	3.5	4.0	4.1	5.4	2.7	0.90	1.8	3.8	4.0	<3	120	1.8	4.7	4.7	<4.8	3.1	4.7	6.7	5.4	4.2	5.1
	Zn	310	ZZZ	35	33	47	290	38	69	16	30	17	28	27	24	32	31	78	22	<5.0	41	<32	80	27	43
	As	0.71	ZZZ	1.4	2.8	1.1	1.8	1.1	0.70	0.37	0.75	0.96	0.80	1.0	1.6	<0.83	1.0	1.9	2.2	1.5	2.6	2.0	2.2	2.4	2.7
	Se	0.12	ZZZ	0.42	0.61	0.69	0.69	0.73	0.59	0.42	0.94	0.63	0.70	0.60	3.5	1.6	0.81	1.6	1.4	0.71	1.3	1.2	1.5	1.6	1.7
	Rb	-	ZZZ	0.24	0.30	0.46	0.33	0.39	0.48	0.089	0.32	0.47	0.29	0.30	<0.44	<1.1	0.32	0.37	0.52	0.33	0.75	0.48	0.49	0.54	0.88
	Мо	1.6	ZZZ	1.2	0.73	0.78	0.40	1.6	0.47	<0.12	0.22	0.61	0.60	0.30	0.50	2.0	0.82	0.38	0.46	0.24	0.73	0.46	1.0	0.52	5.5
	Sb	1.5	ZZZ	ZZZ	ZZZ	0.85	1.8	1.9	0.94	0.14	0.63	1.0	1.3	1.0	1.4	<6.6	1.2	1.4		0.53	1.4	2.9	2.7	0.89	1.7
	Cs	0.037	ZZZ	<0.035	<0.035	<0.079	<0.079	0.032	0.069	<0.017	0.038	<0.082	0.040	0.050	<0.15	<9.4	0.040	0.035		0.042	0.084	0.070	<0.12	0.077	0.25
	Ra	1.6	ZZZ	1.9	2.9	4.0	<2.3	4.4	8.5	1.9	4.1	1.9	4.7	3.8	4.4	<10	5.3	3.5		1.0	2.6	3.7	4.4	2.4	3.3
	l a	0.11	ZZZ	<0.012	0.090	0.15	0.083	0.13	0.15	<0.023	0.17	<0.30	0.10	<0.1	<0.18	<12	0.057	0.12		0.036	0.12	<0.10	0.13	0.11	0.32
	Co	0.26	ZZZ	<0.012	0.20	0.22	0.12	0.18	0.21	<0.021	0.16	<0.35	0.30	<0.1	0.15	<13	0.17	0.20	0.11	0.051	0.12	0.12	0.21	0.14	0.48
	Sm	<0.0044	ZZZ	<0.0019	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.32	<0.3	<0.1	<0.22	<20	<0.018	<0.021		<0.0029	0.010	<0.12	<0.12	<0.0078	0.17
	OIII	0.29	ZZZ	<0.0013	<0.0013	<0.033	0.033	0.0091	<0.027	<0.027	<0.027	<0.32	0.20	0.20	<0.22	<0.03	<0.018	<0.021	0.0024	0.00099	0.011	<0.0085	<0.0085	0.0035	0.17
	\/\	0.26	ZZZ	0.023	0.023	<0.020	<0.048	<0.16	<0.023	<0.023	<0.023	7.3	<0.2	<0.20	<0.11	0.15	0.29	0.014	<0.23	0.00033	0.26	0.0087	0.003	0.0033	0.13
	VV T-	- 0.20		<0.025	<0.025	<0.040	<0.040	<0.0022	<0.027	0.037	<0.07	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035	<0.012	<0.00077	< 0.0010	- 0.20	<0.0028	< 0.0053	<0.0010	0.27
	Ti Ti		ZZZ																						
	In Di	<0.09	ZZZ	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.02	<0.02	<0.02	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012	<0.014	0.0029	0.0021	0.020	<0.17	<0.17	<0.023	0.71
	Pb	5.0	ZZZ	5.5	7.3	8.8	8.7	6.2	9.3	2.2	6.5	11	5.4	5.8	7.1	9.4	6.6	8.2	13	8.6	14	14	13	12	13
	その他(Be)	-	ZZZ	-	-	-	_	0.21	-	-	-	-	-	-	-	-	-	_	-	-		-	-	-	
	その他(Cd)	-	ZZZ	-	-		-	-	-	-		-	-	-	-	-	-		-	-	0.39	0.41	0.40	-	-
炭素成分	001	0.13	ZZZ	0.40	0.53	0.20	0.14	0.36	<0.04	<0.04	0.044	0.11	<0.4	<0.4	0.25	0.21	0.23	0.28	0.093	0.067	0.041	<0.028	<0.028	<0.019	0.033
	OC2	1.2	ZZZ	0.76	1.6	1.5	1.2	1.0	0.97	0.56	0.56	1.2	0.50	0.60	1.1	1.4	1.6	1.2	2.3	1.7	0.88	1.7	1.5	1.6	2.3
	OC3	1.0	ZZZ	0.80	1.6	1.7	1.3	1.2	0.76	0.54	0.55	0.68	0.70	0.70	0.94	0.99	1.1	0.81	0.77	0.53	0.84	0.64	0.59	0.59	0.74
	OC4	0.68	ZZZ	0.60	1.2	0.92	0.71	0.69	0.39	0.28	0.31	0.40	0.50	0.50	0.56	0.56	0.70	0.53	0.42	0.27	0.44	0.34	0.31	0.30	0.34
	Ocpyro	0.94	ZZZ	0.95	1.7	1.1	0.69	0.96	0.99	0.74	0.41	1.3	0.50	0.60	0.88	0.68	0.56	0.87	1.8	1.2	1.4	1.3	1.3	1.3	1.6
	EC1	1.6	ZZZ	1.7	3.4	2.4	1.8	1.8	1.5	0.84	0.85	2.2	1.3	1.3	1.6	1.7	1.7	1.9	2.5	1.5	2.3	2.4	2.2	1.8	2.3
	EC2	0.30	ZZZ	0.70	0.63	0.58	0.42	0.41	0.60	0.45	0.52	0.52	0.40	0.60	0.53	0.34	0.48	0.29	0.92	0.84	0.70	0.98	0.84	0.86	0.99
	EC3	<0.12	ZZZ	0.035	0.026	0.035	0.015	0.049	0.071	0.044	0.065	0.016	<0.09	<0.09	0.022	0.040	<0.029	0.010		0.028	0.39	<0.014	<0.014	0.025	0.038
	OC	4.0	ZZZ	3.5	6.6	5.4	4.0	4.2	3.1	2.1	1.9	3.7	2.0	2.0	3.7	3.8	4.2	3.7	5.4	3.8	3.6	4.0	3.7	3.8	5.0
	EC	0.96	ZZZ	1.5	2.4	1.9	1.5	1.3	1.2	0.59	1.0	1.4	1.2	1.2	1.3	1.4	1.6	1.3	1.7	1.2	2.0	2.1	1.7	1.4	1.7
	WSOC	2.1	ZZZ	1.8	2.7				1.8	ZZZ	1.8		- 1.2		2.8	- 1.4	3.3	- 1.3	_ './				_ './	3.0	
	11300	۷.۱	222	1.0	۷.1				1.0	222	1.0	۷.0			۷.0		0.0							5.0	

衣4-1-	32 10月	22 🗆 /J	יטוטי	-123 🗖 a	チ ピ													(PM2.5	,灰素风	分,イオ	ン成分	: μg/m	無機)及	分:ng/m	1)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	9.9	15.3		12.5	16.0	15.0	14.5	13.9	10.0	16.9	12.1	13.0	15.1	14.5	15.3	13.4	15.7	24.5	17.5	11.1	24.8	28.6	23.5	26.8
イオン成分	CI-	0.051	0.078		<0.016	<0.046	<0.046	0.077	< 0.096	<0.096	< 0.096	<0.036	0.070	0.050	<0.049	0.040	0.031	0.050	0.0050	0.12	0.064	0.044	0.36	0.028	<0.018
1.3 - 13433	NO3-	<0.32	1.3		0.39	0.94	0.88	0.90	0.33	<0.099	0.42	0.25	0.70	0.84	0.63	0.74	0.42	0.75	0.77	2.5	0.76	1.1	2.2	0.23	0.83
	SO42-	2.1	3.2		2.2	3.3	3.3	3.0	2.2	1.7	3.2	3.8	2.8	3.9	3.6	4.7	3.6	4.4		5.4	2.4	7.9	8.5	7.2	7.5
	N-+	0.16	0.13		0.035	0.12	0.13	0.14	<0.04	<0.04	0.10	0.17	0.18	0.16	0.12	0.23	0.25	0.18		< 0.053	0.032	0.26	0.33	0.22	0.24
	Na .																								
	NH₄Ť	0.82	1.6	1.3	0.94	1.5	1.4	1.3	0.81	0.78	1.4	1.1	1.0	1.5	1.4	1.6	1.3	1.7	3.2	2.8	1.1	3.3	4.2	2.7	2.8
	K ⁺	0.11	0.17	0.080	0.11	0.18	0.16	0.14	0.073	0.036	0.11	0.20	0.12	0.13	0.088	0.26	0.14	0.17	0.22	0.20	0.083	0.14	0.16	0.15	0.16
	Mσ ²⁺	0.023	0.012	<0.015	<0.015	0.0063	0.030	0.018	<0.0038	<0.0038	0.0050	0.015	0.023	0.022	<0.024	0.030	0.030	0.030	< 0.036	< 0.036	0.0046	0.029	0.048	0.029	0.023
	0 - 2+	0.049	<0.040	0.029	0.047	0.019	0.044	0.074	<0.044	<0.044	<0.044	0.070	0.030	0.030	0.066	0.070	0.041	0.050	< 0.063	< 0.063	<0.020	0.091	0.10	0.13	0.085
無機成分	Oa Na	-	200		34	100	210	140	100	140	210	300	220	210	150	180	200	180	200	57	<65	330	360	350	320
無饿队万	Na .				-																				
	Al	25 	63		<55 -	28	29	74	<15	<15	25		40	60	38	17	17	42		160	49 -	110	<20	39	100
	51		-	-				160	130	ZZZ	210		100	80	-	93		99		30		45	72	64	-
	K	-	170		91	150	570	160	220	83	190		120	150	140	160	130	160		100	130	230	220	250	210
	Ca		58		<170	<2.1	34	71	68	13	94		40	50	94	67	33	53	97	17	37	<87	44	170	88
	Sc	<0.0036	<0.059		<0.012	<0.029	<0.029	<0.18	<0.079	<0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023	<0.029		<0.012	0.0091	<0.12	<0.12	<0.022	2.5
	Ti	6.9	5.0		ZZZ	2.1	2.9	7.3	5.9	<5.7	7.5	3.0	7.0	3.0	6.9	4.4	2.6	4.2	1.7	1.1	3.5	2.5	<2.2	2.3	11
	V	1.4	1.2		1.5	1.0	0.94	1.4	4.6	1.3	3.8	2.1	1.2	1.5	2.1	8.1	3.3	2.1	2.4	1.2	0.48	5.1	5.9	3.3	7.1
	Cr	<0.49	1.1		<1.1	0.41	0.43	0.78	8.2	<0.24	2.5	<0.73	< 0.9	<0.9	1.5	4.5	3.5	1.2		<1.0	0.42	<3.3	3.5	<0.28	3.2
	Mn	3.1	4.1		3.0	4.9	8.0	6.1	13	1.8	10	4.8	4.6	6.0	8.4	13	9.1	6.1	7.1	4.3	3.7	7.8	9.9	8.4	13
	Fe	36	77	56	<24	58	35	87	240	26	300	68	70	80	120	220	95	95	68	35	52	69	77	83	180
	Co	< 0.011	< 0.069	< 0.23	<0.23	< 0.11	< 0.11	0.042	< 0.048	<0.048	<0.048	<0.45	< 0.1	<0.1	< 0.21	< 0.94	0.074	0.041	0.036	0.022	0.023	0.048	<0.22	0.056	0.16
	Ni	<1.1	<4	<0.85	1.3	<0.19	2.3	0.65	1.5	0.41	1.5	0.68	<0.9	< 0.9	1.7	2.8	4.7	1.1	<5.0	0.70	0.32	1.6	1.7	1.3	3.0
	Cu	7.1	<3.5	1.3	1.7	2.1	14	4.2	4.7	0.80	4.9	3.6	<3	<3	<6.4	<1.1	3.7	3.9	<4.8	18	1.8	9.8	5.5	5.4	5.5
	Zn	52	27	12	11	25	85	55	36	8.8	66	13	26	32	17	40	33	35	63	12	17	40	46	43	37
	As	1.6	2.3	0.68	1.1	0.90	1.2	1.6	1.2	0.79	1.6	2.1	1.3	1.4	1.4	1.4	1.3	1.3	1.8	0.83	0.71	1.5	1.8	1.9	2.0
	Se	0.11	1.3		0.45	0.54	<0.20	0.82	1.0	<0.42	1.0	0.54	0.70	0.90	<0.92	2.0	0.83	0.72	1.3	0.62	0.40	1.5	1.5	1.4	1.3
	Rh	-	0.32		0.17	0.29	0.68	0.31	0.33	0.17	0.42	0.51	0.29	0.40	<0.44	<1.1	0.29	0.35	0.49	0.20	0.29	0.45	0.43	0.54	0.59
	Mo	1.2	< 0.59		<0.15	0.75	1.3	0.65	2.7	0.28	0.65	0.87	0.40	0.60	1.0	<1.4	11	0.55	0.51	0.34	0.15	0.57	1.2	0.48	<0.71
	Sh	0.86	3.6		ZZZ	0.39	2.8	1.2	0.64	0.27	0.78	1.1	1.0	1.1	1.1	<6.6	1.0	1.0		0.46	0.64	3.1	1.9	0.76	1.3
	Cs	0.030	<0.06		<0.035	<0.079	<0.079	0.025	0.040	0.019	0.048		0.030	0.050	<0.15	<9.4	0.042	0.033	0.068	0.027	0.028	0.079	<0.12	0.075	0.082
	Ds Do	0.000	1.8		0.75	<2.3	5.5	2.5	1.9	1.9	2.7	1.4	1.6	2.5	3.0	<10	2.2	2.6		0.96	1.2	3.5	2.4	1.9	2.8
	La	0.12	0.096		0.018	0.056	0.13	0.11	0.082	0.033	0.17	<0.30	<0.1	<0.1	<0.18	<12		0.12		0.044	0.029	0.11	<0.11	0.094	0.13
	La O	0.12	< 0.096	<0.012	0.018	0.030	0.13	0.11	0.082	0.033	0.17	<0.35	<0.1	0.10	<0.15	<13	0.009	0.12	0.083	0.044	0.029	0.11	0.11	0.094	0.13
	Ce	<0.0044	<0.096		<0.0019	< 0.093	<0.035	<0.013	<0.027	< 0.023	<0.027	<0.35	<0.1	<0.10	<0.15	<20	<0.018	<0.021	0.0045	<0.0029		<0.12	<0.12	<0.0078	< 0.054
	Sm	0.0044	<0.12	<0.0019	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.32	0.20	0.20	<0.22		<0.018	<0.021	0.0045	0.0029	0.0030	<0.085	<0.085	0.0078	<0.054
	HT															<0.03					0.0055				
	VV	0.20	<0.12	0.17	<0.084	0.097	0.17	< 0.16	<0.17	0.24	0.28	3.1	<0.2	<0.2	<0.51	0.11	0.57	0.13	<0.23	0.059	0.17	0.11	0.12	0.085	0.24
	la 		<0.31	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	0.038	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024		<0.012		<0.0010		<0.0028	<0.0053	<0.0010	0.26
	Th	<0.09	<0.12		<0.02	<0.079	<0.079	<0.0082	<0.02	<0.02	<0.02	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012	<0.014		0.0017	0.0055	<0.17	<0.17	<0.023	0.092
	Pb	5.3	6.7		3.0	5.1	22	7.2	5.6	3.5	13		5.6	6.2	6.7	7.6	6.4	7.3	15	6.2	5.1	11	13	11	11
	その他(Be)	-	<0.22	-	-		-	0.32	-	_	-	-	_	-	-	_	-		-	-	-	-	-	-	-
	その他(Cd)	-	0.37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.13	0.28	0.44	-	-
炭素成分	001	<0.051	<0.009	0.48	0.50	0	0.17	0.28	<0.04	<0.04	0.045	0.071	<0.4	<0.4	0.15	0.16	0.14	0.14	0.062	0.034	<0.029	<0.028	<0.028	<0.019	0.015
	OC2	0.84	0.83		0.85	1.2	1.1	1.0	0.90	0.47	0.93	1.1	0.70	0.80	0.96	1.3	1.5	1.1	2.2	1.3	0.48	1.5	1.3	1.6	2.1
	OC3	0.71	0.79	0.83	1.2	1.1	1.2	1.2	0.67	0.46	0.75	0.51	0.70	0.80	0.82	0.73	0.86	0.68	0.68	0.55	0.67	0.54	0.59	0.51	0.75
	OC4	0.50	0.46	0.59	0.68	0.69	0.80	0.80	0.38	0.24	0.39	0.35	0.50	0.60	0.50	0.64	0.65	0.60	0.43	0.28	0.27	0.32	0.31	0.28	0.37
	Ocpyro	0.75	1.0	0.76	1.1	0.89	0.81	1.1	1.0	0.71	1.1	1.1	0.60	0.80	0.86	0.65	0.64	0.88	1.7	0.97	0.65	1.2	1.2	1.2	1.4
	EC1	1.0	1.4	1.2	1.6	1.5	1.6	1.6	1.5	0.70	1.8	1.8	1.1	1.4	1.4	1.4	1.6	1.6	2.3	1.2	0.97	2.2	1.9	1.8	2.1
	EC2	0.20	0.31	0.63	0.69	0.29	0.37	0.54	0.50	0.46	0.70	0.40	0.40	0.40	0.45	0.30	0.38	0.28	0.80	0.86	0.22	0.93	0.71	0.58	0.69
	EC3	<0.12	0	0.045	0.050	0.015	0.035	0.069	0.053	0.037	0.10	<0.0096	< 0.09	< 0.09	0.034	0.020	0.035	0.020	0.059	0.027	0.027	<0.014	< 0.014	<0.021	0.030
	ос	2.8	3.1	3.4	4.3	3.9	4.1	4.4	3.0	1.9	3.2	3.1	3.0	3.0	3.3	3.5	3.8	3.4	5.1	3.1	2.1	3.6	3.4	3.6	4.6
	EC	0.45	0.71		1.2	0.92	1.2	1.1	1.1	0.49	1.5		0.90	1.0	1.0	1.1	1.4	1.0		1,1	0.57	1.9	1.4	1.2	1.4
	wsoc	2.2	2.5		2.2	-	-	-	1.8	ZZZ	1.2		-	-	2.9		3.6	-	-	-	-	-	-	3.1	-

20.1				, 0																		,			
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	15.9	zzz	11.8	15.8	23.0	20.0	17.2	16.1	8.8	13.6	17.3	15.2	19.1	17.8	17.2	18.0	18.4	21.3	14.9	16.9	21.4	20.0	20.3	21.4
イオン成分	CI-	0.091	zzz	0.019	< 0.016	< 0.046	0.38	0.14	< 0.096	< 0.096	< 0.096	0.080	0.12	0.070	0.087	0.040	0.21	0.12	<0.0021	0.0097	0.19	0.015	0.16	0.020	0.019
	NO3-	0.68	ZZZ	1.3	0.77	1.3	2.1	1.5	0.97	<0.099	0.40	0.97	1.0	1.3	1.7	1.5	2.0	1.5	0.46	0.60	0.65	0.62	1.1	0.18	0.51
	SO42-	2.7	ZZZ	1.5	2.0	3.4	3.9	3.1	2.8	1.9	2.6	3.3	2.3	3.4	3.3	3.9	3.9	3.9	8.8	5.6	3.4	6.6	6.4	7.2	5.4
	Na ⁺	0.11	ZZZ	0.013	0.022	<0.026	0.13	0.076	<0.04	<0.04	0.043	0.062	0.090	0.090	0.067	0.11	0.24	0.10	0.11	< 0.053	0.031	0.18	0.19	0.15	0.14
		1.1		0.92	0.98	1.5	2.0	1.6	1.4	0.76	1.2	1.3	1.2	1.6	1.6	1.7	1.9	2.2	3.4	2.3	1.5	2.6	2.9	2.7	2.0
	NH ₄ ⁺		ZZZ																						
	ΚŤ	0.17	ZZZ	0.080	0.10	0.16	0.23	0.16	0.13	0.067	0.10	0.20	0.13	0.15	0.11	0.21	0.18	0.19	0.22	0.15	0.11	0.12	0.11	0.11	0.13
	Mg ²⁺	0.012	ZZZ	<0.015	<0.015	0.0025	0.027	0.0095	<0.0038	<0.0038	<0.0038	0.019	0.011	0.016	<0.024	0.020	0.017	0.010	<0.036	< 0.036	0.0047	0.018	0.021	0.017	0.0079
	Ca ²⁺	0.039	ZZZ	0.028	0.026	0.010	0.050	0.093	< 0.044	< 0.044	<0.044	0.16	0.040	0.040	0.057	0.060	0.048	0.030	< 0.063	< 0.063	<0.020	0.087	0.040	0.27	0.14
無機成分	Na	-	ZZZ	22	32	82	120	74	74	55	82	74	110	110	81	110	120	100	170	55	<65	310	210	220	200
M (20075073	ΔΙ	<16	ZZZ	<55	<55	30	25	65	20	<15	18	30	30	50	42	<17	16		19	<15	61	110	<20	54	99
	Si Si	-	-	-	-	-		140	100	44	72	200	80	100	-	82	-	86	26	11		38	23	100	-
	V	_	zzz	76	130	170	160	160	210	110	170	190	140	170	130	150	160	170	200	96	160	250	150	180	190
	C-	_		<170	<170	18	12	78	48	10	63	130	40	40	<41	55	30	40	26	170	40	<87	<25	280	120
	Ca Sc	<0.0036	ZZZ	<0.012	<0.012		<0.029	<0.18	<0.079	<0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023		<0.012	<0.012	0.013	<0.12	<0.12	<0.022	< 0.059
	3C		ZZZ																						
	V	2.8	ZZZ	ZZZ	ZZZ	3.5	1.4	7.0	3.9	1.4	3.5	2.5	4.0	5.0	7.0	4.5	2.9	5.4	1.3	0.81	4.5	2.3	<2.2	3.9	13
	V	0.94	ZZZ	0.54	0.77	1.0	0.94	1.1	1.4	0.86	3.8	1.8	1.1	1.2	3.0	11	9.0	1.3	2.6	0.86	0.75	5.4	4.4	2.6	3.8
	Cr	< 0.49	ZZZ	<1.1	<1.1	0.72	<0.12	0.71	6.6	< 0.57	0.85	1.5	< 0.9	<0.9	1.1		4.0		<0.92	<1.0	0.80	<3.3	0.72	1.4	1.9
	Mn	2.8	ZZZ	3.4	7.4	7.5	3.7	6.6	9.8	2.3	4.4	7.5	6.9	7.9	8.2	12	11	9.5	4.9	1.9	6.0	7.7	6.0	5.9	9.4
	Fe	44	ZZZ	37	57	100	32	96	130	17	130	99	100	90	180	210	110	120	47	19	72	80	82	82	140
	Со	<0.011	ZZZ	<0.23	<0.23	<0.11	<0.11	0.036	<0.048	<0.048	<0.048	<0.45	<0.1	<0.1	<0.21		0.070	0.040	0.024	0.014	0.026	0.022	<0.22	0.051	0.088
	Ni	<1.1	ZZZ	<0.85	<0.85	1.4	0.89	0.62	0.67	<0.21	0.72	0.92	<0.9	<0.9	2.2	3.8	6.4		<5.0	1.0	0.50	1.7	1.2	1.3	1.5
	Cu	3.1	ZZZ	1.5	2.1	8.6	2.7	11	2.9	< 0.56	1.8	2.3	5.0	3.0	37	2.0	5.3	5.8	<4.8	<1.6	2.4	7.0	4.9	3.0	3.3
	Zn	160	ZZZ	11	27	56	17	42	28	6.4	17	14	37	38	160	30	39	41	26	59	27	39	<15	20	25
	As	0.90	zzz	0.48	0.93	0.76	0.70	1.1	0.61	0.47	0.82	0.69	0.90	1.3	1.4	1.4	1.0	2.0	1.5	0.69	0.78	1.9	1.7	1.5	1.6
	Se	0.11	zzz	0.29	0.59	1.1	0.49	0.76	1.0	< 0.42	0.67	< 0.54	0.80	1.0	0.96	1.1	1.0	3.4	1.1	0.41	0.47	1.4	1.3	1.1	1.1
	Rb	-	ZZZ	0.11	0.21	0.34	0.28	0.32	0.36	0.12	0.24	0.47	0.30	0.40	<0.44	<1.1	0.32	0.32	0.37	0.18	0.31	0.46	0.26	0.38	0.49
	Мо	1.7	ZZZ	0.54	0.84	0.76	0.46	0.75	1.2	<0.12	0.24	0.74	0.50	0.50	0.53	6.3	2.5	0.65	0.38	0.13	0.26	0.87	0.45	2.8	<0.71
	Sb	1.0	ZZZ	ZZZ	ZZZ	2.4	2.2	1.9	1.0	0.29	0.53	1.2	1.9	1.8	1.3	<6.6	2.0	1.5	0.78	0.35	1.1	2.0	1.5	0.81	0.76
	Cs	0.040	ZZZ	<0.035	<0.035	< 0.079	<0.079	0.018	0.032	< 0.017	0.021	<0.082	0.050	0.050	<0.15	<9.4	0.046	0.028	0.048	0.018	0.027	0.062	<0.12	0.052	<0.062
	Ва	1.4	ZZZ	1.0	1.2	8.8	<2.3	2.8	2.4	1.2	2.4	2.2	2.9	3.2	2.4	<10	2.5		2.0	0.72	1.7	4.0	4.1	1.7	2.2
	La	0.084	ZZZ	<0.012	0.050	0.18	0.11	0.13	0.10	<0.023	0.055	<0.30	0.20	0.10	<0.18	<12	0.13		0.059	0.023	0.045	<0.10	<0.11	0.10	0.085
	Ce	0.14	ZZZ	<0.022	0.11	0.30	0.21	0.21	0.14	<0.021	0.038	<0.35	0.30	0.20	0.17	<13	0.16	0.65	0.085	0.031	0.074	0.11	0.12	0.084	0.15
	Sm	<0.0044	ZZZ	<0.0019	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.32	<0.3	<0.3	<0.22	<20	<0.018		<0.0024	<0.0029	0.0033	<0.12	<0.12	<0.0078	<0.054
	Hf	<0.019	ZZZ	<0.023	<0.023	0.049	<0.020	0.0070	<0.025	<0.025	<0.025	<0.27	0.20	0.20	<0.11	<0.03	<0.045		0.0020	0.0013	0.0069	<0.0085	0.010	0.0027	<0.15
	w	0.11	ZZZ	<0.023	0.023	0.12	<0.020	<0.16	0.23	<0.023	<0.023	<2.8	<0.2	<0.2	<0.51	0.85	0.32	0.18	<0.23	< 0.0013	0.12	0.12	0.11	0.056	<0.12
	Ta	-	ZZZ	<0.025	<0.037	<0.028	<0.040	<0.0022	<0.027	<0.027	<0.07	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035		<0.00077	<0.017	- 0.12	<0.0028	<0.0053	<0.0010	<0.040
	Th	<0.09	ZZZ	<0.023	<0.023	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.42	<0.03	<0.03	<0.13	<3.4	<0.033		0.00077	0.00095	0.0064	<0.0028	<0.0033	<0.023	<0.040
	Dh	4.2	ZZZ	2.7	4.4	11	6.3	6.5	7.4	2.5	3.5	8.2	7.1	6.2	7.4	3.4	6.2	7.4	8.2	28	5.5	11	12	7.5	6.4
	その他(Be)	- 4.2					- 0.3	0.25	- 7.4		- 3.3	- 0.2	- /.1	- 0.2	- 7.4	-	- 0.2	- 7.4	- 0.2	-	-	_ ''	- 12	- 7.5	-
			ZZZ					- 0.25	_		_				_	_		_		_	0.16	0.47		-	
出事件八	その他(Cd)	0.11	ZZZ				0.18		- (0.04	<0.04	<0.04	0.036		<0.4	0.33	0.23	0.12			0.054	<0.029	<0.028	0.52 <0.028	<0.019	<0.013
炭素成分	OC1		ZZZ	0.44	0.57	0.0		0.35	<0.04				<0.4					0.27	0.035						
	OC2	1.3	ZZZ	0.85	0.88	2.2	1.4	1.2	1.2	0.54	0.67	1.3	0.70	1.0	1.3	1.5	1.7		2.0	1.6	0.68	1.5	1.1	1.2	1.4
	OC3	1.3	ZZZ	0.95	1.1	2.5	1.6	1.4	1.1	0.59	0.88	0.93	0.90	2.0	1.2	1.0	1.1	1.1	0.62	0.44	0.83	0.62	0.50	0.37	0.55
	OC4	0.85	ZZZ	0.60	0.71	1.1	0.90	0.82	0.62	0.41	0.49	0.59	0.60	0.80	0.70		0.83	0.78	0.38	0.23	0.39	0.31	0.24	0.19	0.30
	Ocpyro	1.2	ZZZ	0.82	1.1	1.7	1.1	1.3	1.3	0.79	0.88	2.0	0.70	1.2	1.2	0.82	0.78		1.5	1.0	0.90	1.1	0.92	0.95	1.1
	EC1	2.0	ZZZ	1.4	1.9	3.0	2.2	2.0	2.5	0.91	1.5	3.8	1.5	2.2	1.8	2.0	2.3	2.2	1.8	1.2	1.6	1.8	1.4	1.1	1.4
	EC2	0.36	ZZZ	0.75	0.53	0.51	0.38	0.62	0.68	0.54	0.55	0.51	0.60	0.70	0.60	0.29	0.40	0.26	0.84	0.79	0.46	0.98	0.59	0.64	0.68
	EC3	<0.12	zzz	0.055	0.050	0.035	0	0.081	0.087	0.089	0.097	0.016	<0.09	<0.09	0.064	0.020	0.032	0.020	0.046	0.036	0.089	0.018	<0.014	<0.021	0.027
	oc	4.8	ZZZ	3.7	4.4	7.5	5.2	5.1	4.2	2.3	2.9	4.9	3.0	5.0	4.7	4.3	4.5	4.7	4.5	3.3	2.8	3.5	2.8	2.7	3.4
	EC	1.2	ZZZ	1.4	1.4	1.8	1.5	1.4	2.0	0.75	1.3	2.3	1.4	1.8	1.3	1.5	2.0	1.5	1.2	1.0	1.2	1.7	1.1	0.79	1.0
	WSOC	3.5	zzz	1.6	2.4	-	-	-	2.9	1.8	2.4	0.94	-	-	3.6	-	3.3	-	-	-	-	-	-	2.2	-

60

接換性の					) L o H c															,						
######   PMD 多様形   186   286   181   242   240   230   326   213   137   139   137   139   187   138   231   221   189   192   188   131   231   221   189   192   188   131   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231   231	自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
横型性の	調査均	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校	基本事項	PM2.5濃度	19.6	29.6	18.1	24.2	24.0	23.0		21.3	13.7	30.5	17.7	23.6	19.2	18.8		20.1	19.5	19.2	15.9		23.1	22.1	24.0	29.2
NO3		CI-				0.042							0.066												<0.016	0.027
No.   19   10   10   10   10   10   10   10	1.3 = 19073	NO3-																							0.11	0.15
Na** 0.19 0.14 0.045 0.066 0.77 0.20 0.22 0.16 0.004 0.19 0.25 0.20 0.18 0.16 0.26 0.25 0.18 0.12 0.07 0.23 0.19 0.24 0.27 0.26 0.17 0.20 0.11 0.27 0.19 0.29 0.27 0.20 0.17 0.20 0.10 0.17 0.20 0.10 0.17 0.17 0.12 0.27 0.10 0.19 0.22 0.18 0.26 0.18 0.18 0.12 0.19 0.22 0.18 0.26 0.18 0.18 0.12 0.07 0.00 0.18 0.18 0.19 0.22 0.18 0.26 0.18 0.18 0.12 0.07 0.00 0.18 0.18 0.19 0.22 0.18 0.26 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18													-												8.4	6.9
NH_1    21   1.9   0.79   1.1   2.3   1.9   1.5   2.3   0.56   1.1   2.2   1.3   2.0   2.1   2.2   2.4   2.5   2.8   2.5   2.2   3.4   3.5   2.5   2.5   3.5   2.5   3.5   2.5   3.5   2.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3		3042-																								
大学   13   0.27   0.13   0.16   0.24   0.21   0.20   0.11   0.021   0.089   0.022   0.14   0.17   0.12   0.02   0.018   0.002   0.035   0.002   0.035   0.002   0.024   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.0		Na'	0.19	0.14	0.045	0.064	0.17	0.20	0.22	0.16	₹0.04	0.19	0.26	0.20	0.18	0.16	0.26	0.35	0.18	0.12	0.075	0.23	0.19	0.24	0.093	0.16
振像** 0.032 0.014 0.015 0.015 0.037 0.032 0.033 0.030 0.038 0.027 0.038 0.027 0.038 0.027 0.038 0.027 0.038 0.027 0.038 0.027 0.038 0.027 0.038 0.038 0.038 0.038 0.038 0.038 0.032 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038		NH₄ ⁺	2.1	1.9	0.79	1.1	2.3	1.9	1.9	2.3	0.56	1.1	2.3	1.3	2.0	2.1	2.8	2.4	2.5	2.6	2.5	2.2	3.4	3.5	3.3	2.5
機能・ 0.032 0.014 0.015 0.015 0.037 0.032 0.033 0.0038 0.027 0.038 0.027 0.035 0.027 0.036 0.027 0.036 0.027 0.036 0.027 0.036 0.027 0.036 0.027 0.036 0.030 0.036 0.030 0.036 0.030 0.036 0.030 0.036 0.036 0.037 0.036 0.036 0.036 0.036 0.037 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036		K ⁺	0.13	0.27	0.13	0.16	0.24	0.21	0.20	0.11	0.021	0.069	0.23	0.14	0.17	0.12	0.22	0.18	0.19	0.22	0.18	0.26	0.18	0.18	0.14	0.18
□ 1		NA . 2+		0.014	Z0.015		0.027	0.022	0.027			0.020			0.026			0.025	0.020			0.027	0.027		0.010	0.022
機能性性		IVIg																								
A		Ca ²	0.046		0.093	0.058													0.050		< 0.063				0.092	0.52
Si	無機成分	Na	-	280	67	110	190	180	260	280	190	420	510	310	220	200	190	250	200	170	100	250	260	320	190	320
Registration   Fig.		Al	<16	72	170	69	100	30	730	97	35	430	120	80	60	100	72	34	74	34	27	110	37	52	38	620
Ga - 66 <170 <1710  13 7.6 930  240 130  2000  75 100 80 91 110 39 67 81 97 74 100 140 140 140 140 140 140 140 140 14		Si	-	-	-	-	-	-	1100	300	210	1100	82	170	120	-	200	-	140	38	41	-	25	58	63	-
Ca		K	-	310	140	190	260	110	270	200	160	260	270	210	180	180	180	180	200	200	140	310	280	300	280	400
Sc 0.022 (0.059 0.025 0.015 (0.029 0.029 0.79 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079		Ca	-	66	<170	<170		7.6		240	130		75	100	60		110				97			140	130	580
Ti		Sc	0.022																						<0.022	0.24
V         40         10         0.86         0.05         10         0.20         33         8.5         32         13         6.5         3.9         1.4         1.8         3.0         5.1         1.5         1.4         0.98         0.83         3.1         3.1           Mn         4.0         7.6         4.3         4.8         6.8         0.95         19         9.0         5.9         5.8         10         35         5.1         5.8         5.9         7.9         5.0         3.4         2.7         5.3         5.5         7.6         6           Co         0.020          0.029         0.03         0.01         0.01         0.01         0.01         0.01         0.01         0.02         0.00         0.03         0.02         0.00         0.03         0.02         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00		Ti											-												2.4	47
Cc		V																							1.9	3.6
Mn		v																							3.7	
Fe 55 96 140 80 110 87 610 210 120 1600 210 300 90 140 160 130 96 44 36 97 57 68		Ur																								2.1
Co		Mn																							6.3	14
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.		Fe				-							-												71	450
Part		Со																							0.050	0.21
Part		Ni											-												1.1	4.0
As   0.77   1.1   0.61   0.82   0.53   0.097   1.2   0.99   0.70   1.2   1.4   1.8   1.3   1.1   0.83   1.4   1.6   1.3   1.1   1.7   1.8   2.3		Cu																							3.3	6.6
Re		Zn																							32	40
Rb - 0.47 0.25 0.27 0.38 <0.14 0.69 0.48 0.28 0.76 1.5 0.60 0.40 <0.44 <1.1 0.42 0.41 0.33 0.32 0.64 0.49 0.59   Mo 0 0.40 0.40 0.40 0.40 <1.1 0.42 0.41 <0.019 0.12 0.30 0.64 0.49 0.59   Mo 0 0.40 0.40 0.40 0.45   Mo 0 0.40 0.41 <0.019 0.12 0.30 0.41 0.96   Mo 0 0.40 0.40 0.40 0.45   Mo 0 0.40 0.40 0.41 <0.019 0.12 0.30 0.41 0.96   Mo 0 0.40 0.40 0.40 0.45   Mo 0 0.40 0.40 0.41 <0.019 0.12 0.30 0.41 0.96   Mo 0 0.41 0.96   Mo 0 0.41 0.96 0.41 0.96   Mo 0 0.41 0.96 0.41 0.96   Mo 0 0.41 0.96 0.41 0.96   Mo 0 0.41 0.96 0.41 0.96   Mo 0 0.41 0.96 0.41 0.96   Mo 0 0.41 0.96 0.41 0.96   Mo 0 0.41 0.96 0.41 0.96   Mo 0 0.41 0.96 0.41 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.41 0.42 0.42 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42		As					0.53						-												2.3	2.3
Mo		Se	0.14	2.4	0.38	0.84	1.2	<0.20	0.96	1.2	0.56	0.98	0.70	1.0	1.0	1.3	<0.98	1.1	2.1	0.78	0.67	0.93	1.2	2.1	1.7	1.7
Sb   0.67   2.7   zzz   zzz   0.92   0.18   1.2   0.63   0.31   0.46   0.92   1.9   1.1   0.91   6.66   0.93   1.1   0.56   0.34   0.84   1.1   1.6   0.85   0.029   0.064   0.053   0.035   0.035   0.079   0.079   0.064   0.053   0.031   0.072   0.21   0.080   0.060   0.15   0.94   0.053   0.045   0.041   0.041   0.068   0.067   0.12   0.081   0.041   0.041   0.041   0.048   0.053   0.057   0.12   0.041   0.041   0.041   0.041   0.041   0.048   0.053   0.051   0.051   0.041   0.041   0.041   0.041   0.048   0.053   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.051   0.		Rb	-	0.47	0.25	0.27	0.38	<0.14	0.69	0.48	0.28	0.76	1.5	0.60	0.40	<0.44	<1.1	0.42	0.41	0.33	0.32	0.64	0.49	0.59	0.61	1.3
Cs   0.029   <0.06   <0.035   <0.035   <0.079   <0.079   <0.079   <0.064   <0.053   <0.031   <0.072   <0.21   <0.080   <0.060   <0.15   <9.4   <0.053   <0.045   <0.041   <0.041   <0.068   <0.067   <0.12   <0.068   <0.067   <0.12   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <0.081   <		Мо	0.40	2.1	0.71	0.43	1.4	< 0.077	0.59	0.43	0.14	0.50	3.6	1.2	0.40	0.45	<1.4	0.72	0.41	<0.19	0.12	0.30	0.41	0.96	0.48	< 0.71
Ba 1.1 2.8 2.0 1.7 7.7 <2.3 12 2.8 2.6 4.5 2.2 4.2 3.4 3.1 <10 1.9 2.5 2.0 1.0 2.3 4.3 2.2 La 0.032 (0.091 0.059 0.057 0.14 (0.038 0.24 0.27 0.047 0.089 (0.30 0.10 0.11 0.18 <12 0.064 0.20 0.047 0.036 0.071 (0.11 0.01 0.01 0.01 0.01 0.01 0.01 0.		Sb	0.67	2.7	ZZZ	zzz	0.92	0.18	1.2	0.63	0.31	0.46	0.92	1.9	1.1	0.91	<6.6	0.93	1.1	0.56	0.34	0.84	1.1	1.6	0.81	1.2
La         0.032         <0.091		Cs	0.029	<0.06	< 0.035	< 0.035	<0.079	< 0.079	0.064	0.053	0.031	0.072	0.21	0.080	0.060	<0.15	<9.4	0.053	0.045	0.041	0.041	0.068	0.067	<0.12	0.091	0.13
Ce         0.084         0.10         0.091         0.099         0.13         0.069         0.37         0.22         0.057         0.22         <0.35		Ва	1.1	2.8	2.0	1.7	7.7	<2.3	12	2.8	2.6	4.5	2.2	4.2	3.4	3.1	<10	1.9	2.5	2.0	1.0	2.3	4.3	2.2	2.2	5.7
Ce         0.084         0.10         0.091         0.099         0.13         0.069         0.37         0.22         0.057         0.22         <0.35		La	0.032	< 0.091	0.059	0.057	0.14	< 0.038	0.24	0.27	0.047	0.089	< 0.30	0.10	<0.1	<0.18	<12	0.064	0.20	0.047	0.036	0.071	<0.10	<0.11	0.069	0.25
Sm		Ce		0.10	0.091	0.099	0.13	0.069	0.37		0.057	0.22	< 0.35	0.20	0.10	0.19		0.12	0.34	0.068	0.057		0.084	<0.11	0.097	0.49
Hf         0.31         <0.52		Sm																							<0.0078	<0.054
W		Hf																		-					0.0023	<0.15
Ta - <a href="#">- &lt;0.31 &lt;0.025 &lt;0.025 &lt;0.025 &lt;0.028 &lt;0.028 &lt;0.028 &lt;0.005 &lt;0.027 &lt;0.034 &lt;0.027 &lt;0.042 &lt;0.09 &lt;0.09 &lt;0.09 &lt;0.09 &lt;0.09 &lt;0.09 &lt;0.019 &lt;0.024 &lt;0.035 &lt;0.012 &lt;0.00077 &lt;0.0010 - &lt;0.0028 &lt;0.0053 &lt;0.017 &lt;0.0017 &lt;0.017 &lt;</a>		w				-							-												0.096	0.36
Th		Ta																							<0.0010	<0.040
Pb       5.7       8.7       3.0       4.4       6.0       0.91       7.6       5.8       4.9       8.2       18       32       7.2       7.4       6.4       6.1       8.4       7.2       6.4       9.1       11       14       14       4       4       6.0       0.91       7.6       5.8       4.9       8.2       18       32       7.2       7.4       6.4       6.1       8.4       7.2       6.4       9.1       11       14       14       4       4       6.0       0.91       7.6       5.8       4.9       8.2       18       32       7.2       7.4       6.4       6.1       8.4       7.2       6.4       9.1       11       14       14       7.2       6.4       9.1       11       14       14       7.2       6.4       9.1       11       14       14       1.0       1.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <th></th> <th>Th</th> <th></th> <th>&lt;0.0010</th> <th>&lt;0.053</th>		Th																							<0.0010	<0.053
その他(Be) - <0.22 0.25		Dh																							15	14
表の他(Cd) - 0.35		この(4)(ロー)																		–					_	-
炭素成分         OC1         0.064         0.19         0.47         0.88         0         0.20         0.39         <0.04																									_	
OC2         1.2         2.0         0.97         1.5         1.8         1.9         1.4         0.91         0.53         0.47         1.2         1.0         0.90         1.2         1.4         1.7         1.5         1.8         1.4         0.73         1.6         1.1           OC3         0.96         2.5         1.8         2.4         1.8         2.0         1.7         0.69         0.50         0.79         0.52         1.0         0.90         0.77         0.77         0.95         0.77         0.63         0.38         0.90         0.54         0.40           OC4         0.80         1.4         0.90         1.0         0.94         1.1         1.2         0.40         0.26         0.44         0.35         0.90         0.70         0.57         0.79         0.82         0.62         0.38         0.21         0.42         0.31         0.26           Ocpyrro         1.4         2.3         1.7         2.4         1.8         1.9         2.0         1.2         0.90         0.89         1.5         1.1         1.2         1.0         0.85         1.3         1.5         1.0         1.4         1.4         1.4         1.4	出主代八																								<0.019	<0.013
OC3         0.96         2.5         1.8         2.4         1.8         2.0         1.7         0.69         0.50         0.79         0.52         1.0         0.90         0.77         0.95         0.77         0.63         0.38         0.90         0.54         0.40           OC4         0.80         1.4         0.90         1.0         0.94         1.1         1.2         0.40         0.26         0.44         0.35         0.90         0.70         0.57         0.79         0.82         0.62         0.38         0.21         0.42         0.31         0.26           Ocpyro         1.4         2.3         1.7         2.4         1.8         1.9         2.0         0.89         1.5         1.1         1.2         1.2         1.0         0.85         1.3         1.5         1.0         1.4         1.4           EC1         2.0         3.6         2.2         3.3         2.7         2.9         2.8         1.7         1.1         1.4         2.1         2.1         1.9         1.6         1.7         1.6         2.0         1.8         1.2         2.3         1.7	灰条队万						•																			
OC4         0.80         1.4         0.90         1.0         0.94         1.1         1.2         0.40         0.26         0.44         0.35         0.90         0.70         0.57         0.79         0.82         0.62         0.38         0.21         0.42         0.31         0.26           Ocpyro         1.4         2.3         1.7         2.4         1.8         1.9         2.0         1.2         0.90         0.89         1.5         1.1         1.2         1.2         1.0         0.85         1.3         1.5         1.0         1.4         1.4         1.2           EC1         2.0         3.6         2.2         3.3         2.7         2.9         2.8         1.7         1.1         1.4         2.1         2.1         1.9         1.6         1.7         1.6         2.0         1.8         1.2         2.3         1.9         1.7																									1.5	1.4
Ocpyro         1.4         2.3         1.7         2.4         1.8         1.9         2.0         1.2         0.90         0.89         1.5         1.1         1.2         1.2         1.0         0.85         1.3         1.5         1.0         1.4         1.4         1.2           EC1         2.0         3.6         2.2         3.3         2.7         2.9         2.8         1.7         1.1         1.4         2.1         2.1         1.9         1.6         1.7         1.6         2.0         1.8         1.2         2.3         1.9         1.7																									0.43	0.46
EC1 2.0 3.6 2.2 3.3 2.7 2.9 2.8 1.7 1.1 1.4 2.1 2.1 1.9 1.6 1.7 1.6 2.0 1.8 1.2 2.3 1.9 1.7																									0.23	0.31
																									1.3	1.3
[EC2   0.22  0.47  0.61  0.58  0.39  0.42  0.77  0.59  0.38  0.78  0.50  0.50  0.50  0.50  0.51  0.38  0.41  0.30  0.66  0.53  0.25  0.87  0.45																									1.6	1.7
																									0.84	0.65
			<0.12	0.060	0.055	0.045	0.020	0.025		0.080	0.043	0.20	<0.0096	<0.09	<0.09	0.028	0.050	0.051	0.030	0.041	<0.021	<0.025	0.044	0.023	<0.021	0.043
OC 4.4 8.4 5.8 8.2 6.3 7.1 6.7 3.2 2.2 2.6 3.6 4.0 4.0 4.1 4.2 4.5 4.4 4.4 3.0 3.5 3.9 3.0		OC	4.4	8.4	5.8	8.2	6.3	7.1	6.7	3.2	2.2	2.6	3.6	4.0	4.0	4.1	4.2	4.5	4.4	4.4	3.0	3.5	3.9	3.0	3.5	3.5
EC 0.82 1.8 1.2 1.5 1.3 1.4 1.7 1.2 0.62 1.5 1.1 1.5 1.2 0.94 1.1 1.2 1.0 1.0 0.73 1.2 1.4 0.97		EC	0.82	1.8	1.2	1.5	1.3	1.4	1.7	1.2	0.62	1.5	1.1	1.5	1.2	0.94	1.1	1.2	1.0	1.0	0.73	1.2	1.4	0.97	1.1	1.1
WSOC 3.6 6.2 2.4 4.9 1.9 1.7 1.8 0.53 3.1 - 4.0		WSOC	3.6	6.2	2.4	4.9		-	-	1.9	1.7	1.8	0.53	-	-	3.1	-	4.0	-	-	_	-	-	-	3.2	-

				, L o H C																					
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査:	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	8.2	10.7	8.3	7.1	7.5	6.0	18.2	8.1	7.7	10.8	7.0	7.9	6.3	8.2	9.3	6.4	7.9	6.2	6.0	7.7	9.2	7.1	11.7	12.5
イオン成分	CI-	0.21	0.075	0.098	0.081	0.20	0.22	0.39	0.24	0.12	0.40	0.15	0.45	0.24	0.22	0.38	0.27	0.31	0.12	0.075	0.15	0.036	0.15	< 0.016	0.24
1.3 = 1,000	NO3-	<0.32	0.32	0.14	0.10	0.21	0.20	0.34	0.22	0.19	0.32	0.17	0.32	0.29	0.27	0.39	0.25	0.38	0.26	0.24	0.30	0.19	0.23	0.16	0.19
	SO42-	0.70	0.82		0.53	0.83	1.0	0.82	0.71	0.66	1.0	0.91	0.80	0.75	0.83	0.85	0.73	0.89		0.97	0.73	1.5	0.69	2.2	0.79
	3042					0.83	0.23							0.73			0.73					0.19			
	Na	0.20	0.14		0.081			0.27	0.11	0.073	0.23	0.19	0.33		0.17	0.27		0.23		0.11	0.17		0.23	0.14	0.24
	NH ₄ ⁺	0.24	0.34	0.20	0.21	0.19	0.18	0.29	0.26	0.26	0.38	0.27	0.20	0.29	0.36	0.35	0.28	0.38	0.27	0.38	0.30	0.64	0.35	0.71	0.23
	K ⁺	0.090	0.12	0.059	0.067	0.095	0.15	0.11	0.049	0.066	0.074	0.088	0.11	0.080	0.062	0.10	0.084	0.10	0.077	0.068	0.081	0.069	0.075	0.069	0.077
	M~ ²⁺	0.025	0.013	<0.015	<0.015	0.033	0.033	0.045	<0.0038	<0.0038	0.017	0.030	0.047	0.029	<0.024	0.040	0.026	0.040	< 0.036	< 0.036	0.018	0.015	0.017	0.015	<0.0068
	- 2+	<0.025	<0.040	0.047	0.049	0.050	0.047	0.98	<0.044	<0.044		0.068	0.13			0.13	0.027	0.080		<0.063	<0.020	0.024		0.21	
<del>-</del> 146 - 15 43	Ca ⁻	₹0.025									0.20			0.070	0.055								<0.02		0.54
無機成分	Na	-	250	130	88	190	110	310	120	150	290	160	300	210	170	190	27	220		160	180	250	230	240	160
	Al	21	25		<55	72	54	660	<15	25	80	32	40	30	77	81	<1.6	79		49	29	84	<20	31	160
	Si	-	-	-	-	-	-	1100	190	130	270	83	100	50	-	230	-	130			-	20	39	52	-
	K	-	130	110	78	120	370	170	130	130	150	61	110	84	74	110	7.5	110	79	85	110	140	120	160	95
	Ca	-	24	<170	<170	<2.1	28	1100	100	54	380	25	60	40	61	110	<8.9	67	20	52	29	<87	<25	210	210
	Sc	0.032	< 0.059	0.021	<0.012	< 0.029	<0.029	0.66	< 0.079	<0.079	< 0.079	< 0.14	<0.2	<0.2	<0.24	0.030	< 0.023	<0.029	<0.012	< 0.012	0.0063	<0.12	<0.12	<0.022	4.1
	Ti	7.2	5.2	ZZZ	zzz	1.8	4.6	52	5.8	5.2	10	2.7	3.0	2.0	6.5	8.5	<1.6	4.9		1.9	1.7	1.6	6.0	2.3	17
	V	0.11	0.17		0.33	0.20	0.62	1.9	0.66	0.61	2.4	<0.34	0.20	0.12	0.80	<0.72	0.17	0.26		0.33	0.15	0.96	0.16	1.4	0.72
	Cr.	<0.49	0.36		<1.1	0.56	<0.12	1.3	1.3	1.7	0.70	<0.73	2.2	<0.9	0.40	<0.72	<0.094	0.79		<1.0	0.45	3.6	0.82	0.91	<0.32
	M	0.76	2.0		1.2	2.3	11	1.3	4.9	5.9	16	0.95	57	1.3	2.4	2.9	<0.13	2.2		0.95	1.4	1.5	2.2	2.5	2.8
	IVITI	13	63		37	63	82	510	100	72	470	28	290	30	110	110	2.0	72		18	24	29	2.2	46	100
	re				-							-													
	Co	0.033	<0.069		<0.23	<0.11	<0.11	0.35	<0.048	<0.048	<0.048	<0.45	<0.1	<0.1	<0.21	<0.94	<0.016	0.027		0.011	0.0069	0.022	<0.22	0.035	0.078
	Nı	<1.1	<4		<0.85	<0.19	0.93	0.75	0.82	0.62	1.1	0.44	<0.9	<0.9	0.37	< 0.65	<0.2	0.14			0.074	0.53	<0.11	0.50	0.30
	Cu	4.3	<3.5		1.4	<0.21	4.9	4.3	0.80	1.2	1.3	0.88	20	<3	38	<1.1	< 0.76	2.3		2.8	0.93	2.1	0.84	<2	0.94
	Zn	170	20		<4	5.2	86	15	14	11	26	<3.6	390	<2	<8	4.0	<2.8	5.7		9.7	3.7	<32	<15	<10	3.0
	As	0.23	0.27		0.17	<0.097	0.90	0.30	0.20	0.17	0.37	<0.13	1.3	<0.2	<0.82	<0.83	0.11	0.59		0.29	0.26	0.44	0.29	0.78	0.21
	Se	0.042	<1.1		<0.19	0.79	0.49	0.39	<0.42	<0.42	0.75	<0.54	0.40	<0.3	<0.92	<0.98	0.12	2.9		0.10	0.12	0.26	0.16	0.42	0.079
	Rb	-	0.13	0.18	0.092	<0.14	0.51	0.47	0.13	0.15	0.36	<0.24	0.30	0.21	<0.44	<1.1	0.023	0.15	0.080	0.10	0.16	0.17	<0.12	0.22	0.29
	Мо	0.70	< 0.59	0.39	<0.15	0.21	2.2	0.28	<0.12	<0.12	1.7	< 0.46	0.70	0.14	<0.3	<1.4	<0.044	0.35	<0.19	0.061	0.083	< 0.13	0.37	0.13	< 0.71
	Sb	0.57	3.0	ZZZ	ZZZ	0.089	3.7	0.22	0.073	0.15	0.21	<0.19	0.60	0.30	1.5	<6.6	< 0.033	0.79	0.091	0.20	0.26	0.24	0.31	0.20	0.12
	Cs	0.013	<0.06	< 0.035	< 0.035	< 0.079	<0.079	0.030	<0.017	<0.017	0.032	<0.082	0.040	0.020	<0.15	<9.4	<0.015	<0.011	0.0060	0.010	0.0077	0.014	<0.12	0.024	<0.062
	Ва	1.0	1.0	1.2	0.45	4.6	6.3	9.1	1.2	2.8	3.8	0.43	1.5	1.5	1.9	<10	<0.21	3.4	1.0	0.94	0.85	1.2	1.4	1.1	1.6
	La	0.065	< 0.091	0.035	<0.012	<0.038	<0.038	0.12	< 0.023	0.076	0.087	< 0.30	<0.1	<0.1	<0.18	<12	< 0.014	0.25	0.0095	0.022	0.016	<0.10	<0.11	0.033	0.060
	Ce	0.14	< 0.096	0.062	<0.022	0.040	0.11	0.24	0.029	0.034	0.19	< 0.35	<0.1	0.10	<0.15	<13	<0.018	0.48	0.018	0.039	0.033	0.045	<0.11	0.047	0.13
	Sm	<0.0044	<0.12		<0.0019	<0.035	<0.035	0.017	<0.027	<0.027	<0.027	<0.32	<0.3	<0.3	<0.22	<20	<0.018	<0.021		<0.0029	0.0020	<0.12	<0.12	<0.0078	<0.054
	Hf	0.36	<0.52	<0.023	<0.023	<0.020	<0.020	0.019	<0.025	<0.025	<0.025	<0.27	0.20	0.20	<0.11	<0.03	<0.045	<0.014		0.0050	0.0034	<0.0085	<0.0085	0.0012	<0.15
	w	<0.029	<0.12		<0.084	<0.040	<0.040	<0.16	<0.17	<0.17	<0.17	<2.8	<0.2	<0.2	<0.51	<0.03	<0.021	0.15		0.071	0.012	0.023	<0.017	<0.014	<0.12
	Ta	-	<0.31	<0.025	<0.025	<0.028	<0.028	0.0027	<0.027	<0.027	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035	<0.012		<0.0010	-	<0.0028	< 0.0053	<0.0010	0.094
	Th	<0.09	<0.12	<0.02	<0.02	<0.079	<0.079	0.019	<0.02	<0.02	<0.02	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012	<0.014		0.0024	0.0051	<0.17	<0.17	<0.023	<0.053
	Dh	1.6	1.7		<0.55	0.62	11	1.3	<0.79	1.7	2.8	0.89	37	1.3	2.3	<2.2	0.10	1.8		1.6	0.81	3.9	1.2	3.2	0.57
	その他(Be)	- 1.0	<0.22	-	-	-	- ''	0.056	-	- 1.7	-	-	-	-		-	-	- 1.0	- 0.01	- 1.0	-	- 0.0	- 1.2	-	-
	その他(Cd)		<0.22		_			- 0.030									_		_	_	0.041	0.073	0.12	-	_
炭素成分	OC1	<0.051	0.058	0.15	0.14	- 0		0.16	<0.04	<0.04	<0.04	0.11	<0.4	<0.4	0.60	0.19	0.15	0.18		0.045	<0.029	<0.073	<0.028	<0.019	<0.013
灰条队万						•	0 40							-											
	OC2	0.78	0.64		0.32	0.31	0.46	0.51	0.50	0.53	0.46	0.88	<0.4	<0.4	0.80	0.73	0.93	0.58		0.86	0.31	0.74	0.63	0.95	0.72
	OC3	0.92	1.1		0.90	0.69	0.91	1.0	0.67	0.73	0.85	0.59	0.70	0.70	1.1	0.80	0.76	0.78		0.59	0.59	0.62	0.80	0.65	0.69
	OC4	0.58	0.51		0.48	0.35	0.46	0.68	0.40	0.40	0.44	0.33	0.40	<0.4	0.50	0.34	0.39	0.32		0.26	0.30	0.28	0.36	0.30	0.35
	Ocpyro	0.70	0.74		0.59	0.48	0.58	0.68	0.55	0.72	0.62	0.76	0.30	0.40	0.57	0.64	0.44	0.59		0.49	0.39	0.71	0.56	0.87	0.68
	EC1	1.1	1.3		0.94	0.68	0.81	1.0	0.83	0.97	1.2	1.2	0.70	0.70	0.78	0.91	0.61	0.87	0.70	0.63	0.78	0.94	0.81	1.1	0.84
	EC2	0.24	0.28		0.17	0.12	0.18	0.47	0.29	0.65	0.44	0.31	0.16	0.23	0.29	0.12	0.21	0.12		0.25	0.091	0.34	0.18	0.35	0.36
	EC3	<0.12	0	0	0	0	0	0.031	0.029	0.049	0.097	<0.0096	< 0.09	<0.09	0.026	0	<0.029	0	<0.021	<0.021	<0.025	<0.014	<0.014	<0.021	<0.021
	oc	3.0	3.0	2.8	2.4	1.8	2.4	3.0	2.1	2.4	2.4	2.7	2.0	2.0	3.6	2.7	2.7	2.5	2.7	2.2	1.6	2.4	2.4	2.8	2.4
	EC	0.64	0.84	0.57	0.52	0.32	0.41	0.82	0.60	0.95	1.1	0.75	0.60	0.50	0.53	0.39	0.38	0.40	0.46	0.39	0.48	0.57	0.43	0.58	0.52
	WSOC	2.3	2.3	0.86	1.1	-	-	-	1.2	1.8	1.1	1.7	-	-	2.0	-	2.6	-	-	-	-	-	-	2.1	-

<u> </u>				, , ,																		,			
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	18.0	20.3	12.7	23.4	35.0	33.0	23.8	14.8	11.8	14.3	17.2	19.6	13.6	16.6	16.9	18.4	14.8	14.0	9.9	11.7	12.0	9.8	11.1	11.2
イオン成分	CI-	0.24	0.061	0.017	0.044	0.14	0.17	0.24	< 0.096	< 0.096	< 0.096	0.089	0.33	0.080	0.076	0.070	0.11	0.10	0.040	0.033	0.081	0.019	0.027	< 0.016	<0.018
	NO3-	1.7	1.2	0.61	1.3	3.2	2.5	2.4	0.76	0.15	0.39	1.0	2.1	1.2	1.7	1.8	1.8	1.5	0.83	0.41	0.57	0.25	0.31	0.21	0.28
	SO42-	1.2	0.96	0.42	0.71	1.2	1.3	1.3	1.5	0.96	1.6	1.9	1.5	1.3	1.4	1.9	1.9	1.4	1.7	2.4	1.1	2.1	1.7	1.9	1.9
	Na ⁺	0.13	0.067	0.036	0.050	0.086	0.15	0.15	0.062	<0.04	0.075	0.13	0.20	0.15	0.092	0.18	0.20	0.13	0.088	0.099	0.11	0.19	0.15	0.14	0.16
				0.32												0.99	1.1	0.81		0.91					
	NH ₄ ⁺	0.85	0.65		0.56	1.3	1.0	1.1	0.74	0.25	0.64	0.79	1.0	0.67	0.98				0.86		0.48	0.84	0.79	0.62	0.59
	K ⁺	0.23	0.22	0.11	0.19	0.31	0.37	0.23	0.13	0.057	0.12	0.23	0.20	0.13	0.13	0.20	0.18	0.15	0.17	0.10	0.14	0.10	0.078	0.062	0.14
	Mg ²⁺	0.027	0.0080	<0.015	< 0.015	0.031	0.028	0.022	<0.0038	<0.0038	0.0087	0.016	0.028	0.019	<0.024	0.030	0.029	0.020	< 0.036	< 0.036	0.011	0.020	0.019	0.015	<0.0068
	Ca ²⁺	0.057	<0.040	0.042	0.075	0.058	0.054	0.32	<0.044	<0.044	0.14	0.11	0.10	0.050	0.050	0.12	0.056	0.040	< 0.063	< 0.063	0.029	0.085	0.030	0.20	0.086
無機成分	Na	-	190	85	55	160	160	150	100	85	160	230	180	160	130	140	150	150	150	160	140	240	180	240	200
m 19219273	ΛI	29	60	<55	<55	85	40	230	22	<15	64	40	40	40	48	28	20		23	43	30	21	<20	74	110
	Al C:			- \00	- \33	- 00	40	360	120	43	240	30	90	80	- 40	150		89	42	46	- 30	17	<11	67	-
	31		330	200	200	420	200	230	240	190	200	330	210	150	180	180	160		180	110	180	160	130	140	180
	2	_		<170					110																
	Ca		57		<170	5.4	13	280		14	220	33	50	40	<41	100	34	46	100	97	30	<87	30	220	79
	Sc	<0.0036	<0.059	0.015	<0.012	<0.029	<0.029	<0.18	<0.079	<0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023		<0.012	<0.012	0.0068	<0.12	<0.12		1.3
	Ti	2.4	6.2	ZZZ	ZZZ	5.7	2.6	20	5.4	1.1	9.6	4.4	6.0	5.0	9.5	7.2	4.1	5.1	1.9	3.1	2.4	1.2	<2.2	3.6	10
	V	1.2	0.68	0.51	0.77	0.94	3.8	3.2	3.8	1.5	5.4	2.6	3.9	2.4	2.9	6.5	11	1.9	0.86	1.3	0.36	3.1	4.9	4.0	4.1
	Cr	<0.49	0.76	<1.1	4.4	2.0	<0.12	2.0	1.4	< 0.57	<0.57	1.3	1.5	<0.9	1.6		2.3	1.9	<0.92	<1.0	<0.35	<3.3	1.4	3.4	2.1
	Mn	13	5.1	5.2	16	14	10	14	11	1.6	9.7	11	15	9.6	13		12	8.4	2.8	1.6	5.0	3.9	4.8	4.3	6.1
	Fe	120	150	99	110	140	97	250	160	29	260	130	190	110	180	250	210	120	53	33	44	44	67	60	120
	Co	0.025	< 0.069	<0.23	<0.23	<0.11	<0.11	0.13	<0.048	<0.048	0.076	< 0.45	<0.1	<0.1	<0.21	< 0.94	0.14	0.037	0.027	0.018	0.015	0.020	<0.22	0.046	0.079
	Ni	<1.1	5.5	<0.85	<0.85	< 0.19	3.8	1.6	1.7	0.77	2.0	1.2	1.7	<0.9	4.5	2.4	4.6	0.99	<5.0	0.92	0.21	1.1	1.4	1.8	2.2
	Cu	5.5	<3.5	2.2	3.5	5.9	4.8	16	2.7	4.0	2.3	7.6	10	3.0	<6.4	3.8	7.3	4.4	<4.8	<1.6	2.2	2.8	2.2	3.6	2.7
	Zn	250	39	17	43	52	46	85	25	6.8	24	26	96	23	19	29	36	27	51	31	15	37	<15	14	20
	As	0.47	0.45	0.41	0.54	0.88	0.58	0.75	0.39	0.30	0.75	1.2	0.50	0.30	<0.82	1.4	0.60	1.3	0.36	0.31	0.35	0.35	0.50	0.45	0.40
	Se	0.12	<1.1	0.37	0.38	1.7	1.2	1.6	0.49	0.46	0.54	<0.54	0.90	0.90	1.4	2.0	1.1	2.4	0.23	0.28	0.24	0.37	0.52	0.47	0.47
	Rb	-	0.54	0.24	0.28	0.45	0.31	0.41	0.27	0.22	0.28	0.84	0.40	0.30	<0.44	<1.1	0.27	0.26	0.20	0.16	0.24	0.21	0.14	0.20	0.33
	Mo	0.87	1.6	0.62	1.2	2.8	2.5	2.4	0.32	0.14	0.20	1.6	1.4	0.50	0.89	<1.4	1.4		<0.19	0.13	0.26	0.42	0.17	0.33	<0.71
	Sh	1.7	3.3	ZZZ	ZZZ	2.9	2.3	1.9	0.89	0.26	2.0	3.0	1.9	1.1	1.6	<6.6	1.3	1.3	0.95	2.3	0.80	0.85	0.37	0.21	0.44
	Cs	0.033	<0.06	<0.035	<0.035	<0.079	<0.079	0.031	0.019	<0.017	0.024	<0.082	0.040	0.030	<0.15	<9.4	0.029		0.011	0.011	0.0094	0.016	<0.12	0.018	<0.062
	Ba Ba	2.1	2.4	2.0	2.0	<2.3	5.1	7.8	1.9	2.0	3.0	3.7	5.0	4.0	4.2	<10	2.3	3.4	2.5	1.1	1.7	2.5	2.9	1.3	2.1
	Lo	0.16	<0.091	<0.012	0.041	0.11	0.13	0.24	0.072	0.029	0.065	<0.30	0.10	<0.1	<0.18	<12	0.070		0.027	0.027	0.027	<0.10	<0.11	0.051	0.083
	Ca	0.10	0.097	0.012	0.041	0.11	0.13	0.24	0.072	<0.023	0.003	<0.35	0.10	0.20	0.17	<13	0.070	0.56	0.027	0.027	0.027	0.060	<0.11	0.053	0.003
	Ce Ce	<0.0044	<0.12	<0.0019		<0.035	<0.035	<0.013	<0.030	<0.027	<0.090	<0.33	<0.3	<0.3	<0.22	<20	<0.018		0.044	0.043	0.049	<0.12	<0.11	<0.0078	<0.054
	Sm	<0.019	<0.12	<0.0019	<0.0019	<0.033	<0.033	0.013	<0.027	<0.027	<0.027	<0.32	0.20	0.20	<0.11	<0.03	<0.018		0.0030	0.0030	0.0013	<0.0085	<0.085	0.0078	<0.034
	III		<0.12	<0.023		0.020	0.020			<0.023	<0.023					0.03				0.0020					
	vv	0.60			0.35			0.32	<0.17			<2.8	<0.2	<0.2	< 0.51		0.83	0.13	<0.23		0.050	0.038	<0.017	0.022	<0.12
	TI TI	-	<0.31	<0.025	<0.025	<0.028	<0.028	0.0067	<0.027	<0.027	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035		<0.00077	<0.0010	-	<0.0028	<0.0053	<0.0010	<0.040
	Ih	<0.09	<0.12	<0.02	<0.02	<0.079	<0.079	0.012	<0.02	<0.02	<0.02	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012		0.0010	0.0015	0.0035	<0.17	<0.17	<0.023	<0.053
	Pb	6.9	5.6	1.8	2.7	7.4	7.8	6.8	2.8	1.0	4.7	16	8.4	3.9	4.7	<2.2	4.9	4.6	2.6	3.3	2.7	4.2	1.8	2.5	2.5
	その他(Be)	-	<0.22	-	-	-		0.25	-	-	-	-	-	-	-	-	_	-	-	-		-	-	-	-
	その他(Cd)	-	0.18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.10	0.076	<0.11	-	-
炭素成分	OC1	0.17	0.16	0.66	1.3	1.1	1.2	0.70	<0.04	<0.04	<0.04	0.12	<0.4	<0.4	0.45	0.30	0.17	0.28	0.10	0.037	<0.029	<0.028	<0.028	<0.019	<0.013
	OC2	1.8	1.7	1.0	2.2	3.3	3.4	1.7	1.2	0.85	0.57	1.5	1.0	1.0	1.5	1.7	1.9		2.0	1.2	0.57	1.3	0.95	0.96	1.2
	OC3	2.1	2.4	2.2	3.9	4.8	4.7	2.8	1.3	1.3	0.88	1.5	2.0	1.0	1.8	1.8	2.0	1.9	1.4	0.56	1.0	0.82	0.68	0.60	0.88
	OC4	1.2	1.1	0.98	1.7	1.9	2.0	1.5	0.68	0.86	0.49	0.75	1.0	0.80	0.94	1.1	1.4	0.82	0.58	0.26	0.46	0.32	0.30	0.28	0.36
	Ocpyro	1.5	1.5	1.4	2.1	2.1	1.9	1.5	1.3	1.2	0.68	1.9	0.90	0.80	1.1	0.87	0.62	1.1	1.2	0.78	0.75	0.78	0.62	0.76	0.80
	EC1	2.6	2.7	2.3	3.6	4.0	4.6	3.0	2.6	2.0	1.7	4.1	2.6	1.7	2.1	2.1	2.1	2.1	1.8	0.92	1.5	1.3	1.1	0.96	1.1
	EC2	0.31	0.41	0.53	0.63	0.50	0.51	0.63	0.64	0.58	0.55	0.62	0.40	0.40	0.58	0.33	0.34	0.36	0.72	0.42	0.22	0.57	0.44	0.41	0.43
	EC3	<0.12	0.011	0.025	0.065	0.035	0.030	0.10	0.10	0.088	0.12	0.011	<0.09	< 0.09	0.065	0.020	<0.029	0.030	0.047	< 0.021	0.038	< 0.014	< 0.014	<0.021	0.027
	OC	6.8	6.9	6.2	11	13	13	8.2	4.5	4.2	2.6	5.8	6.0	4.0	5.8	5.8	6.1	5.7	5.3	2.8	2.8	3.2	2.6	2.6	3.2
	EC	1.4	1.6	1.5	2.2	2.4	3.2	2.2	2.0	1.5	1.7	2.8	2.1	1.4	1.6	1.6	1.8	1.4	1.4	0.56	1.0	1.1	0.92	0.61	0.76
	WSOC	5.3	5.0	2.2	5.2	-	-	-	2.5	3.3	2.1	2.0	-	-	3.8		4.6		-	-	-		-	1.9	-
	.,,,,,,	0.0	0.0	۷.۷	U.Z				۷.5	0.0	۷.۱	2.0			0.0		₹.0							1.3	

20.				, - o - i														,	, , , , , , , , ,			,			
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	7.6	11.4	20.6	26.5	29.0	19.0	19.8	9.8	5.0	8.0	8.0	13.0	8.2	8.5	7.4	9.7	7.6	9.4	13.0	7.4	7.6	8.1	8.7	12.4
イオン成分	CI-	0.026	<0.025		0.088	<0.046	<0.046	0.086	0.12	<0.096	<0.096	0.045	0.11	0.060	<0.049	0.030	0.051	0.040	0.016	0.099	0.060	<0.01	0.011	<0.016	0.023
113 = 19073	NO3-	<0.32	0.63		1.6	1.9	1.2	1.7	0.71	<0.099	0.31	0.28	1.3	0.43	0.41	0.40	0.63	0.32	0.36	0.21	0.17	0.22	0.20	0.14	0.25
	SO42-	1.2	2.0		1.6	2.1	1.9	1.8	1.7	1.0	1.7	1.9	2.1	1.7	1.6	1.5	2.1	1.8	1.5	1.3	1.4	1.9	1.5	1.3	1.6
	3042-																								
	Na [⊤]	0.13	0.12	0.030	0.044	0.067	0.13	0.16	0.11	0.056	0.15	0.20	0.29	0.24	0.15	0.21	0.29	0.23	0.074	0.12	0.12	0.18	0.15	0.12	0.16
	NH ₄ ⁺	0.43	0.87	0.72	1.1	1.2	0.97	0.99	0.73	0.30	0.55	0.58	0.91	0.53	0.59	0.47	0.75	0.55	0.66	0.33	0.44	0.78	0.68	0.41	0.47
	K ⁺	0.040	0.12	0.16	0.21	0.19	0.15	0.15	0.047	0.026	0.046	0.070	0.12	0.070	<0.046	0.090	0.083	0.090	0.093	0.067	0.046	0.063	0.062	<0.050	0.090
	NA . 2+	0.014	0.011	<0.015	<0.015	0.028	0.028	0.024	<0.0038	<0.0038	0.0093	0.020	0.037	0.031	<0.024	0.030	0.033	0.030	<0.036	<0.036	0.015	0.014	0.015	0.014	0.016
	IVIg																								
	Ca ²	<0.025	<0.040	0.052	0.050	0.051	0.045	0.33	<0.044	<0.044	0.079	0.11	0.070	0.060	0.053	0.040	0.040	0.060	<0.063	0.92	0.050	0.063	0.038	0.13	0.46
無機成分	Na	-	240	56	50	130	140	170	170	210	170	330	270	250	180	170	130	210	150	190	130	56	170	240	230
	Al	66	27	<55	<55	63	52	230	30	<15	20	37	40	30	110	<17	7.1	42	24	190	92	22	<20	15	380
	Si	-	-	-	-	-	-	380	110	32	220	70	80	60	-	40	-	85	33	310	-	<11	40	35	-
	K	-	110	210	210	280	230	180	93	63	77	120	110	80	75	68	43	80	120	82	76	80	100	130	190
	Ca	_	31	<170	<170	15	5.9	330	98	19	180	23	50	40	67	29	15	46		1200	64	<87	38	130	460
	Sc	<0.0036	<0.059		0.014	<0.029	<0.029	<0.18	<0.079	<0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023	<0.029		0.036	0.017	<0.12	<0.12	<0.022	<0.059
	Ti	2.8	3.3		ZZZ	4.3	5.9	20	5.1	1.7	6.7	4.4	4.0	4.0	10	1.6	<1.6	3.7	3.1	9.6	8.8	<1.0	<2.2	1.3	27
	V	2.3	3.1		1.5	1.7	0.77	2.6	3.3	3.1	10	1.9	7.9	1.5	2.9	5.2	11	1.6		0.95	0.48	4.5	2.6	1.4	4.3
	v	<0.49					0.77		<0.57	< 0.57	<0.57	<0.73		<0.9	0.95	< 0.37	1.6				< 0.46	<3.3	<0.55	2.1	1.5
	Ur		1.0		6.7	1.5		1.4					1.1					0.73		1.1					
	Mn	3.7	4.7		13	9.3	12	12	7.4	<0.98	6.6	4.8	6.3	3.2	5.4	2.2	3.9	2.6		5.5	3.0	1.5	3.5	3.2	8.8
	Fe	58	170		170	110	58	240	82	12	140	64	120	50	160	59	96	56		110	64	<16	48	33	250
	Co	<0.011	< 0.069		<0.23	<0.11	<0.11	0.15	0.055	<0.048	<0.048	<0.45	<0.1	<0.1	<0.21	< 0.94	0.063	0.021	<0.018	0.092	0.023	<0.0062	<0.22	0.027	0.11
	Ni	<1.1	8.5		<0.85	<0.19	0.56	1.3	3.6	1.8	2.3	0.49	2.8	<0.9	0.44	1.0	2.6	0.59		<0.52	0.26	2.7	0.70	0.63	1.2
	Cu	<0.85	<3.5		5.3	3.9	4.8	9.9	2.3	4.7	< 0.56	2.3	5.0	<3	9.2	<1.1	2.1	1.9		2.7	1.3	1.2	2.2	<2	3.0
	Zn	27	21		43	46	69	45	91	4.9	5.4	11	39	11	<8	3.5	8.1	13		28	8.5	<32	<15	15	17
	As	0.27	0.35	0.50	0.68	0.69	1.1	0.53	0.26	0.16	0.19	0.84	0.40	0.20	<0.82	<0.83	0.28	0.67	0.32	0.21	0.43	0.18	0.33	0.31	0.39
	Se	0.10	3.7	0.57	0.80	1.4	0.71	2.2	0.52	< 0.42	0.63	< 0.54	1.0	0.60	< 0.92	<0.98	0.43	0.55	0.32	0.16	0.16	0.23	0.37	0.26	0.72
	Rb	-	0.18	0.29	0.21	0.36	0.49	0.35	0.097	<0.062	0.13	- 0.4	0.28	0.15	<0.44	<1.1	0.075	0.12	0.13	0.15	0.17	<0.12	<0.12	0.15	0.50
	Mo	0.25	< 0.59	1.5	3.7	1.6	1.9	1.9	0.17	<0.12	<0.12	0.70	1.5	0.19	< 0.3	<1.4	0.33	0.21	<0.19	0.046	0.12	0.50	0.22	0.18	< 0.71
	Sb	0.51	0.94	ZZZ	zzz	2.7	2.9	1.6	0.42	0.039	0.17	< 0.19	1.3	0.70	0.61	<6.6	0.27	0.69	0.68	0.27	0.34	0.45	0.35	0.28	0.45
	Cs	0.017	< 0.06	<0.035	<0.035	<0.079	<0.079	0.029	< 0.017	<0.017	< 0.017	<0.082	0.040	0.020	<0.15	<9.4	< 0.015	<0.011	0.0092	0.020	0.013	<0.0068	<0.12	0.0074	< 0.062
	Ва	0.84	1.4	2.8	3.7	21	<2.3	5.7	1.4	2.4	0.69	1.4	2.4	2.1	2.7	<10	0.67	1.8		2.2	1.2	0.96	2.8	0.79	3.5
	l a	0.099	<0.091		0.075	0.098	0.17	0.20	0.20	<0.023	<0.023	<0.30	0.10	<0.1	<0.18	<12	0.027	0.16		0.049	0.034	<0.10	<0.11	0.023	0.14
	Ce	0.087	<0.096	0.070	0.15	0.12	0.40	0.23	0.081	<0.021	0.038	<0.35	0.20	<0.1	<0.15	<13	0.031	0.31	0.038	0.094	0.067	0.11	<0.11	0.035	0.31
	Sm	< 0.0044	<0.12		<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.32	<0.3	<0.3	<0.22	<20	<0.018	<0.021	<0.0024	0.010	0.0057	<0.12	<0.11	<0.0078	<0.054
	Hf	<0.019	<0.52	<0.023	<0.023	0.041	<0.020	0.011	<0.025	<0.025	<0.025	<0.27	0.20	0.20	<0.11	<0.03	<0.045	<0.014	0.0029	0.0029	0.0069	<0.0085	<0.0085	0.0014	<0.15
	w	<0.019	<0.12		0.11	0.17	0.24	<0.16	<0.17	<0.17	<0.17	<2.8	<0.2	<0.2	<0.51	0.080	0.12	0.070	<0.23	0.029	0.042	0.041	0.038	0.0014	<0.12
	Ta	-	<0.12	<0.004	<0.025	<0.028	<0.028	0.0025	<0.07	<0.07	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	< 0.035	<0.012		<0.0010	-	<0.0028	< 0.0053	<0.0010	<0.040
	TL.	<0.09	<0.12		<0.023	<0.079	<0.020	<0.0023	<0.027	<0.027	<0.02	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012	0.033		0.010	0.0098	<0.0020	<0.17	<0.0010	<0.053
	DL	2.6	3.2		5.7	6.1	13	5.0	1.3	1.1	<0.79	11	3.9	1.6	2.3	<2.2	0.88	1.7		4.2	1.6	1.1	1.7	1.3	1.9
	PD その他(Be)			3.3	- 5.7	- 0.1	-	0.16	- 1.3	- 1.1	-	- ''		- 1.0	-	- \2.2	-	- 1./	- 1.0	- 4.2	- 1.0	- 1.1	- 1.7	- 1.3	-
		_	<0.22	_			_	- 0.16	_			-		_	_		_		_	_				_	_
<b>中丰子</b> 八	その他(Cd)	0.086	<0.17						<0.04	<0.04		0.064		<0.4			0.086				0.033	<0.063	<0.11		
炭素成分	OC1		<0.009	0.88	1.3	0.37	0.18	0.39			<0.04		<0.4		0.087	0.10		0.13	0.053	<0.010	<0.029	<0.028	<0.028	<0.019	<0.013
	OC2	0.72	0.69		2.1	3.2	1.7	1.6	0.69	0.19	0.30	0.86	0.70	0.50	0.68	0.73	1.2	0.63	1.5	0.65	0.33	1.2	0.79	1.1	1.1
	OC3	0.63	0.84		3.4	4.1	2.2	2.2	0.71	0.26	0.46	0.40	1.0	0.70	0.54	0.53	0.79	0.51	0.82	0.42	0.44	0.66	0.57	0.66	0.76
	OC4	0.44	0.48		2.0	1.9	1.2	1.2	0.37	0.17	0.23	0.24	0.60	0.40	0.23	0.26	0.57	0.26	0.36	0.22	0.22	0.29	0.25	0.31	0.35
	Ocpyro	0.53	0.83		2.3	2.2	1.0	1.3	0.57	0.30	0.32	0.71	0.60	0.40	0.42	0.38	0.44	0.45		0.36	0.33	0.59	0.53	0.60	0.55
	EC1	0.86	1.2		3.8	3.6	2.1	2.2	0.80	0.29	0.51	0.87	1.4	0.70	0.49	0.62	0.84	0.66	1.0	0.49	0.56	1.1	0.74	0.80	0.78
	EC2	0.32	0.28		0.53	0.37	0.36	0.51	0.54	0.22	0.33	0.35	0.40	0.40	0.35	0.17	0.33	0.22	0.56	0.40	0.13	0.54	0.30	0.39	0.44
	EC3	<0.12	0.0055	0.065	0.045	0.030	0.020	0.080	0.054	0.016	0.024	<0.0096	<0.09	<0.09	0	0	<0.029	0.010	0.036	<0.021	<0.025	<0.014	0.016	<0.021	<0.021
	oc	2.4	2.8	8.8	11	12	6.3	6.7	2.3	0.92	1.3	2.3	3.0	2.0	2.0	2.0	3.1	2.0	3.5	1.6	1.3	2.7	2.1	2.7	2.8
	EC	0.65	0.66	1.9	2.1	1.8	1.5	1.5	0.82	0.23	0.54	0.51	1.2	0.80	0.42	0.41	0.73	0.44	0.87	0.53	0.36	1.1	0.53	0.59	0.67
	wsoc	1.0	2.4	4.5	6.3	-	-	-	1.1	0.99	0.56	1.0	-	-	1.7	-	2.5	-	-	-	-	-	-	1.7	-

ó

<u> </u>				, L o H c																		, 0.			
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県		長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	8.7	5.4	4.7	7.3	9.5	17.0	13.0	11.7	7.1	11.9	9.1	10.9	9.0	10.7	11.6	10.7	8.7	7.0	6.5	7.5	11.0	6.9	10.6	13.4
イオン成分	CI-	0.13	0.072	< 0.016	< 0.016	<0.046	0.24	0.071	< 0.096	< 0.096	<0.096	0.099	0.10	0.090	0.068	0.060	0.072	0.060	0.0082	0.052	0.082	0.017	0.043	<0.016	0.14
	NO3-	0.32	0.12	0.092	0.18	0.36	1.4	0.40	0.24	0.21	0.16	0.22	0.50	0.54	0.45	0.40	0.40	0.46	0.26	0.38	0.27	0.21	0.22	0.18	0.26
	SO42-	1.4	1.0	0.52	0.94	1.6	1.9	1.5	1.5	1.8	1.9	2.2	1.8	1.4	1.8	2.4	2.0	1.3	1.4	1.1	1.5	1.7	1.5	1.4	1.5
	Na⁺	0.20	0.068	0.011	0.024	0.10	0.11	0.15	0.12	0.24	0.11	0.27	0.23	0.14	0.14	0.29	0.30	0.12	0.076	< 0.053	0.16	0.18	0.24	0.12	0.22
	NH₄ ⁺	0.57	0.44	0.24	0.41	0.57	1.0	0.55	0.57	0.49	0.74	0.62	0.49	0.55	0.73	0.69	0.65	0.54	0.57	0.57	0.49	0.71	0.59	0.47	0.51
	V ⁺	0.059	0.056	<0.03	0.045	0.10	0.15	0.085	0.066	0.046	0.063	0.10	0.080	0.060	0.062	0.11	0.083	0.080	0.074	0.065	0.047	0.057	0.041	<0.050	0.051
	N 2+	0.024	<0.0069	<0.015	<0.015	0.029	0.027	0.022	0.0044	0.013	0.0072	0.073	0.032	0.020	<0.024	0.040	0.038	0.020	<0.036	<0.036	0.020	0.020	0.030	0.0098	0.026
	Mg ⁻																								
4 144 B 43	Ca ²⁺	<0.025	<0.040	0.025	0.029	0.053	0.040	0.22	<0.044	<0.044	0.054	0.090	0.060	0.050	0.070	0.080	0.061	0.060	<0.063	<0.063	0.024	0.050	0.055	0.097	0.62
無機成分	Na	-	150	<21	26	110	150	170	160	250	310	350	290	130	110	250	240	120	140	70	180	230	210	230	430
	Al	39	59	<55	<55	60	36	230	29	31	71	120	110	50	65	54	31	61	19	52	66	20	32	46	550
	Si		-	-	-	-	-	410	250	150	240	110	140	90	-	200	-	160	34	28	-	25	79	52	-
	K	-	71	41	46	160	73	120	150	76	130	92	100	72	59	110	81	90	78	57	87	90	59	99	160
	Ca	-	33	<170	<170	<2.1	12	270	110	33	110	110	70	40	74	81	36	58	21	51	31	<87	<25	150	570
	Sc	<0.0036	<0.059	<0.012	<0.012	<0.029	<0.029	<0.18	<0.079	<0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023		<0.012		0.013	<0.12	<0.12		59
	Ti	2.1	4.1	ZZZ	ZZZ	1.7	1.7	19	9.0	3.8	9.3	9.7	5.0	4.0	3.9	8.0	3.8	4.9	1.0	1.3	5.5	1.5	<2.2	1.9	38
	V	1.2	0.44	0.62	1.0	0.97	0.88	1.8	2.3	3.7	4.5	3.2	1.4	0.90	2.4	14	5.9	0.98	0.32	0.70	0.52	2.1	0.31	2.1	0.94
	Cr	< 0.49	0.42	<1.1	<1.1	0.68	<0.12	0.67	11	<0.57	1.7	<0.73	<0.9	<0.9	0.70	2.4	3.5	0.89	<0.92	1.0	< 0.35	<3.3	1.6	1.8	0.75
	Mn	4.3	1.6	2.5	3.0	3.6	3.2	7.6	12	2.2	13	3.9	4.9	3.1	4.8	14	7.1	4.0	2.2	2.5	3.0	3.0	3.3	4.6	7.7
	Fe	51	<33	55	<24	68	<4.3	210	270	43	350	110	90	50	180	240	83	78	26	31	60	31	28	55	290
	Со	<0.011	<0.069	<0.23	<0.23	<0.11	<0.11	0.11	<0.048	<0.048	0.061	<0.45	<0.1	<0.1	<0.21	<0.94	0.072		<0.018	0.017	0.023	<0.0062	<0.22	0.033	0.21
	Ni	<1.1	<4	<0.85	<0.85	<0.19	<0.19	0.88	1.9	1.2	1.4	0.91	<0.9	<0.9	<0.15	4.5	2.9		<5.0	<0.52	0.28	1.1	<0.11	0.75	0.71
	Cu	3.8		<0.94	<0.94	<0.21	1.2	3.5	3.3	1.9	3.3	3.5	<3	<3	<6.4	<1.1	2.6		<4.8	5.7	1.4	2.6	1.0	2.4	1.4
	Zn	24		7.4	15	17	16	26	42	7.9	53	5.5	20	14	<8	33	21	23	13	19	12	<32	<15	27	14
	As	0.85	0.97	0.55	0.64	0.57	1.0	1.2	0.74	0.62	0.85	0.20	1.2	1.0	<0.82	<0.83	0.91	1.6	0.72	0.62	1.4	0.59	0.81	0.57	1.1
	Se	0.12	<1.1	0.36	0.36	<0.20	<0.20	0.73	0.64	<0.42	0.97	<0.54	0.60	0.60	<0.92	<0.98	0.65	0.43	0.24	0.36	0.35	0.46	0.36	0.35	0.41
	Rb	-	0.18	0.088	0.10	<0.14	<0.14	0.37	0.34	0.16	0.35	<0.24	0.30	0.21	<0.44	<1.1	0.23	0.24	0.15	0.13	0.33	0.19	0.16	0.21	0.76
	Мо	0.72	< 0.59	0.37	<0.15	0.22	0.18	0.65	0.41	<0.12	0.43	<0.46	0.60	0.30	0.62	<1.4	4.2		<0.19	0.22	0.15	0.50	<0.13	0.26	<0.71
	Sb	5.1	0.56	ZZZ	ZZZ	0.29	0.39	0.70	0.42	0.16	0.55	<0.19	0.80	0.70	0.75	<6.6	0.48	0.68	0.27	0.37	0.30	1.0	0.14	0.41	0.46
	Cs	0.026	<0.06	<0.035	<0.035	<0.079	<0.079	0.043	0.045	<0.017	0.038	<0.082	0.050	0.040	<0.15	<9.4	0.033	-	0.021	0.016	0.044	0.012	<0.12	0.024	0.063
	Ва	0.97	1.0	0.56	0.49	<2.3	<2.3	5.4	1.5	2.2	2.2	1.2	2.0	1.6	1.9	<10	1.6	2.1	1.3	1.1	1.2	2.6	1.1	1.7	4.0
	La	0.054	<0.091	<0.012	<0.012	<0.038	<0.038	0.14	0.096	0.029	0.097	<0.30	<0.1	<0.1	<0.18	<12	0.12	0.11	0.020	0.037	0.047	<0.10	<0.11	0.044	0.16
	Ce	0.077	<0.096	<0.022	0.023	0.084	0.079	0.20	0.16	0.039	0.12	<0.35	0.10	<0.1	<0.15	<13	0.10	0.18	0.039	0.070	0.097	1.2	<0.11	0.064	0.37
	Sm	<0.0044	<0.12	<0.0019	<0.0019	<0.035	< 0.035	<0.013	<0.027	<0.027	<0.027	<0.32	<0.3	<0.3	<0.22	<20	<0.018		<0.0024	<0.0029	0.0055	<0.12	<0.12	<0.0078	<0.054
	Hf	<0.019	<0.52	<0.023	<0.023	<0.020	<0.020	0.013	<0.025	<0.025	<0.025	<0.27	0.20	0.20	<0.11	<0.03	<0.045	-	<0.0016	0.0012	0.0059	<0.0085	<0.0085	0.0012	<0.15
	W	0.12	<0.12	<0.084	<0.084	<0.040	<0.040	<0.16	<0.17	<0.17	0.49	<2.8	<0.2	<0.2	< 0.51	0.16	0.17	0.29	<0.23	0.046	0.066	0.060	0.018	0.044	0.25
	Та		<0.31	<0.025	<0.025	<0.028	<0.028	0.0047	<0.027	<0.027	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035	<0.012	<0.00077	<0.0010	-	<0.0028	<0.0053	<0.0010	0.78
	Th	<0.09	<0.12	<0.02	<0.02	<0.079	<0.079	0.015	<0.02	<0.02	<0.02	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012		0.0013	0.0017	0.011	<0.17	<0.17	<0.023	<0.053
	Pb	5.4	4.2	2.1	2.7	4.2	4.2	5.5	7.7	3.8	7.4	2.9	5.2	5.1	4.7	6.4	4.8	4.9	5.3	4.6	7.3	4.2	3.8	4.5	4.7
	その他(Be)	-	<0.22	-	-	-	-	0.13	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
u = 4 /	その他(Cd)	-	<0.17	-	-	-	-	-	- (0.04	-	-	-	-	- (0.4	-	- 0.40	-	-	-	-	0.12	0.071	<0.11	-	-
炭素成分	001	0.056	<0.009	0.40	0.39	0	0	0.19	<0.04	<0.04	<0.04	0.030	<0.4	<0.4	0.20	0.10	0.054	0.13	<0.014	0.016	<0.029	<0.028	<0.028	<0.019	<0.013
	OC2	0.78	0.39	0.37	0.67	0.82	0.74	0.98	0.70	0.36	0.52	1.0	0.70	0.50	0.93	0.97	1.3	0.75	1.2	0.97	0.33	1.4	0.49	1.4	0.61
	OC3	0.63	0.59	0.59	0.83	1.0	0.76	1.2	0.81	0.38	0.69	0.66	1.0	0.90	0.96	0.78	0.96	0.77	0.58	0.60	0.42	0.80	0.36	0.85	0.39
	OC4	0.43	0.22	0.35	0.52	0.51	0.35	0.67	0.49	0.22	0.36	0.36	0.60	0.40	0.49	0.48	0.61	0.35	0.26	0.28	0.20	0.35	0.18	0.40	0.26
	Ocpyro	0.57	0.37	0.43	0.59	0.65	0.43	0.89	0.87	0.42	0.54	1.1	0.60	0.50	0.72	0.60	0.57	0.58	0.52	0.47	0.27	0.62	0.39	0.69	0.52
	EC1	0.60	0.42	0.55	1.0	0.91	0.73	1.2	1.4	0.48	1.0	1.6	1.1	0.90	0.96	1.2	1.1	0.96	0.64	0.62	0.60	1.1	0.47	0.91	0.52
	EC2	0.19	0.24	0.29	0.42	0.31	0.31	0.46	0.50	0.30	0.54	0.44	0.40	0.40	0.46	0.24	0.35	0.21	0.40	0.35	0.14	0.66	0.21	0.54	0.39
	EC3	<0.12	0	0	0.030	0.0050	0	0.046	0.068	0.029	0.10	<0.0096	<0.09	<0.09	0.038	0.010	0.033	0.010	<0.021	0.022	<0.025	0.035	<0.014	0.031	<0.021
	OC	2.5	1.6	2.1	3.0	3.0	2.3	3.9	2.9	1.4	2.1	3.2	3.0	2.0	3.3	2.9	3.5	2.6	2.6	2.3	1.2	3.2	1.4	3.3	1.8
	EC	0.22	0.29	0.41	0.86	0.58	0.61	0.82	1.1	0.39	1.1	0.94	0.90	0.70	0.74	0.85	0.91	0.60	0.52	0.52	0.47	1.2	0.29	0.79	0.39
	WSOC	1.4	1.3	0.32	1.4	-	-	_	<0.55	1.4	2.0	1.9	-	-	2.3	-	3.2	-	-	-	-	-	-	2.5	-

表4-1-	39 IUH	29 🗆 /J	いりしり	<b>月30日</b> ま	チ ピ													(PM2.5	,灰素风	分,イオ	ン成分	: μg/m	無機成:	分:ng/m	)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	11.6	15.6	8.2	14.3	15.0	8.6	15.2	12.2	7.0	13.4	14.3	12.5	12.9	13.4	14.0	13.8	13.7	11.5	9.6	10.3	13.6	12.2	10.7	21.0
イオン成分	CI-	0.13	0.28	< 0.016	0.12	0.14	<0.046	0.096	< 0.096	< 0.096	< 0.096	0.097	0.14	0.080	0.069	0.080	0.056	0.27	0.030	0.045	0.46	0.021	0.016	0.023	0.025
	NO3-	0.69	0.79	0.27	0.94	0.92	0.28	1.2	0.59	0.21	0.49	0.69	1.4	1.0	1.1	1.3	1.2	1.1	0.54	0.55	0.51	0.47	0.29	0.20	0.36
	SO42-	1.4	1.6	1.3	1.4	2.1	1.7	1.9	1.5	1.4	1.4	2.0	1.8	2.3	2.4	2.7	2.3	2.4	3.1	2.9	1.8	2.6	4.2	2.2	4.1
	Na⁺	0.10	0.049	0.013	0.038	0.25	0.13	0.13	0.066	0.074	0.049	0.15	0.19	0.17	0.12	0.19	0.19	0.17	0.12	0.096	0.048	0.18	0.14	0.15	0.14
	NH₄⁺	0.75	0.99	0.60	0.81	0.94	0.46	0.87	0.68	0.50	0.65	0.72	0.85	0.92	1.1	1.1	1.0	1.1	1.3	1.2	0.99	1.2	1.7	0.71	1.5
	V ⁺	0.11	0.14	0.050	0.093	0.38	0.066	0.14	0.12	0.048	0.065	0.24	0.12	0.11	0.097	0.14	0.12	0.12	0.097	0.081	0.068	0.056	0.11	<0.050	0.13
	N 2+	0.025	<0.0069	<0.015	<0.015	0.030	0.029	0.020	<0.0038	<0.0038	<0.0038	0.019	0.029	0.024	<0.024	0.030	0.025	0.030		<0.036	0.0079	0.018	0.024	0.014	<0.0068
	Mg																								
<del>-</del> 146 - 15 ()	Ca ²	0.063	<0.040	0.024	0.033	0.060	0.039	0.14	<0.044	<0.044	<0.044	0.048	0.070	0.050	0.054	0.070	0.074	0.050		<0.063	0.022	0.048	0.075	0.081	0.78
無機成分	Na	-	130		110	110	100	150	130	100	140	210	200	190	170	180	99	200		150	100	240	170	250	250
	Al	17	62		<55	65	46	210	46	22	52	55	90	70	68	51	19	74		33	53	22	32	28	690
	Si		-		-	-	-	370	170	90	180	120	120	160	-	190	-	180		28	-	37	110	54	-
	K	-	160		110	170	230	170	190	82		280	130	120	150	140	73	130		87	120	100	170	110	290
	Ca	<0.0036	<0.059		<170	<2.1 <0.029	14 <0.029	150	79 <0.079	<0.079	58	43	60	50	56	78	26 <0.023	56 <0.029		36 <0.012	42	<87 <0.12	<25	96 <0.022	700
	5c				<0.012			<0.18			<0.079	<0.14	<0.2	<0.2	<0.24	<0.03				<0.012	0.011		<0.12 <2.2		13
	11	<1.9 0.79	5.1 0.46	222 0.45	222 0.67	2.4 0.60	3.4 1.1	16 0.96	5.6 1.1	2.9 1.9	5.8 1.8	6.0 1.2	6.0 0.90	6.0 5.2	8.5 6.8	8.1 22	2.5 6.2	8.2 5.3		1.4	4.6 0.32	1.1 6.4	0.73	1.7 3.9	50 1.8
	V	<0.49	0.46		1.5	2.5	0.67	2.3	5.4	0.70	1.8	<0.73	1.0	1.6	3.5	2.0		3.5		<1.0	0.32	<3.3	3.4	2.3	1.0
	Mn	4.4	3.0		1.5	2.5	9.9	2.3	14	2.1	6.1	9.6	9.2	1.0	3.5	18	5.1	12		2.7	4.9	3.8	6.5	5.0	1.0
	Fe	4.4	45		85	1400	140	190	220	42	190	110	130	170	230	230	81	200		30	67	3.6	59	53	430
	Co	<0.011	< 0.069		<0.23	<0.11	<0.11	0.11	<0.048	<0.048	<0.048	<0.45	<0.1	<0.1	<0.21	<0.94		0.074		0.018	0.030	0.038	<0.22	0.035	0.19
	Ni	<1.1	<4		<0.25	38	1.7	1.0	1.7	0.82	0.87	1.1	<0.1	1.7	4.8	5.9	1.7	2.3		0.58	0.030	2.2	0.22	1.6	0.13
	Cu	2.7	<3.5		2.5	12	5.3	7.1	4.3	0.90	1.4	8.4	4.0	4.0	<6.4	2.4	2.3	6.1		4.1	3.8	2.8	2.8	<2	3.0
	7n	63	24		34	40		49	30	8.5	27		54	33	25	44		38		15	28	43	15	11	28
	As	0.82	1.0		0.90	0.64	0.77	2.3	0.79	0.57	0.89	1.5	1.0	1.1	1.2	1.7	0.81	1.7		0.91	0.77	0.87	1.6	1.1	1.6
	Se	0.061	<1.1		0.49	1.4	0.42	1.5	0.66	<0.42	0.57	<0.54	0.70	1.0	2.4	<0.98	0.83	5.0		0.54	0.42	0.57	1.1	0.70	1.0
	Rb	-	0.38		0.21	0.33	0.44	0.46	0.55	0.17	0.37	0.77	0.40	0.50	0.53	<1.1	0.22	0.39		0.23	0.38	0.23	0.53	0.28	1.2
	Мо	0.60	0.75		1.8	4.1	0.75	1.4	0.62	0.16	0.27	0.58	1.0	0.70	0.94	<1.4	0.60	0.77		0.20	0.24	0.28	0.23	0.24	<0.71
	Sb	1.2	1.4		ZZZ	0.53	2.9	2.1	1.2	0.36	1.0	1.7	1.6	1.3	1.4	<6.6	0.66	1.2		0.48	3.5	0.70	0.68	0.36	0.88
	Cs	0.023	<0.06		<0.035	<0.079	<0.079	0.042	0.079	0.021	0.034	<0.082	0.050	0.080	<0.15	<9.4	0.036	0.046		0.028	0.049	0.016	<0.12	0.039	0.11
	Ва	1.3	2.1	0.87	0.80	<2.3	<2.3	5.7	1.5	1.9	1.5	2.4	3.2	4.6	4.5	<10	1.3	4.0	1.5	1.1	1.6	2.2	2.8	1.4	5.7
	La	0.062	< 0.091	<0.012	0.031	0.16	0.33	0.17	0.10	0.054	0.099	<0.30	0.10	0.20	<0.18	<12	0.063	0.37	0.037	0.037	0.040	<0.10	<0.11	0.050	0.28
	Ce	0.14	0.11	<0.022	0.070	0.24	0.69	0.23	0.13	0.031	0.084	< 0.35	0.20	0.20	0.22	<13	0.083	0.52	0.058	0.069	0.081	0.060	<0.11	0.089	0.54
	Sm	<0.0044	<0.12	< 0.0019	<0.0019	< 0.035	< 0.035	<0.013	<0.027	<0.027	< 0.027	< 0.32	< 0.3	<0.3	<0.22	<20	<0.018	< 0.021	<0.0024	< 0.0029	0.0037	<0.12	<0.12	<0.0078	< 0.054
	Hf	<0.019	<0.52	<0.023	<0.023	<0.020	<0.020	0.016	<0.025	<0.025	<0.025	<0.27	0.20	0.20	<0.11	<0.03	<0.045	<0.014	<0.0016	0.0028	0.0080	<0.0085	<0.0085	<0.0011	<0.15
	W	0.36	<0.12	<0.084	<0.084	0.14	<0.040	<0.16	<0.17	<0.17	0.20	<2.8	<0.2	<0.2	<0.51	0.85	0.23	0.24		0.034	0.073	0.039	0.049	0.057	<0.12
	Та	-	<0.31	<0.025	<0.025	<0.028	<0.028	0.0031	<0.027	<0.027	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035	<0.012		<0.0010	-	<0.0028	<0.0053	<0.0010	<0.040
	Th	<0.09	<0.12		<0.02	<0.079	<0.079	0.012	<0.02	<0.02	<0.02	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012	<0.014		0.0024	0.0080	<0.17	<0.17	<0.023	<0.053
	Pb	4.9	6.9	2.7	6.6	8.2	7.6	8.4	9.2	2.7	8.1	31	7.3	8.3	9.7	6.0	4.6	9.8	4.5	5.3	16	4.8	12	5.2	11
	その他(Be)	-	<0.22	-	-	_	_	0.26	-	_	-	-	-	-	-		-		-	-	-	-	_	-	-
	その他(Cd)	-	<0.17		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.91	0.090	0.32	-	-
炭素成分	OC1	0.12	0.069	0.46	0.69	0	0.16	0.33	<0.04	<0.04	<0.04	0.090	<0.4	<0.4	0.24	0.24	0.15	0.21	0.046	0.032	<0.029	<0.028	<0.028	<0.019	<0.013
	OC2	1.1	0.94		1.2	1.3	1.4	1.2	0.96	0.50	0.79	1.4	0.90	0.80	1.1	1.3	1.5	1.1	1.5	1.2	0.45	1.2	0.83	1.0	0.84
	OC3	1.0	1.0		1.6	1.7	1.6	1.5	0.90	0.57	0.88	1.1	1.0	0.90	1.0	0.98	1.0	0.90		0.47	0.58	0.64	0.34	0.49	0.37
	OC4	0.60	0.50		0.91	0.85	0.87	0.89	0.57	0.34	0.49	0.63	0.60	0.60	0.55	0.68	0.65	0.48		0.26	0.24	0.30	0.19	0.26	0.24
	Ocpyro	0.90	0.94		1.2	1.0	0.89	1.0	0.91	0.61	1.0		0.60	0.60	0.85	0.77	0.71	0.83	0.93	0.77	0.39	0.71	0.76	0.63	0.88
	EC1	1.7	1.5		2.5	1.9	2.1	1.9	1.8	0.79	1.9		1.7	1.6	1.5	1.7	1.6	1.9		0.91	1.1	1.3	0.96	0.86	0.95
	EC2	0.28	0.48		0.48	0.42	0.47	0.71	0.62	0.46	0.64	0.50	0.50	0.50	0.47	0.34	0.50	0.27	0.57	0.51	0.25	0.70	0.38	0.45	0.67
	EC3	<0.12	0		0.035	0.010	4.0	0.12 4.9	0.074	0.051	0.10		<0.09	<0.09	0.028	0.030	0.053	0.020		0.024	<0.025	<0.014	<0.014	<0.021	0.034
	OC EC	3.7 1.1	3.4 1.0		5.6 1.8	4.9 1.3	4.9 1.7	4.9 1.7	3.3 1.6	2.0	3.2 1.6	4.4	3.0 1.6	3.0 1.5	3.7 1.1	4.0	4.0 1.4	3.5 1.4		2.7 0.67	1.7 0.96	2.9 1.3	2.1 0.58	2.4 0.68	2.3
	EC WSOC	1.1 2.5	2.6		1.8	1.3	1./	1./	1.6	0.69	1.6		1.6	1.5	1.1 2.7	1.3	3.1	1.4 -	0.77	0.67	0.96	1.3	0.58	1.8	0.77
	WSUC	2.5	2.6	0.90	2.4	_	-	-	1.4	1.5	1.4	1.2	-	-	2./		ا. ت		_	-	_	-	-	1.8	_

自治体名
基本事項 PM2.5濃度 12.8 15.6 6.9 14.3 11.0 16.0 14.9 17.9 15.3 20.8 16.3 12.8 11.4 12.8 14.4 13.7 14.0 11.6 13.7 10.8 12.8 12.4 15.0 2 イナン成分 C- 0.030 0.083 0.016 0.030 0.086 0.046 0.046 0.051 0.096 0.096 0.096 0.096 0.096 0.090 0.030 0.049 0.030 0.037 0.040 0.0038 0.016 0.12 0.013 0.013 0.013 0.016 0.030 0.083 0.016 0.12 0.013 0.013 0.016 0.016 0.006 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.099 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
日本地域分
NO3-   0.42   0.52   0.12   0.38   0.21   0.44   0.70   0.94   0.25   0.56   1.1   0.99   0.46   0.39   0.49   0.67   0.54   0.37   0.42   0.49   0.28   0.16   <0.1   0.52   0.56   0.14   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70
SO42-       2.3       2.8       1.7       2.5       3.2       3.1       3.3       3.5       3.2       2.6       4.2       3.6       3.7       3.6       4.2       4.3       4.1       4.4       5.1       3.2       5.6       4.6       5.2         Na*       0.094       0.079       0.013       0.042       0.069       0.097       0.094       0.067       0.067       0.04       0.12       0.13       0.12       0.099       0.14       0.14       0.14       0.11       <0.053       <0.053       0.061       0.073       0.066       0.040       0.0         NH4*       0.97       1.2       0.69       1.0       1.3       1.1       1.3       1.4       1.3       1.6       1.4       1.4       1.4       1.6       1.7       1.5       1.8       2.0       1.3       2.3       1.9       2.1         K**       0.13       0.15       0.041       0.096       0.12       0.17       0.11       0.14       0.10       0.076       0.19       0.10       0.090       0.13       0.11       0.086       0.093       0.086       0.099       0.081       0.086       0.099       0.087       0.080       0.090
$N_{a}^{+}$ 0.094 0.079 0.013 0.042 0.068 0.097 0.094 0.067 0.097 0.094 0.067 0.067 0.007 0.004 0.12 0.13 0.12 0.099 0.14 0.14 0.11 0.053 0.053 0.061 0.073 0.066 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
NH4
K*         0.13         0.15         0.041         0.096         0.12         0.11         0.10         0.090         0.13         0.11         0.10         0.090         0.13         0.11         0.10         0.12         0.085         0.13         0.086         0.099         0.087         0.056         0.090           Mg²*         0.0098         0.0069         0.015         0.028         0.027         0.017         0.0038         0.0038         0.0038         0.0038         0.017         0.020         0.021         0.020         0.036         0.036         0.091         0.011         0.015         0.041         0.041         0.041         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044         0.044
Mg ^{2*}   0.0098   0.0069   0.015   0.015   0.028   0.027   0.017   0.0038   0.0038   0.0038   0.0038   0.0038   0.0017   0.024   0.020   0.021   0.020   0.036   0.036   0.0091   0.011   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.015   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0041   0.0
Ca²*         < 0.025
Ca²*         < 0.025
無機成分 Na - 220 37 26 99 18 120 120 100 130 160 130 110 93 120 120 130 100 83 74 65 100 97 3
Al 43 78 <55 <55 59 13 250 53 23 47 37 70 40 47 42 31 69 27 38 50 110 35 47 51 51 51 52 52 53 53 23 47 37 70 40 47 42 31 69 27 38 50 110 35 47 51 51 51 51 51 51 51 51 51 51 51 51 51
Si 420 150 90 230 62 80 90 - 160 - 160 48 49 - 28 100 69 - K - 170 74 54 130 150 140 200 160 210 190 100 99 100 110 100 140 110 130 120 140 160 150 30 100 100 100 100 100 100 100 100 100
K - 170 74 54 130 150 140 200 160 210 190 100 99 100 110 100 140 110 130 120 140 160 150 150 150 150 150 150 150 150 150 15
Ca - 67 <170 <170 <2.1 12 240 78 21 120 24 50 40 45 76 38 48 24 270 36 120 27 160
ISC   <0.0036  <0.059  <0.012  <0.012  <0.029  <0.029  <0.029  <0.018  <0.079  <0.079  <0.079  <0.014  <0.2  <0.2  <0.2  <0.2  <0.04  <0.03  <0.023  <0.029  <0.012  <0.012  <0.012  <0.011  <0.12  <0.12  <0.022
Ti <1.9 6.4 zzz zzz 3.1 <0.2 19 7.5 2.6 8.3 4.4 4.0 5.0 10 7.0 4.4 7.4 1.4 2.7 3.9 <1.0 <2.2 2.8
V 1.1 0.70 0.34 1.0 1.3 0.21 2.2 4.7 4.0 5.6 3.4 3.9 1.5 2.0 15 11 2.0 0.52 1.4 0.37 3.6 0.87 0.92
Cr (0.49 0.50 <1.1 <1.1 0.79 <0.12 2.2 2.9 <0.57 1.3 2.0 <0.9 <0.9 1.3 2.0 1.2 1.9 <0.92 <1.0 <0.35 <3.3 <0.55 2.8
Mn 3.7 5.8 2.4 3.9 6.5 2.7 12 13 4.8 16 9.3 9.3 5.8 7.7 18 10 7.9 2.6 4.2 4.7 3.3 6.1 5.7
Fe 67 110 57 32 82 4.3 250 200 75 310 120 130 80 110 230 180 120 35 43 62 28 60 59
Go 0.012 (0.069 (0.23 (0.21 (0.11 (0.11 0.12 0.072 (0.048 0.055 (0.45 (0.11 (0.11 (0.21 (0.94 0.072 0.049 (0.018 0.034 0.027 0.011 (0.22 0.048 0.055 (0.45 (0.11 (0.11 (0.21 (0.94 0.072 0.049 (0.018 0.034 0.027 0.011 (0.22 0.048 0.055 (0.45 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11
Ni <1.1 <4 <0.85 2.7 <0.19 <0.19 1.2 1.5 1.5 1.7 1.5 1.5 <0.9 <0.15 4.4 3.7 1.2 <5.0 1.3 0.28 1.2 0.36 0.50
Cu 6.8 <3.5 1.5 1.0 2.6 0.79 6.1 4.3 1.8 4.9 3.4 5.0 <3 <6.4 2.5 3.3 4.4 <4.8 2.3 2.1 8.0 2.8 <2
Zn 50 29 14 9.8 36 28 40 45 23 51 18 55 20 8.5 37 33 32 (12 100 16 44 22 35
As 0.59 0.73 0.40 0.43 0.82 0.25 0.76 0.80 0.71 1.1 0.87 0.80 0.80 0.89 <0.83 0.92 1.1 0.72 1.1 0.76 0.83 1.4 1.3
Se 0.14 2.8 0.21 0.42 3.2 <0.20 1.5 0.92 0.43 0.91 <0.54 1.0 0.70 1.5 <0.98 1.4 1.2 0.55 0.81 0.45 0.72 0.85 0.93 0
Rb - 0.36 0.20 0.12 0.31 <0.14 0.48 0.50 0.36 0.70 0.70 0.40 0.29 <0.44 <1.1 0.39 0.39 0.26 0.37 0.31 0.32 0.45 0.46
Mo 1.4 < 0.59   0.36   < 0.15   1.2   < 0.077   1.1   0.59   0.33   0.52   1.5   0.80   0.50   0.67   < 1.4   0.92   0.70   < 0.19   0.21   0.18   0.22   0.21   0.16   < 0.22   0.21   0.22   0.23   0.22   0.23   0.23   0.22   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23
Sb 1.3 1.2 zzz zzz 1.4 0.86 1.1 1.3 0.59 0.94 2.2 1.1 1.0 0.93 <6.6 0.74 1.3 0.37 0.79 0.67 0.89 0.48 0.35 0
Cs 0.035 <0.06 <0.035 <0.035 <0.035 <0.079 <0.079 0.048 0.054 0.054 0.042 0.090 <0.082 0.070 0.050 <0.15 <9.4 0.071 0.044 0.033 0.048 0.039 0.024 <0.12 0.071 0.049 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.05
Ba 1.2 2.9 0.77 0.63 <2.3 <2.3 9.6 2.9 2.1 2.5 2.5 3.2 2.5 3.0 <10 2.1 3.6 2.0 1.6 1.6 0.98 2.0 1.8
<u>La 0.055 &lt;0.091 0.016 0.018 0.14 0.10 0.18 0.27 0.097 0.12 &lt;0.30 0.10 &lt;0.1 &lt;0.18 &lt;12 0.084 0.16 0.045 0.050 0.055 &lt;0.10 &lt;0.11 0.065 0</u>
Ce 0.081 0.10 0.028 0.048 0.18 0.21 0.24 0.49 0.072 0.21 <0.35 0.20 <0.1 0.15 <13 0.13 0.24 0.062 0.065 0.070 0.037 <0.11 0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
Sm < 0.0044   0.12   0.0019   0.0019   0.0019   0.0035   0.035   0.035   0.035   0.027   0.027   0.027   0.027   0.035   0.03   0.03   0.03   0.02   0.03   0.02   0.0029   0.0029   0.0037   0.12   0.12   0.0078   0.02   0.0029   0.0037   0.02   0.0029   0.0037   0.02   0.0029   0.0037   0.02   0.0029   0.0037   0.02   0.0029   0.0037   0.02   0.0029   0.0037   0.02   0.0029   0.0037   0.02   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0037   0.0029   0.0029   0.0029   0.0029   0.0029   0.00
Hf < 0.019 < 0.52 < 0.023 < 0.023 < 0.020 < 0.020 < 0.020   0.017 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.027   0.20   0.20   0.11   0.03   0.045 < 0.014 < 0.0016   0.0024   0.0068 < 0.0085   0.0085   0.0085   0.0022   0.0085   0.0022   0.0085   0.0022   0.0085   0.0022   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085   0.0085
W 0.25 <0.12 <0.084 <0.084 0.11 <0.040 <0.16 <0.17 <0.17 <0.17 <0.17 6.2 <0.2 <0.2 <0.51 0.98 0.18 0.13 <0.23 0.044 0.043 0.035 0.023 0.022 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.
Ta - <0.31 <0.025 <0.025 <0.028 <0.028 <0.022 <0.027 <0.027 <0.027 <0.027 <0.042 <0.09 <0.19 <0.09 <0.19 <0.024 <0.035 <0.012 <0.00077 <0.0010 - <0.0028 <0.0028 <0.0053 <0.0010 (0.0010 )
Th <0.09 <0.12 <0.02 <0.02 <0.079 <0.079 0.013 <0.02 <0.02 <0.02 <0.02 <0.06 <0.06 <0.06 <0.06 <0.14 <3.4 <0.012 <0.014 0.0025 0.0030 0.0072 <0.17 <0.17 <0.023 <0.17 <0.023 <0.17 <0.023 <0.14 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014
Pb 5.1 7.3 3.3 2.4 6.1 5.7 7.0 7.2 7.2 11 18 7.1 6.6 6.3 7.9 7.7 9.2 5.5 8.4 4.8 7.0 9.9 11
その他(Be) - 〈0.22 0.17
(0.17 0.10 0.20
炭素成分 OC1 0.13 0.025 0.19 0.57 0 0.20 0.28 <0.04 <0.04 0.067 <0.4 <0.4 0.26 0.17 0.10 0.30 0.035 0.057 <0.029 <0.028 <0.028 <0.028 <0.019 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.0
OC2 1.1 0.93 0.27 0.84 0.80 1.4 1.1 1.2 0.87 1.1 1.3 0.80 0.60 0.93 1.1 1.4 0.92 1.3 1.3 0.44 1.3 0.75 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ocpyro 1.1 1.1 0.34 1.1 0.70 1.1 0.96 1.5 1.5 1.6 1.5 0.70 0.70 0.74 0.78 0.78 0.89 0.85 1.1 0.51 1.1 0.77 0.79 0.79 0.79 0.79 0.79 0.79 0.79
EC2 0.24 0.44 0.36 0.58 0.42 0.50 0.68 0.70 0.70 0.86 0.61 0.60 0.40 0.56 0.32 0.47 0.34 0.62 0.77 0.25 0.85 0.45 0.60 0.60 0.60 0.60 0.40 0.56 0.32 0.47 0.34 0.62 0.77 0.25 0.85 0.45 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.6
EC2
OC 4.1 3.5 1.0 4.1 2.5 4.9 3.9 4.1 3.7 4.0 4.1 3.0 2.0 2.7 3.0 3.5 3.1 2.7 3.1 1.7 3.1 2.0 2.3
CC 4.1 3.3 1.0 4.1 2.3 4.9 3.9 4.1 3.7 4.0 4.1 3.0 2.0 2.7 3.0 3.3 3.1 2.7 3.1 1.7 3.1 2.0 2.3 EC 0.84 1.1 0.47 1.4 0.82 1.3 1.1 1.9 1.4 1.8 1.8 1.3 0.90 0.79 1.1 1.1 0.98 0.67 0.79 0.67 1.2 0.51 0.72 (
WSOC 2.4 2.7 0.36 2.1 2.4 3.0 2.2 0.65 2.3 - 2.9 1.6 -

20.1		о : <b>д</b> /3	,	, I 0														,	, , , , , , , , ,		,,,,,	,			
自治	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査は	地点名	土浦	直岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多座	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	9.9	ZZZ	9.0	13.5	18.0	14.0	12.4	9.5	7.2	10.4	9.2	9.3	12.4	12.4	10.1	8.8	14.0		14.6	6.3	11.3	7.1	12.8	13.5
イオン成分	CI-	0.10	ZZZ	0.030	0.058	0.068	0.17	0.16	< 0.096	<0.096	0.10	0.060	0.13	0.11	0.21	0.060	0.053	0.18		0.21	0.067	0.012	0.022	0.016	0.019
13 2 10073	NO3-	0.18	ZZZ	0.57	0.67	1.7	1.1	1.3	0.15	0.14	0.18	0.25	0.13	1.2	1.5	1.1	0.72	1.5		2.6	0.35	0.49	0.022	0.13	0.015
	SO42-	1.1	ZZZ	0.83	0.95	1.6	1.7	1.3	0.79	1.4	1.8	1.7	1.2	1.5	1.7	1.8	1.4	1.7		2.5	1.3	2.4	0.97	2.8	1.4
	Na [⁺]	0.067	ZZZ	<0.0096	0.029	<0.026	0.13	0.043	<0.04	0.058	0.071	0.095	0.070	0.070	0.049	0.080	0.071	0.060	<0.053	<0.053	0.017	<0.048	<0.048	0.057	0.057
	NH₄⁺	0.51	ZZZ	0.48	0.51	0.96	0.85	0.85	0.30	0.52	0.86	0.52	0.57	0.80	1.1	0.88	0.73	1.0	1.3	1.9	0.59	1.2	0.57	1.0	0.46
	V ⁺	0.14	ZZZ	0.10	0.15	0.22	0.39	0.15	0.032	0.10	0.12	0.20	0.13	0.14	0.14	0.15	0.12	0.16	0.14	0.14	0.065	0.095	0.080	0.062	0.078
	2+																								
	Mg	0.0074	ZZZ	<0.015	<0.015	0.025	0.026	0.0069	<0.0038	<0.0038	<0.0038	<0.012	0.0090	0.0080	<0.024	0.010	0.010	<0.01	<0.036	<0.036	0.0042	<0.0079	<0.0079	<0.0022	<0.0068
	Ca ²⁺	0.036	ZZZ	0.029	0.041	0.039	0.056	0.072	<0.044	<0.044	<0.044	0.064	0.040	0.030	0.044	0.050	0.027	0.030	<0.063	< 0.063	0.024	0.034	<0.02	0.16	0.73
無機成分	Na	-	ZZZ	31	23	38	210	56	100	58	110	110	80	70	67	70	25	62	51	52	<65	120	60	95	270
	Al	84	ZZZ	<55	<55	30	74	91	24	<15	19	31	50	20	36	<17	2.5	23	17	<15	21	14	90	26	250
	Si	_	-	-	-	-	_	160	89	31	97		20	40	-	55	-	62		37	-	27	38	46	_
	K	_	ZZZ	140	150	250	400	160	160	140	170		150	160	150	130	40	150		170	82	180	160	160	230
	Ca	_	ZZZ	<170	<170	<2.1	11	88	56	9.0	48	29	40	29	<41	42	<8.9	28		11	<19	<87	<25	170	330
	Sc	<0.0036	ZZZ	<0.012	<0.012	<0.029	<0.029	<0.18	<0.079	<0.079	< 0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023	<0.029		<0.012	0.0056	<0.12	<0.12	<0.022	4.5
	J:																<1.6					<1.0		2.5	18
	11	26	ZZZ	ZZZ	ZZZ	1.1	8.3	7.2	3.8	1.3	3.7	2.3	1.0	3.0	2.7	2.8		2.7	1.3	36	<1.6		<2.2		
	V	0.28	ZZZ	0.34	1.1	0.40	5.1	0.63	1.3	<0.35	2.2	1.0	0.60	0.50	1.6	3.3	1.9	0.51	0.93	0.88	0.19	1.8	0.25	2.1	3.3
	Cr	< 0.49	ZZZ	<1.1	<1.1	0.59	1.6	1.3	2.1	< 0.57	< 0.57	<0.73	<0.9	<0.9	0.49	1.9	<0.094	0.86		1.2	< 0.35	<3.3	<0.55	1.7	3.5
	Mn	0.70	ZZZ	2.0	3.3	5.3	26	4.7	4.9	2.3	6.1	2.1	3.8	3.9	4.5	5.6	1.1	3.5		3.0	1.7	3.8	1.9	5.2	12
	Fe	<12	ZZZ	33	<24	50	240	84	170	21	210	41	40	50	150	130	13	69		190	27	36	17	54	190
	Co	<0.011	ZZZ	<0.23	<0.23	<0.11	<0.11	0.041	<0.048	<0.048	<0.048	< 0.45	<0.1	<0.1	<0.21	< 0.94	< 0.016	0.028	<0.018	0.013	0.0094	<0.0062	<0.22	0.034	0.093
	Ni	<1.1	ZZZ	<0.85	<0.85	< 0.19	1.7	0.34	1.1	0.37	0.62	0.52	< 0.9	< 0.9	1.3	1.7	0.38	0.41	<5.0	< 0.52	0.14	0.58	< 0.11	0.83	2.3
	Cu	1.7	ZZZ	1.0	1.6	4.9	9.4	12	7.0	< 0.56	4.8	1.9	<3	3.0	14	<1.1	< 0.76	3.5	<4.8	3.7	1.3	3.1	4.2	2.4	5.2
	Zn	37	ZZZ	12	7.4	26	85	36	41	8.8	39	12	43	24	11	26	8.4	23	13	20	7.2	<32	<15	14	44
	As	0.42	ZZZ	0.32	0.27	0.54	0.82	0.48	0.59	0.55	0.81	0.73	0.30	0.40	<0.82	1.2	0.37	1.4	0.79	0.76	0.62	0.75	1.0	0.84	2.2
	Se	<0.03	ZZZ	0.23	0.21	0.58	2.3	<0.10	< 0.42	<0.42	0.48	<0.54	0.40	0.70	<0.92	<0.98	0.48	1.3	0.35	0.53	0.14	0.51	0.21	0.70	1.7
	Rb	-	ZZZ	0.12	0.21	0.32	0.58	0.35	0.26	0.14	0.22	0.69	0.27	0.30	<0.44	₹1.1	0.083	0.25		0.25	0.16	0.28	0.22	0.31	0.66
	Mo	1.4	ZZZ	0.75	<0.15	4.0	2.6	2.9	0.33	0.23	0.35	<0.46	0.30	0.50	0.72	<1.4	0.14	0.57		0.24	0.11	0.18	<0.13	0.23	<0.71
	Sh	0.66	ZZZ	ZZZ	ZZZ	3.1	1.5	2.1	1.6	0.19	1.8	0.69	1.4	1.6	1.7	<6.6	0.25	1.5		0.90	0.39	0.74	0.49	0.83	1.6
	Cs	0.026	ZZZ	< 0.035	<0.035	<0.079	<0.079	0.017	0.022	<0.017	0.019	<0.082	0.020	0.030	<0.15	<9.4	<0.015	0.013		0.024	0.015	0.024	<0.12	0.038	0.078
	Bo Bo	2.8	ZZZ	0.61	0.79	<2.3	9.5	5.2	2.2	0.86	1.4	1.8	1.9	2.4	3.7	<10	0.35	2.4		1.2	0.79	2.0	0.71	1.7	5.2
	La.	0.082	ZZZ	<0.012	0.019	<0.038	0.17	0.10	0.13	<0.023	0.12	<0.30	<0.1	<0.1	<0.18	<12	0.020	0.18		0.034	0.013	<0.10	<0.11	0.044	0.22
	C-	0.082		<0.012	0.013	0.068	0.17	0.10	0.13	<0.023	0.12	<0.35	0.20	<0.1	<0.15	<13	0.020	0.18		0.034	0.013	0.063	<0.11	0.044	0.22
	Cer	<0.0044	ZZZ	<0.0019	<0.047	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.33	<0.3	<0.1	<0.13	<20	<0.030	<0.021		<0.0029	0.028	<0.12	<0.11	<0.003	< 0.054
	Sm		ZZZ																						
	III	<0.019	ZZZ	<0.023	<0.023	<0.020	<0.020	<0.0066	<0.025	<0.025	<0.025	<0.27	0.20	0.20	<0.11	<0.03	<0.045	<0.014		0.0023	0.0035	<0.0085	<0.0085	0.0020	<0.15
	VV	0.097	ZZZ	<0.084	<0.084	<0.040	0.16	0.17	<0.17	0.29	<0.17	<2.8	<0.2	<0.2	<0.51	0.090	0.071	0.13	< 0.23	0.036	0.017	0.019	<0.017	0.026	0.19
	Ia	-	ZZZ	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035	<0.012		<0.0010		<0.0028	<0.0053	<0.0010	<0.040
	Th	<0.09	ZZZ	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.02	<0.02	<0.02	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012	<0.014		0.0011	0.0030	<0.17	<0.17	<0.023	<0.053
	Pb	5.4	ZZZ	1.8	3.7	5.8	11	6.8	9.0	2.2	10	12	5.5	7.1	6.8	3.7	1.5	6.0		5.6	2.2	5.7	4.9	5.8	13
	その他(Be)	-	ZZZ	-	-	-	-	0.22	_	-	_	-	-	-	-	-	-	-	-	_	-	_	-	-	-
	その他(Cd)	-	ZZZ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.064	0.14	<0.11	-	-
炭素成分	OC1	0.14	ZZZ	0.39	0.80	0.31	0.21	0.46	<0.04	<0.04	<0.04	0.14	<0.4	<0.4	0.30	0.23	0.14	0.27	0.079	0.078	<0.029	<0.028	<0.028	<0.019	<0.013
	OC2	1.0	ZZZ	0.65	1.2	1.6	1.4	1.0	0.69	0.48	0.79	1.0	0.60	0.80	0.99	0.99	1.1	1.8		1.4	0.33	1.1	0.79	1.4	0.78
	OC3	1.1	ZZZ	1.0	1.9	2.1	1.7	1.4	0.64	0.60	0.68	0.73	0.80	1.0	1.1	0.87	0.89	1.2	0.79	0.78	0.44	0.58	0.87	0.61	0.49
	OC4	0.62	ZZZ	0.62	0.87	0.93	0.82	0.83	0.33	0.56	0.45	0.42	0.40	0.60	0.58	0.49	0.54	0.63	0.41	0.41	0.23	0.30	0.37	0.35	0.32
	Ocpyro	0.97	ZZZ	0.74	1.3	1.4	1.0	1.1	0.88	0.93	0.91	1.1	0.60	0.80	0.98	0.77	0.69	1.0	1.1	1.1	0.35	0.92	0.78	1.0	0.69
	EC1	1.4	ZZZ	1.3	2.6	2.4	2.0	1.7	1.2	0.99	1.6	2.1	1.0	1.6	1.5	1.5	1.2	1.8	1.3	1.5	0.68	1.2	0.95	1.2	0.70
	EC2	0.24	ZZZ	0.66	0.60	0.52	0.44	0.60	0.51	0.44	0.62	0.36	0.40	0.50	0.44	0.24	0.41	0.27	0.64	0.63	0.15	0.64	0.39	0.63	0.56
	EC3	<0.12	ZZZ	0.035	0.065	0.050	0.020	0.10	0.076	0.037	0.14		<0.09	<0.09	0.022	0.010	0.051	0.010		0.021	<0.025	0.035	0.023	0.023	<0.021
	OC	3.8	ZZZ	3.4	6.1	6.3	5.1	4.8	2.5	2.6	2.8	3.4	2.0	4.0	4.0	3.4	3.4	4.9		3.8	1.4	2.9	2.8	3.4	2.3
	EC	0.67	ZZZ	1.3	2.0	1.6	1.5	1.3	0.91	0.54	1.5		0.90	1.3	0.98	0.98	0.97	1.1	0.88	1.1	0.48	0.96	0.58	0.85	0.57
	WSOC	2.5		1.4	2.0	- 1.0	- 1.0	- 1.3	1.4	2.1	2.9		- 0.90	- 1.3	2.9	0.30	3.0		0.00	_ '.'	U. <del>4</del> 0	- 0.30	- 0.56	2.3	
	WSUC	2.5	ZZZ	1.4	2.1	_	_	_	1.4	۷.۱	2.9	0.82	_	_	2.9	_	ა.0		_	-	_	_	_	2.3	

<u> </u>		· H /3	2,,																			,			
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	13.8	ZZZ	16.1	21.8	37.0	27.0	23.1	14.9	8.9	17.5	15.7	15.4	13.9	16.4	16.9	16.7	13.2	14.0	11.8	13.2	12.3	12.3	10.5	12.2
イオン成分	CI-	0.17	zzz	0.068	0.18	0.90	0.51	0.50	0.26	0.20	0.26	0.18	0.26	0.17	0.29	0.37	0.35	0.090	0.035	0.070	0.031	0.023	0.014	< 0.016	<0.018
	NO3-	0.81	zzz	1.2	1.2	3.1	2.6	2.6	1.1	0.23	1.1	1.0	1.5	1.5	2.3	2.2	2.2	1.4	0.69	0.76	0.60	0.38	0.50	0.11	0.14
	SO42-	1.5	ZZZ	0.59	0.88	1.3	1.7	1.4	1.8	1.5	1.6	2.4	1.4	1.5	1.8	2.4	2.2	1.7	2.3	2.6	1.3	1.8	2.4	2.2	2.4
	Na ⁺	0.053	ZZZ	<0.0096	0.0099	< 0.026	0.027	0.044	<0.04	0.063	0.043	0.099	0.070	0.030	<0.042	0.050	0.067	0.030	< 0.053	< 0.053	0.014	<0.048	<0.048	0.032	0.045
	NH ₄ ⁺	0.91	zzz	0.62	0.75	1.9	1.6	1.4	1.2	0.63	1.3	1.1	0.93	0.99	1.5	1.6	1.6	1.1	1.2	1.3	0.64	1.0	1.3	0.83	0.88
	18114	0.17		0.12	0.15	0.29	0.28	0.21	0.14	0.090	0.14	0.32	0.15	0.12	0.14	0.17	0.16	0.13	0.16	0.14	0.18	0.090	0.087	<0.050	0.10
	K		ZZZ																						
	Mg ²⁺	<0.0052	ZZZ	<0.015	<0.015	0.025	0.0017	0.0080	<0.0038	<0.0038	<0.0038	0.012	0.0080	0.0060	<0.024	<0.01	0.011	<0.01	<0.036	<0.036	0.0051	0.0088	<0.0079	<0.0022	<0.0068
	Ca ²⁺	<0.025	ZZZ	0.031	0.033	0.044	0.015	0.16	<0.044	<0.044	0.048	0.053	0.040	0.030	0.044	0.050	0.048	0.030	<0.063	<0.063	0.076	0.029	<0.02	<0.037	<0.062
無機成分	Na	-	ZZZ	<21	<21	28	22	65	71	34	80	72	70	50	62	49	51	36	29	49	<65	52	62	61	300
	Al	34	zzz	<55	<55	24	19	200	21	<15	45	20	40	50	36	<17	11	29	10	94	47	13	<20	<8.3	60
	Si	-	-	-	-	-	-	340	65	20	93	46	20	50	-	60	-	71	17	18	-	23	30	20	-
	K	-	ZZZ	160	160	270	270	230	240	150	240	310	160	130	200	150	140	140	150	150	220	150	130	110	170
	Ca	-	zzz	<170	<170	<2.1	<2.1	200	39	6.5	95	9.9	30	50	66	43	34	31	<19	450	27	140	<25	46	48
	Sc	<0.0036	ZZZ	<0.012	<0.012	<0.029	<0.029	0.19	<0.079	<0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023	<0.029	<0.012	<0.012	0.0097	<0.12	<0.12	<0.022	1.5
	Ti	<1.9	zzz	ZZZ	zzz	0.88	3.4	17	2.7	<0.86	4.4	1.7	1.0	3.0	7.7	3.0	<1.6	3.0	<1.0	1.8	2.8	<1.0	<2.2	< 0.92	8.8
	V	1.3	zzz	0.32	0.54	0.38	1.0	1.0	1.4	0.41	3.3	1.4	1.0	0.70	2.0	4.8	4.7	0.84	0.87	0.62	0.26	1.4	1.3	1.6	7.1
	Cr	< 0.49	zzz	<1.1	<1.1	1.0	<0.12	1.5	< 0.57	< 0.57	0.75	< 0.73	< 0.9	< 0.9	1.1	0.97	1.1	0.45	< 0.92	<1.0	< 0.35	<3.3	1.1	<0.28	3.0
	Mn	1.1	ZZZ	1.8	2.1	2.3	2.2	6.1	3.2	<0.98	7.0	2.3	3.7	2.2	2.8	4.3	3.7	2.7	1.4	2.1	2.5	1.8	1.9	2.0	11
	Fe	26	zzz	50	<24	31	31	190	73	14	370	42	90	50	170	190	74	63	<18	24	44	18	30	22	140
	Со	<0.011	ZZZ	<0.23	<0.23	< 0.11	<0.11	0.10	<0.048	<0.048	<0.048	<0.45	<0.1	<0.1	<0.21	< 0.94	0.041	0.022	<0.018	0.019	0.014	<0.0062	<0.22	0.017	0.066
	Ni	<1.1	ZZZ	<0.85	<0.85	<0.19	<0.19	0.60	0.82	0.47	1.0	1.9	< 0.9	< 0.9	29	1.6	1.8	0.40	<5.0	1.8	0.14	0.38	0.33	0.54	2.5
	Cu	0.90	ZZZ	1.0	1.1	2.3	2.4	11	5.2	0.80	3.0	2.1	3.0	<3	<6.4	2.0	3.6	3.5	<4.8	5.3	2.0	3.0	1.7	<2	5.0
	Zn	37	ZZZ	6.5	5.5	5.5	24	35	39	6.6	36	14	42	15	9.0	23	27	18	<12	180	9.3	42	<15	20	32
	As	0.42	ZZZ	0.34	0.42	0.68	0.36	0.60	0.47	0.24	0.74	0.60	0.60	0.40	<0.82	<0.83	0.57	0.82	0.53	0.57	0.47	0.54	0.52	0.50	1.4
	Se	0.10	ZZZ	0.21	0.29	0.67	0.24	0.78	<0.42	<0.42	0.63	<0.54	0.50	0.70	1.5	1.7	1.3	0.60	0.34	0.41	0.25	0.36	0.47	0.46	1.2
	Rb	-	ZZZ	0.16	0.17	<0.14	0.33	0.41	0.32	0.15	0.52	0.66	0.40	0.28	<0.44	<1.1	0.28	0.25	0.18	0.24	0.25	0.20	0.14	0.19	0.46
	Мо	0.95	zzz	0.66	0.34	2.5	0.70	1.7	0.17	0.27	0.43	< 0.46	0.90	0.60	0.67	<1.4	0.96	0.78	<0.19	0.20	0.16	0.26	0.18	0.17	< 0.71
	Sb	1.6	ZZZ	ZZZ	zzz	2.2	2.1	3.3	1.9	0.32	1.4	2.3	3.2	0.90	1.5	<6.6	1.4	1.1	0.55	0.68	0.82	0.84	0.49	0.37	2.1
	Cs	0.031	ZZZ	<0.035	<0.035	<0.079	<0.079	0.023	0.024	<0.017	0.044	<0.082	0.030	0.030	<0.15	<9.4	0.042	0.011	0.013	0.017	0.014	<0.0068	<0.12	0.020	<0.062
	Ва	1.1	zzz	0.87	0.61	<2.3	<2.3	6.4	1.8	1.0	1.4	1.4	2.2	3.0	4.4	<10	1.8	2.6	1.7	1.3	1.3	2.2	1.5	1.0	2.8
	La	0.19	ZZZ	<0.012	0.015	<0.038	0.062	0.12	0.088	<0.023	0.15	< 0.30	<0.1	<0.1	<0.18	<12	0.096	0.11	0.017	0.028	0.027	<0.10	<0.11	0.026	0.090
	Ce	0.35	ZZZ	<0.022	0.037	0.073	0.11	0.22	0.14	< 0.021	0.099	< 0.35	0.10	<0.1	0.18	<13	0.096	0.16	0.034	0.043	0.045	0.021	<0.11	0.039	0.17
	Sm	<0.0044	zzz	<0.0019	<0.0019	<0.035	<0.035	< 0.013	<0.027	<0.027	<0.027	<0.32	<0.3	<0.3	<0.22	<20	<0.018	<0.021	<0.0024	<0.0029	0.0022	<0.12	<0.12	<0.0078	<0.054
	Hf	<0.019	ZZZ	<0.023	<0.023	<0.020	<0.020	0.016	< 0.025	<0.025	<0.025	<0.27	0.20	0.20	<0.11	< 0.03	<0.045	<0.014	< 0.0016	0.0014	0.0075	<0.0085	<0.0085	0.0016	<0.15
	W	1.1	ZZZ	<0.084	<0.084	0.099	0.24	0.27	<0.17	0.33	<0.17	<2.8	<0.2	<0.2	<0.51	0.090	0.19	0.080	<0.23	0.026	0.023	0.028	<0.017	<0.014	<0.12
	Та	-	ZZZ	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035	<0.012	<0.00077	<0.0010	-	<0.0028	< 0.0053	<0.0010	<0.040
	Th	< 0.09	ZZZ	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.02	<0.02	<0.02	<0.16	<0.06	< 0.06	<0.14	<3.4	<0.012	<0.014	< 0.00053	0.00065	0.0049	<0.17	< 0.17	<0.023	< 0.053
	Pb	4.0		2.4	2.4	6.3	7.1	8.4	11	2.4	9.0	13	8.4	6.2	6.7	6.4	5.8	4.6	2.9	3.7	3.3	4.8	3.1	3.2	8.9
	その他(Be)	-	ZZZ	-	-	-	-	0.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	ZZZ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.12	0.12	<0.11	-	-
炭素成分	OC1	0.15	ZZZ	0.68	1.3	1.7	0.43	0.71	<0.04	<0.04	<0.04	0.10	<0.4	<0.4	0.30	0.31	0.16	0.25	0.038	0.037	<0.029	<0.028	<0.028	<0.019	< 0.013
	OC2	1.3	ZZZ	1.2	1.9	3.4	2.8	1.7	1.1	0.65	1.1	1.4	0.80	0.70	1.2	1.4	1.6	1.1	2.0	1.4	0.62	1.2	0.99	1.2	1.2
	OC3	1.3	zzz	2.3	3.1	4.3	3.0	2.6	1.2	0.88	1.3	1.2	1.0	1.0	1.4	1.3	1.5	1.1	1.3	0.87	1.4	0.79	0.61	0.72	0.69
	OC4	0.80	zzz	0.91	1.1	1.6	1.3	1.3	0.56	0.48	0.75	0.66	0.70	0.70	0.69	0.66	0.88	0.49	0.54	0.41	0.54	0.36	0.30	0.35	0.41
	Ocpyro	1.3	ZZZ	1.8	2.7	2.9	1.8	1.8	1.4	1.1	1.3	2.0	0.90	1.0	1.2	1.2	1.1	1.0	1.4	1.1	0.97	0.98	0.91	1.0	1.1
	EC1	2.3	ZZZ	2.3	3.7	4.4	3.5	2.9	2.6	1.4	3.0	3.6	1.9	1.6	1.7	2.1	2.0	1.7	1.8	1.3	1.8	1.3	1.2	1.1	1.3
	EC2	0.22	ZZZ	0.85	0.77	0.80	0.69	0.73	0.58	0.48	0.82	0.55	0.70	0.70	0.61	0.38	0.44	0.36	0.69	0.67	0.33	0.74	0.54	0.64	0.64
	EC3	<0.12	ZZZ	0.075	0.095	0.025	0.025	0.14	0.077	0.042	0.13	<0.0096	<0.09	<0.09	0.065	0.030	0.032	0.040	0.038	0.032	0.073	0.038	<0.014	0.026	0.068
	OC	4.9	ZZZ	6.9	10	14	9.3	8.1	4.3	3.1	4.5	5.4	4.0	4.0	4.8	4.9	5.2	3.9	5.3	3.8	3.5	3.3	2.8	3.3	3.4
	EC	1.2	ZZZ	1.4	1.9	2.3	2.4	2.0	1.9	0.82	2.7	2.2	1.7	1.5	1.2	1.3	1.4	1.1	1.1	0.90	1.2	1.1	0.83	0.77	0.91
	WSOC	3.5		3.5	5.3	-	-	-	2.5	1.9	2.8	1.1	- 1.7	-	3.4		4.3			-	- 1.2		-	2.2	-
	.,	0.0		0.0	0.0				2.0	1.0	2.0	1.11			υ.τ		7.0								

0

表4-1-		Zロル	<u>ын</u>	3日ま(	Č.													(PM2.5	,灰素放	分,イオ	ン成分	: μg/m	無機以	分:ng/m	1-)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	12.4	15.6	7.3	11.7	17.0	17.0	16.4	12.2	6.3	11.2	11.5	17.1	11.6	11.3	12.6	14.9	12.0	11.7	3.3	15.8	6.3	7.5	4.6	4.5
イオン成分	CI-	0.26	0.16	0.028	0.53	0.58	0.55	1.3	0.14	< 0.096	< 0.096	0.28	0.90	0.38	0.22	0.17	0.29	0.42	0.19	< 0.0021	0.20	0.015	<0.01	<0.016	<0.018
	NO3-	2.3	2.3	0.49	1.5	1.9	3.4	3.1	2.1	0.30	1.5	2.6	3.3	2.4	2.5	2.4	3.2	2.5	2.7	0.25	3.2	0.46	0.83	<0.1	<0.10
	SO42-	1.1	1.2	0.82	0.98	1.4	2.1	1.9	1.3	1.6	1.9	1.5	1.4	1.2	1.3	2.1	2.1	1.3	1.7	0.45	1.7	1.0	1.0	0.62	0.78
	Na⁺	0.034	< 0.043	0.012	0.017	< 0.026	0.034	0.036	< 0.04	<0.04	0.043	0.059	0.040	0.028	<0.042	0.040	0.065	0.040	<0.053	< 0.053	0.014	<0.048	<0.048	< 0.015	<0.018
	NH ₄ ⁺	1.3	1.3	0.51	1.1	1.5	2.2	2.2	1.3	0.75	1.2	1.3	1.9	1.3	1.4	1.5	1.8	1.3	1.6	0.27	1.7	0.70	0.85	0.23	0.23
	K+	0.077	0.12			0.043	0.095	0.096	0.045	0.028	0.076	0.086	0.10	0.080	0.053	0.10	0.096	0.10		0.045	0.086	0.043	0.034	<0.050	0.027
	N 2+	<0.0052	<0.0069		<0.015						<0.0038			0.0040	<0.024	<0.01	0.030		<0.036	<0.036		<0.0079	<0.0079		<0.0068
	Mg ⁻			<0.015		0.025	0.0011	0.0074	<0.0038	<0.0038		<0.012	0.0080					<0.01			0.0017			<0.0022	
	Ca ^{z+}	<0.025	<0.040	<0.017	<0.017	0.037	0.013	0.028	<0.044	<0.044	<0.044	0.12	0.040	0.010	<0.016	0.020	0.049	<0.02	<0.063	<0.063	<0.020	0.031	<0.02	<0.037	<0.062
無機成分	Na	-	30		<21	28	26	35	46	34	64	66	50	40	32	51	49	40		<12	<65	14	49	36	130
	Al	<16	15			15	19	19	<15	<15	<15	22	50	29	27	<17	15	17		<15	8.5	<11	28	<8.3	470
	Si	-	-	-	-	-	-	68	34	40	35	22	50	10	-	40		37		5.9	-	<11	30		
	K	-	110			110	100	92	87	45	120	100	100	84	68	89	81	96		37	110	49	66	_	
	Ca	-	24			<2.1	3.2	32	20	6.7	60	16	50	30	<41	20	39	22		7.4	<19	<87	<25	17	
	Sc	<0.0036	<0.059			<0.029	<0.029	<0.18	<0.079	<0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03		<0.029		<0.012	0.0032	<0.12	<0.12		2.5
	Ti	<1.9	2.4			4.7	7.7	5.8	3.9	2.1	2.5	5.5	6.0	3.0	3.5	3.9	4.6	3.2	<1.0	1.5	2.7	<1.0	<2.2	<0.92	40
	V	0.43	0.39			1.0	0.80	1.3	1.1	1.2	6.7	1.1	0.80	0.40	3.1	8.9	4.8	0.56		0.091	0.28	0.59	1.2	0.63	0.91
	Cr	< 0.49	0.96			2.3	2.7	2.0	0.69	< 0.57	0.95	1.3	2.9	<0.9	1.4	1.4	1.7	1.3		<1.0	0.37	<3.3	1.2	1.8	0.57
	Mn	6.3	5.8			13	19	9.2	16	3.4	14	19	21	4.4	9.7	9.2	8.7	9.8		1.2	11	1.6	6.6	3.5	
	Fe	55	180			120	120	96	110	33	250	130	290	60	160	130	120	99		11	62	<16	44	15	
	Со	0.027	0.076			<0.11	0.15	0.077	0.051	<0.048	<0.048	<0.45	0.10	<0.1	<0.21	<0.94		0.020		<0.0060	0.011	<0.0062	<0.22	0.018	0.14
	Ni	<1.1	9.3			<0.19	1.2	1.0	1.2	0.47	2.2	1.8	1.6	<0.9	20	2.9	2.2	0.56		<0.52	0.32	0.20	0.43	0.83	0.59
	Cu	2.8	<3.5			3.5	8.7	19	4.8	1.2	3.3	6.1	10	3.0	310	3.8	5.3	4.2		<1.6	2.8	0.78	3.8	<2	
	Zn	43	40			38	52	96	42	16	43	22	74	13	15	29	47	26		<5.0	28	<32	<15	13	
	As	0.35	0.34			0.68	0.59	0.95	0.32	0.17	0.51	0.45	1.2	0.50	<0.82	<0.83	0.68	1.4		0.12	0.36	0.11	0.39	0.19	
	Se	0.11	<1.1 0.17	0.29		1.2	0.62	1.1	<0.42	<0.42	1.6	<0.54	1.0	0.70	<0.92	<0.98	1.1	0.19		0.043	0.41	0.071	0.76	0.16	0.25
	Rb				_	<0.14	0.22	0.21	0.12	0.070	0.56	0.29	0.30	0.22	<0.44	<1.1	0.20			0.071	0.20	<0.12	0.16	0.11	0.70
	Mo	0.75 1.4	<0.59 0.85			9.5 1.1	1.9 0.90	2.7 2.2	0.73 0.79	0.25	0.85 0.68	1.5	1.8 2.1	0.40	0.77 1.3	<1.4 <6.6	2.0 0.98	0.40		0.047 0.32	0.39	<0.13 0.50	1.0 0.82	0.11	<0.71 0.46
	O.	0.016	< 0.06			<0.079	<0.079	0.012	<0.017	<0.017	0.049	<0.082	0.030	0.030	<0.15	< 9.4	0.030	<0.011	0.0041	0.0033	0.011	<0.0068	<0.12		<0.062
	US D	1.2	1 4			<2.3	<2.3	2.7	0.98	4.9	1.1	2.0	3.5	3.4	3.2	<10	2.9	2.9		1.1	1.8	0.55	1.9	1.0	3.7
	Da La	0.11	<0.091	0.02		0.096	0.17	0.14	0.98	0.062	0.098	<0.30	0.10	<0.1	<0.18	<12	0.15	0.10		0.012	0.019	<0.10	<0.11	0.014	
	Ca	0.11	<0.091	<0.012	0.005	0.090	0.17	0.14	0.11	0.002	0.098	<0.35	0.10	<0.1	<0.15	<13	0.15	0.10		0.012	0.019	0.10	<0.11	0.014	0.17
	Sm.	<0.0044	<0.12			<0.035	<0.035	<0.013	<0.027	<0.029	<0.027	<0.33	<0.3	<0.1	<0.13	<20	<0.13	<0.021		<0.0029	<0.00064	<0.12	<0.11	<0.0078	<0.054
	Hf	<0.019	<0.12	<0.0013	<0.023	<0.033	<0.033	<0.0066	<0.027	<0.027	<0.027	<0.32	0.20	0.20	<0.22	<0.03	<0.045	<0.021		<0.0023	0.0004	<0.0085	0.0092	<0.0078	<0.034
	w	0.11	<0.12	0.22		0.21	0.28	0.53	0.25	<0.023	<0.023	<2.8	<0.2	<0.2	<0.11	0.19	0.31	0.18		<0.017	0.026	0.019	0.0032	0.041	<0.12
	Ta	-	<0.12	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035	<0.012		<0.0010	-	<0.0028	<0.0053	<0.0010	<0.040
	Th	<0.09	<0.12		<0.023	<0.079	<0.079	<0.0022	<0.02	<0.02	<0.027	<0.16	<0.06	<0.06	<0.14	<3.4	<0.012	<0.014		0.00073	0.0011	<0.0020	<0.003	<0.023	<0.053
	Ph	3.8	2.6			6.0	5.4	7.8	4.1	2.2	3.9	9.4	9.7	3.7	5.4	4.2	6.8	5.3		1.6	3.5	2.3	6.1	2.5	4.6
	その他(Be)	-	<0.22	-	-	-	-	0.28		-	-	-	-	-	-	- 1.2	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	<0.17	-	_	-	-	-	_	-	_	_	_	-	-	_	-	-	-	_	0.11	0.37	0.12	-	-
炭素成分	OC1	<0.051	<0.009	0.38	0.36	0	0	0.48	<0.04	<0.04	<0.04	0.038	<0.4	<0.4	0.095	0.12	0.086	0.15	0.047	< 0.010	<0.029	<0.028	<0.028	<0.019	<0.013
150,10,200	OC2	0.76	0.59			0.98	0.90	1.1	0.77	0.41	0.63	0.89	0.60	0.40	0.76	0.83	1.1	0.62	1.3	0.73	0.60	1.1	0.59	0.72	0.54
	OC3	0.75	0.65			1.0	0.85	1.0	0.55	0.32	0.51	0.49	0.80	0.60	0.64	0.66	0.77	0.75	0.80	0.41	0.84	0.69	0.41	0.44	0.32
	OC4	0.51	0.32		0.66	0.63	0.46	0.65	0.29	0.21	0.27	0.33	0.50	<0.4	0.33	0.40	0.46	0.35		0.25	0.39	0.35	0.23	0.25	0.22
	Ocpyro	0.69	0.56			0.68	0.35	0.71	0.57	0.44	0.64	0.69	0.25	0.21	0.43	0.36	0.55	0.39		0.25	0.54	0.48	0.38	0.24	0.34
	EC1	1.3	0.90			1.6	1.2	1.4	0.86	0.45	1.0	1.5	1.2	0.70	0.71	1.1	1.3	1.1		0.33	1.4	0.84	0.58	0.52	0.40
	EC2	0.27	0.47			0.68	0.54	0.90	0.66	0.45	0.70	0.47	0.60	0.70	0.92	0.43	0.51	0.44		0.41	0.49	0.81	0.39	0.42	0.34
	EC3	<0.12	0			0.020	0	0.12	0.043	0.055	0.077	<0.0096	<0.09	<0.09	0.037	0.050	0.038	0.030		0.077	0.093	0.069	<0.014	<0.021	0.036
	OC	2.7	2.1			3.3	2.6	3.9	2.2	1.4	2.1	2.4	2.0	2.0	2.3	2.4	3.0	2.3	3.3	1.6	2.4	2.6	1.6	1.6	1.4
	EC	0.88	0.81	0.87		1.6	1.4	1.7	0.99	0.52	1.1	1.3	1.6	1.2	1.2	1.2	1.3	1.2		0.57	1.4	1.2	0.59	0.70	0.44
	WSOC	1.9	2.0	0.88	1.4	1	-	-	0.85	1.2	0.97	1.0	-	-	1.7	_	2.5	-	-	-	-	-	1	1.1	-

表4-1-	44 IIH	3日か	ынд	4ロまり	Ž.													(PM2.5	,灰素风	分,イオ	ン成分	: μg/m	無機成	分:ng/m	1 )
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	8.3	8.8	3.6	4.4	3.9	6.2	5.3	8.9	5.4	10.7	12.9	6.6	4.3	5.1	4.8	4.8	4.8	4.6	3.8	4.4	8.2	7.7	6.9	6.6
イオン成分	CI-	0.066	0.053	< 0.016	0.059	<0.046	<0.046	0.16	< 0.096	< 0.096	0.18	0.16	0.33	0.040	0.059	0.050	0.067	0.020	0.018	< 0.0021	0.14	0.078	0.024	<0.016	<0.018
	NO3-	0.44	0.35	0.083	0.17	0.14	0.29	0.45	0.54	<0.099	0.64	0.64	0.77	0.32	0.23	0.43	0.37	0.18	0.26	0.13	0.32	0.23	0.42	<0.1	0.10
	SO42-	0.86	0.72	0.37	0.30	0.56	0.89	0.66	1.0	0.62	1.5	1.2	0.86	0.67	0.86	0.85	0.74	0.76	0.89	1.0	0.87	1.1	0.84	1.0	1.3
	Na⁺	0.042	< 0.043	<0.0096	<0.0096	<0.026	< 0.026	0.026	< 0.04	< 0.04	< 0.04	0.040	0.040	0.026	<0.042	0.020	0.061	0.010	<0.053	< 0.053	0.013	<0.048	<0.048	0.019	0.026
	NH₄⁺	0.46	0.45	0.20	0.20	0.16	0.37	0.42	0.53	0.31	0.88	0.63	0.61	0.33	0.44	0.42	0.42	0.36	0.47	0.41	0.47	0.63	0.57	0.40	0.41
	K ⁺	0.061	0.053	<0.03	<0.03	0.049	0.021	0.042	0.043	0.036	0.066	0.093	0.060	0.030	<0.046	0.040	0.036	0.030	0.031	0.064	0.027	0.042	0.054	<0.050	0.087
	NA . 2+	<0.0052	< 0.0069	<0.015	<0.015	0.025	0.0013	0.0050	<0.0038	<0.0038	<0.0038	0.012	0.0070	0.0040	<0.024	<0.01	0.0046	<0.01	<0.036	<0.036	0.0019	0.010	<0.0079	<0.0022	<0.0068
	IVIg																								
4 1416 13 A	Car	<0.025	<0.040	<0.017	0.022	0.038	0.0083	0.052	<0.044	<0.044	<0.044	0.030	0.040	0.020	<0.016	0.040	0.020	0.030		<0.063	<0.020	0.12	<0.02	<0.037	<0.062
無機成分	Na		50		<21	240	11	32	46	37	42	58	40	30	29	25	13	19		<12	<65	36	41	40	120
	AI		34	<55 -	<55 -	63 -	98	46 110	22 67	<15 93	15 120	36 46	40 30	30 40	44 -	<17 76	4.6	23 52		<15 8.9	15 -	<11 <11	<20 15	<8.3 7.2	100
	21		52		- <8.5	320	- 31	50	100	53	100	130	65	35	18	45	14			26		63	41		130
	C-		44		<170	320	13	50	64	16	74	130	40	29	<41	40	<8.9	38 28		5.8	36 <19	<87	<25	28	57
	Ca So	<0.0036	<0.059			<0.029	<0.029	<0.18	< 0.079	< 0.079	<0.079	<0.14	<0.2	<0.2	<0.24	<0.03	<0.023	<0.029		<0.012	0.0038	<0.12	<0.12		25
	Ti	<1.9	2.5		ZZZ	4.5	2.8	4.3	4.0	5.2	6.1	2.9	3.0	1.0	2.3	3.5	<1.6	2.9		0.72	<1.6	<1.0	<2.2	<0.92	6.5
	V	0.38	0.22			1.4	0.29	0.33	2.1	0.71	2.5	0.52	0.40	0.18	1.1	0.40	0.37	0.17		0.15	0.21	2.3	0.91	2.3	1.4
	Cr	< 0.49	0.67		1.9	2.0	0.25	1.2	2.5	< 0.57	2.1	< 0.73	1.1	<0.9	0.53	0.45	0.16	0.73		<1.0	<0.35	<3.3	< 0.55	2.1	0.40
	Mn	3.2	2.0		1.8	8.8	5.2	4.9	12	1.6	8.0	10	8.3	15	2.0	3.0	0.89	2.2		0.67	2.0	2.1	5.1	3.0	2.9
	Fe	38	140		<24	110	38	69	200	36	250	78	160	70	99	69	17	47		8.5	23	17	58	15	75
	Co	<0.011	<0.069		<0.23	<0.11	<0.11	0.054	<0.048	<0.048	<0.048	<0.45	<0.1	<0.1	<0.21	<0.94	<0.016	0.017		<0.0060	0.014	<0.0062	<0.22	0.073	0.063
	Ni	<1.1	8.9	<0.85	<0.85	<0.19	<0.19	0.44	0.97	0.57	1.0	0.34	< 0.9	<0.9	<0.15	< 0.65	<0.2	0.15	<5.0	<0.52	0.14	0.65	0.36	1.1	0.75
	Cu	4.1	<3.5	< 0.94	< 0.94	5.3	2.6	8.3	4.2	2.2	6.1	4.9	6.0	<3	44	<1.1	0.85	2.5	<4.8	1.7	1.7	2.0	2.9	<2	1.7
	Zn	240	10	4.6	5.9	33	26	31	46	18	43	18	63	48	<8	11	7.4	6.0	58	<5.0	7.0	<32	<15		14
	As	0.29	<0.18			1.4	0.15	0.21	0.31	0.23	0.41	0.36	0.30	<0.2	<0.82	<0.83	0.15	0.30		0.24	0.18	0.22	0.47	0.27	0.47
	Se	0.071	1.5		<0.19	2.2	0.26	0.76	0.59	<0.42	1.1	<0.54	0.30	<0.3	6.5	<0.98	0.44	1.3		0.076	0.10	0.23	0.20	0.23	0.49
	Rb	-	0.096		<0.063	0.48	<0.14	0.15	0.38	0.069	0.23	0.32	0.18	0.11	<0.44	<1.1	0.047	0.080		0.061	0.091	<0.12	<0.12	0.095	0.26
	Mo	0.65	1.4 0.40		0.24	5.3	1.1	3.3	0.66	0.32	0.43	1.0	2.3	0.30	<0.3	<1.4	0.40	0.21	<0.19	0.058	0.14	0.17	0.38	0.20	<0.71
	Sb O-	1.4 0.011	<0.40		<0.035	4.3 <0.079	0.35 <0.079	1.0 0.012	1.0 0.048	0.23 <0.017	0.90	13 <0.082	1.4 0.030	0.50	<0.61 <0.15	<6.6 <9.4	0.18 <0.015	0.72 <0.011	0.22	0.18	1.4 0.0075	0.61 <0.0068	1.0 <0.12	0.40	0.63 <0.062
	Os Da	1.2	1 1		<0.033	8.8	<2.3	4.2	1.6	9.6	1.0	2.9	3.0	2.2	2.3	<10	0.68	1.8		0.0041	0.0073	1.6	1.9	0.0071	1.6
	l a	0.068	<0.091	0.0 1	<0.012	0.17	0.077	0.063	0.13	0.032	0.052	<0.30	<0.1	<0.1	<0.18	<12	0.022	0.11		<0.0092	0.012	<0.10	<0.11	0.022	0.075
	Ce	0.16	0.23	<0.012	<0.012	0.16	0.19	0.11	0.17	<0.021	0.067	< 0.35	<0.1	<0.1	<0.15	<13	0.034	0.21	0.015	<0.0002	0.023	0.020	<0.11	0.029	0.14
	Sm	<0.0044	<0.12		<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.32	<0.3	<0.3	<0.22	<20	<0.018	<0.021		<0.0029	0.00097	<0.12	<0.12	<0.0078	<0.054
	Hf	<0.019	<0.52	<0.023	<0.023	<0.020	0.020	0.0098	<0.025	<0.025	<0.025	<0.27	0.20	0.20	<0.11	<0.03	<0.045	<0.014	< 0.0016	<0.00058	0.0021	<0.0085	0.019	<0.0011	<0.15
	W	0.063	<0.12	<0.084	<0.084	0.20	0.35	<0.16	<0.17	0.26	0.24	<2.8	<0.2	<0.2	<0.51	<0.03	0.036	<0.04	<0.23	<0.017	0.043	0.029	0.030	0.12	<0.12
	Та	-	0.37	<0.025	<0.025	<0.028	<0.028	0.0070	<0.027	<0.027	<0.027	<0.42	<0.09	<0.09	<0.19	<0.024	<0.035	<0.012	<0.00077	<0.0010	-	<0.0028	<0.0053	<0.0010	0.074
	Th	<0.09	<0.12		<0.02	<0.079	<0.079	<0.0082	<0.02	<0.02	<0.02	< 0.16	<0.06	<0.06	<0.14	<3.4	<0.012	<0.014	0.00056	0.00061	0.0022	<0.17	<0.17	<0.023	<0.053
	Pb	3.9	1.4	1.1	<0.55	9.4	2.2	3.4	7.2	0.88	8.4	27	8.3	1.8	2.2	<2.2	0.74	1.4	1.3	1.3	1.4	2.6	2.0	2.0	3.9
	その他(Be)	-	<0.22	-	-	-	-	0.099	_		-	-	-	_	-		-	_	-	_	-	-	-	-	-
W + + W	その他(Cd)		<0.17		-	-	-	-	-	-	-	-		-	-		-		-		0.046	< 0.063	0.14	-	-
炭素成分	001	0.088	0.058	0.23	0.38	0	0 70	0.35	<0.04	<0.04	<0.04	0.14	<0.4	<0.4	0.21	0.17	0.13	0.18		0.015	<0.029	<0.028	<0.028	<0.019	<0.013
	OC2 OC3	1.0 0.81	0.44		0.46 0.51	0.41	0.70 0.67	0.83	0.80	0.64	1.3 0.75	1.7	0.50 0.50	<0.4 <0.4	0.78 0.53	0.53 0.58	1.0 0.55	0.55		0.79 0.40	0.29	1.1 0.62	0.96 0.78	1.1 0.58	0.93 0.58
	OC3	0.81	0.43		0.31	0.34	0.67	0.69	0.80	0.30	0.75	0.70	<0.4	<0.4	0.53	0.58	0.33	0.50	0.50	0.40	0.32	0.82	0.78	0.34	0.32
	Ocpyro	0.40	0.19			0.14	0.29	0.40	0.80	0.54	0.84	1.2	0.25	0.13	0.23	0.22	0.31	0.21		0.23	0.10	0.56	0.42	0.60	0.61
	EC1	1.1	0.38			0.13	0.10	0.44	1.3	0.49	1.2	3.2	0.50	0.30	0.23	0.24	0.23	0.39		0.33	0.13	0.74	0.66	0.63	0.65
	EC2	0.36	0.38		0.40	0.13	0.51	0.40	0.62	0.47	0.75	0.70	0.50	0.40	0.25	0.28	0.53	0.36		0.35	0.18	0.63	0.42	0.46	0.44
	EC3	<0.12	0.016			0	0.015	0.071	0.071	0.063	0.14	0.014	<0.09	<0.09	0.048	0.020	0.056	0.030		0.047	<0.025	0.043	<0.014	<0.021	0.038
	OC	2.9	1.4		1.8	1.0	1.8	2.7	3.2	2.0	3.3	4.9	2.0	1.0	2.0	1.7	2.3	1.7		1.8	0.90	2.6	2.5	2.6	2.4
	EC	0.88	0.48	0.37	0.76	0.24	0.76	0.58	1.2	0.48	1.3	2.7	0.80	0.60	0.40	0.44	0.64	0.50	0.48	0.40	0.39	0.85	0.66	0.49	0.52
	WSOC	1.8	1.4	0.30	0.59	-	-	-	1.6	1.6	1.3	1.6	-	-	1.6	_	2.0	-	-	-	-	-	1	1.9	-

主1_1_15	期間平均値(10日21日~11日4日主7	<u>ت</u> ا
<del>7</del> 54-1-45	期间平均1111(11)日~11日4日子(	~ )

(PM2.5, 炭素成分, イオン成分: μg/m³ 無機成分:ng/m³)

<u> 衣4-1-</u>	-40 州间	干均恒	<u>1(10H</u>	<u> 21                                   </u>	11月45	コまじ												(PM2.5,	,灰系放	分,13	ン成分:	μg/m	悪機成分	f:ng/m	)
	台体名	茨城県	栃木県	群馬県	群馬県	埼玉県		さいたま市		千葉県	千葉県	千葉市	東京都		神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項		12.3	16.1	11.2	15.2	18.9	17.0	17.4	13.2	8.8	14.6	12.9	13.6	12.3	13.0	13.4	13.2	13.0	13.8	11.5	12.4	14.2	13.7	14.0	16.9
イオン成分		0.13	0.13		0.092	0.16	0.18		0.10	0.064	0.11	0.11	0.24		0.12	0.12	0.14			0.059	0.14	0.025	0.072	0.012	0.041
	NO3-	0.68	1.1	0.71	0.75	1.3	1.3		0.71	0.14	0.54	0.71	1.2		1.0	1.1	1.1	0.94	0.68	0.74	0.71	0.44		0.15	0.30
	SO42-	1.8	2.1	1.1	1.4	2.2	2.3	1	2.1	1.5	2.1	2.7	2.0		2.4	2.9	2.6	2.6	3.8	3.3	2.5	3.8	3.7	3.6	3.4
	Na [⁺]	0.13	0.070	0.022	0.036	0.086	0.12			0.057	0.086	0.15	0.17		0.099	0.17	0.21	0.13	0.078	0.055	0.078	0.14		0.10	0.13
	NH ₄ ⁺	0.86	1.2	0.64	0.78	1.2	1.2	1.1	0.98	0.59	0.95	0.98	0.95	1.0	1.2	1.2	1.2	1.2	1.6	1.4	1.1	1.6	1.7	1.3	1.2
	K ⁺	0.12	0.16	0.080	0.11	0.18	0.19	0.14	0.088	0.056	0.087	0.17	0.12	0.11	0.091	0.16	0.12	0.13	0.14	0.12	0.11	0.093	0.093	0.069	0.11
	Mσ ²⁺	0.017	0.0067	0.0075	0.0075	0.024	0.023	0.019	0.0030	0.0027	0.0072	0.021	0.023	0.018	0.012	0.025	0.024	0.021	0.018	0.018	0.010	0.016	0.018	0.011	0.011
	Co ²⁺	0.029	0.023	0.034	0.041	0.043	0.039	0.26	0.028	0.022	0.12	0.079	0.065	0.043	0.048	0.074	0.048	0.044	0.032	0.095	0.032	0.063	0.041	0.13	0.35
無機成分	No.	0.023	149	41	46	123	113	137	125	109	175	213	184	146	120	139	129	138	121	88	96	180	177	184	245
無饭风刀	ΛI	30	45	44	30	54	41	224	31	15	66	46	54		55	30	16	48	25	53	55	45		41	316
	C:	_	- 40		- 30		- 41	378	143	83	232	70			_	121	- 10	106	34	48		26		52	-
	N N		170	113	116	220	219		173	113	170	197	132		119	127	98	132	141	101	144	154		153	213
	Co		40	85	85	7.4	12		88	27	255	34	51		51	69	27	47	46	178	38	60		154	321
	Sc	0.0071	0.030		0.0072	0.015	0.015	0.19		0.040	0.040	0.070	0.10		0.12	0.017	0.012			0.0081	0.011	0.060		0.011	9.9
	T:	4.1	4.5	ZZZ	ZZZ	3.0	3.6			3.0	8.9	4.2	4.4		6.9	5.5	2.6	4.8	1.2	4.7	4.2	1.2	1.5	2.2	25
	\/	1.2	0.94	0.52	0.81	0.92	1.3			1.7	4.7	2.0	2.0		2.4	7.7	5.6	1.4	1.1	0.84	0.46	3.2		2.2	3.1
	Cr	0.25	0.78	0.52	1.9	1.4	0.66			0.51	1.1	0.94	1.2		1.2	1.7	1.6	1.3	0.46	0.68	0.40	1.8		2.0	1.8
	Mn	4.5	4.8	3.9	7.0	8.6	8.6	1	11	2.7	13	7.3			7.0	9.7	6.3		3.0	2.6	4.5	4.0		4.9	9.6
	Fe	51	102	68	57	184	70		173	42	354	94	149		153	186	94	98	34	44		38	56	54	237
	Co	0.012	0.037	0.12	0.12	0.055	0.062	0.13		0.024	0.044	0.23	0.054		0.11	0.47	0.056	0.035	0.017	0.022	0.023	0.018	0.11	0.042	0.15
	Ni	0.55	3.7	0.12	0.12	2.9	1.1	0.90	1.5	0.73	1.5	1.1	0.034	0.54	4.7	2.5	2.5	0.033	2.5	0.63	0.30	1.2	0.67	1.00	1.7
	Cu	3.9	1.9	1.4	2.4	4.1	4.7			1.6	3.0	3.9		2.1	46	1.6	3.2	3.8	2.4	3.8	2.2	4.0		2.2	3.4
	Zn	110	27	13	20	32	63			11	38	16			23	26	24		23	38	17	31	20	21	25
	Δs	0.62	0.76	0.52	0.73	0.73	0.73		0.60	0.43	0.79	0.85	0.89	0.71	0.78	0.77	0.72	1.3	0.85	0.66	0.81	0.86		1.0	1.4
	Se	0.097	1.3	0.30	0.43	1.2	0.56	0.99	0.60	0.18	0.84	0.35	0.71	0.69	1.6	0.92	0.83	1.8	0.53	0.41	0.41	0.65	0.81	0.75	0.93
	Rb	-	0.30	0.17	0.17	0.29	0.32	0.38	0.33	0.16	0.39	0.50	0.34		0.24	0.55	0.23	0.27	0.23	0.20	0.31	0.26		0.31	0.69
	Мо	0.94	0.63	1.2	0.81	2.5	1.1			0.17	0.49	0.97	1.0		0.59	1.2	1.9	0.50	0.17	0.16	0.23	0.36	0.46	0.45	0.72
	Sb	1.4	1.7	ZZZ	ZZZ	1.7	1.8	1.6	0.91	0.26	0.86	2.1	1.5		1.2	3.3	0.81	1.1	0.55	0.58	0.97	1.1	0.92	0.53	0.91
	Cs	0.026	0.030	0.018	0.018	0.040	0.040	0.030	0.036	0.014	0.039	0.053	0.043	0.041	0.075	4.7	0.032	0.022	0.027	0.022	0.030	0.028	0.060	0.039	0.074
	Ва	1.3	1.9	1.2	1.2	4.6	2.7	6.0	2.3	2.7	2.3	2.0	3.0	2.9	3.2	5.0	1.8	2.8	1.8	1.1	1.5	2.3	2.3	1.5	3.6
	La	0.092	0.059	0.014	0.036	0.098	0.11	0.15	0.13	0.037	0.099	0.15	0.086	0.064	0.090	6.0	0.070	0.19	0.036	0.031	0.040	0.054	0.060	0.053	0.17
	Ce	0.17	0.092	0.028	0.076	0.15	0.24	0.25	0.17	0.026	0.12	0.18	0.17	0.093	0.13	6.5	0.099	0.32	0.052	0.050	0.069	0.15	0.075	0.069	0.32
	Sm	0.0022	0.060	0.0013	0.0010	0.018	0.018	0.0081	0.014	0.014	0.014	0.16	0.15	0.15	0.11	10	0.0090	0.011	0.0017	0.0023	0.0036	0.060	0.060	0.0039	0.037
	Hf	0.077	0.26	0.012	0.012	0.015	0.013	0.012	0.013	0.013	0.013	0.14	0.20	0.20	0.055	0.015	0.023	0.0070	0.0017	0.0018	0.0063	0.0043	0.0061	0.0018	0.083
	W	0.24	0.068	0.071	0.089	0.097	0.12	0.15	0.11	0.14	0.15	2.3	0.10	0.10	0.26	0.27	0.25	0.15	0.12	0.032	0.075	0.051	0.081	0.057	0.13
	Та	-	0.17	0.013	0.013	0.014	0.014	0.0028	0.014	0.018	0.014	0.21	0.045	0.045	0.095	0.012	0.018	0.0060	0.00039	0.00050	-	0.0014	0.0027	0.00050	0.12
	Th	0.045	0.060	0.010	0.010	0.040	0.040	0.0098	0.010	0.010	0.010	0.080	0.030	0.030	0.070	1.7	0.0065	0.0089	0.0016	0.0022	0.0075	0.085	0.085	0.012	0.080
	Pb	4.6	5.2	2.5	3.5	6.5	8.1	6.3	6.3	2.7	6.9	14	11	5.1	5.7	4.7	4.5	5.8	5.4	6.3	5.5	6.3	7.0	6.2	7.5
	その他(Be)	-	0.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.17	-	-	-	-	0.21	-	-	-	-	-	-	-	-	-	-	-	-	0.19	0.19	0.21	-	-
炭素成分	OC1	0.094	0.081	0.44	0.69	0.26	0.22			0.020	0.024	0.085	0.20	0.20	0.27	0.20	0.13	0.21	0.053	0.037	0.016	0.014		0.0095	0.0090
	OC2	1.1	1.0	0.71	1.2	1.6	1.5	1.2	0.93	0.54	0.73	1.2	0.69	0.64	1.0	1.1	1.4	1.1	1.6	1.2	0.50	1.3	0.91	1.2	1.1
	OC3	1.0	1.2	1.2	1.7	2.0	1.7			0.61	0.77	0.81	0.91	0.85	0.95	0.88	0.99	0.88	0.76	0.53	0.70	0.64	0.56	0.56	0.57
	OC4	0.65	0.62	0.60	0.92	0.92	0.86		0.46	0.37	0.43	0.47	0.57	0.49	0.51	0.56	0.67	0.49	0.38	0.27	0.32	0.31	0.27	0.29	0.31
	Ocpyro	0.94	1.1	0.89	1.4	1.3	0.98		0.99	0.78	0.84	1.3	0.61	0.67	0.81	0.70	0.64	0.80	1.1	0.78	0.64	0.89	0.77	0.85	0.88
	EC1	1.5	1.8	1.4	2.3	2.2	2.0			0.97	1.5	2.5	1.4		1.2	1.4	1.4	1.5	1.4	0.95	1.2	1.4	1.1	1.1	1.1
	EC2	0.27	0.44	0.55	0.55	0.44	0.44		0.57	0.47	0.63	0.49	0.47		0.51	0.30	0.41	0.29	0.64	0.56	0.28	0.73		0.56	0.56
	EC3	0.060	0.021	0.031	0.044	0.020	0.015	1	0.070	0.052	0.11	0.0075	0.045		0.036	0.022	0.034	0.021	0.038	0.027	0.058	0.026		0.017	0.030
	0C	3.8	4.0	3.8	5.9	6.1	5.2		3.2	2.3	2.8	3.9	3.0	2.9	3.6	3.5	3.8	3.5	3.9	2.8	2.2	3.1	2.5	2.9	2.9
	EC WSOC	0.85 2.6	1.1 3.1	1.1	1.6	1.3	1.5	1.4	1.3	0.71	1.4	1.7	1.3	1.1	0.96	1.0	1.2	0.99	0.98	0.75	0.88	1.3	0.79	0.81	0.82
				1.6	2.9	_	-		1.7	1.9	1.8	12	ı –	1	2.6	-	3.2		_	I –	1	-		2.2	- 1

※基本は14日間の期間平均値。ただし、欠測期間は該当部分のみ計算から除外。また、検出下限値未満の値については、検出下限値の1/2を用いて期間平均値を算出した。

衣4-1-	40 1712	OD W	ロリカム	יםאי														(PM2.5	,灰茶放	が、イス	ン以分	: μg/m	無機)以	万:ng/m	)
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市		山梨県	長野県	静岡県	静岡県		浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
	PM2.5濃度	2.4	ZZZ		2.4	3.6	3.4	4.8	5.9	2.2	7.0	2.4	4.9	2.3	5.2	3.4	2.9	3.7		2.2	3.7	2.9	2.6		4.0
イオン成分	CI-	0.096	ZZZ		0.055	0.49	0.23	0.46	0.21	0.11	0.29	0.087	0.21	0.10	0.44	0.19	0.19	0.39		0.035	0.19	0.073	0.069	<0.055	<0.015
	NO3-	0.20	ZZZ		0.12	0.37	0.22	0.42	0.17	0.15	0.32	0.11	0.41	0.40	0.34	0.60	0.31	0.40		0.24	0.79	0.16	0.39	<0.12	0.20
	SO42-	0.17	ZZZ		0.30	0.44	0.38	0.34	0.52	0.53	0.92	0.38	0.30	0.41	0.43	0.42	0.39	0.53	0.57	0.44	0.37	0.40	0.44	0.36	0.69
	Na	0.044	ZZZ	0.032	0.043	0.11	0.10	0.064	0.15	0.12	0.17	0.094	0.083	0.070	0.052	0.070	<0.063	0.080		0.044	0.067	0.049	0.066		0.083
	NH ₄ ⁺	0.091	ZZZ		0.14	0.38	0.28	0.46	0.21	0.24	0.30	0.091	0.19	0.23	0.43	0.33	0.25	0.45		0.23	0.42	0.29	0.38	0.14	0.25
	K ⁺	0.0088	ZZZ	<0.03	<0.03	0.041	0.021	0.022	0.017	0.016	0.069	0.026	0.024	0.024	<0.04	0.020	0.028	0.030	0.024	0.037	0.030	0.0092	0.018	<0.038	0.014
	Mg ²⁺	0.0033	ZZZ	< 0.015	<0.015	0.0058	0.0061	0.0081	0.0077	<0.0038	0.013	0.016	0.015	0.0050	<0.0083	< 0.01	0.0079	0.010	<0.084	<0.084	0.0072	<0.005	0.0052	<0.0039	0.0077
	Ca ²⁺	<0.027	ZZZ	< 0.017	<0.017	0.013	0.027	< 0.057	<0.044	<0.044	0.15	< 0.034	0.090	0.040	0.043	0.050	0.023	0.030	<0.23	<0.23	<0.015	<0.045	< 0.045	< 0.046	< 0.016
無機成分	Na	-	ZZZ	41	25	94	110	110	200	83	100	55	90	60	99	73	33	80	83	83	53	59	120	41	86
	Al	<30	ZZZ	<55	<55	22	41	35	53	36	34	5.7	15	15	71	<16	2.6	33	<13	<7.8	<5.1	19	<9.2	8.8	9.8
	Si	-	-	-	-	-	-	140	90	16	120	19	30	25	-	87	ı	53	9.5	<19	-	<14	<12	3.4	-
	K	-	ZZZ	19	<8.5	35	21	33	22	20	91	12	<20	<20	26	30	13	30	37	40	30	29	25	35	11
	Ca	-	zzz			3.0	17	53	55	20	240		<80	<80	320	59	<9.3	35		33	<9.4	12	<11	<17	11
	Sc	<0.014	ZZZ	<0.012	<0.012	<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	<0.56	<0.2	<0.2	<0.092	<0.022	<0.015	<0.028		<0.012	< 0.0061	<0.018	<0.018	<0.012	0.49
	Ti	<1.9	ZZZ		zzz	1.1	2.7	2.6	2.3	1.4	5.7	<5.5	2.0	1.3	7.7	4.5	0.53	3.6		< 0.69	<3.6	<1.4	<1.8	<0.72	1.4
	V	0.087	ZZZ			0.41	0.13	0.42	1.3	1.6	5.2	<0.46	0.20	<0.1	<0.37	< 0.57	0.079	0.11		<0.0092	0.026	1.2	0.064		0.48
	Cr	<0.39	ZZZ			0.71	<0.12	<1.6	2.7	< 0.61	1.1	<0.41	1.9	<0.6	1.0	0.32	<0.18	0.95		<1.8	<0.21	<1.6	<1.6	<0.17	1.1
	Mn	1.3	ZZZ			2.1	1.5	2.3	3.2	<2.7	19	2.1	14	0.80	4.5	2.0	0.79	3.3		0.25	2.8	0.73	2.6		2.1
	Fe	14 <0.074	ZZZ		<24 <0.23	<0.11	29 <0.11	43 0.054	72 0.058	<0.022	450 0.038	20 <0.42	690 0.17	20 <0.08	100 <0.21	72 <0.88	17 <0.015	54		4.4 <0.028	16	<28 <0.017	18 <0.017		21
	Co N:	<0.074	ZZZ			0.66	<0.11	<0.27	0.058	<0.022	1.6	<0.42	2.0	<0.08	<0.21	<0.88	<0.015	0.021		<0.028	0.0050 <0.12	<0.017	<1.2	<0.028	0.41
	Cu	2.5	ZZZ			1.7	1.4	2.8	<1.1	<1.1	1.8	<7.2	2.0	1.0	<7	2.8	<0.72	3.4		0.23	1.3	3.4	1.1	-	2.1
	7n	87	ZZZ			22		12	16	5.3	60		70	<20	<5.4	9.8	5.6	11		<7.3	8.0	<7.0	8.0		4.3
	As	0.079	ZZZ		0.095	0.14	0.14	0.17	0.15	0.21	0.46	<0.47	1.0	0.20	<0.45	<0.8	0.12	0.89		<0.015	0.044	<0.020	<0.020	<0.015	0.20
	Se	<0.03	ZZZ		<0.19	1.9	0.33	1.0	<0.51	<0.51	<0.51	<1.4	0.50	<0.2	5.6	<1.1	0.16	14		<0.038	0.071	<0.043	0.35	<0.038	0.26
	Rb	-	ZZZ		<0.063	<0.14	<0.14	0.081	<0.12	<0.12	0.44	<0.55	<0.1	<0.1	<0.2	<1.1	0.029	0.087	0.073	0.037	0.062	0.036	0.047	0.034	0.45
	Мо	0.59	ZZZ		0.62	0.31	0.36	0.39	< 0.091	< 0.091	0.19	<0.70	1.0	<0.2	0.42	<1.3	0.098	0.16	0.052	0.056	0.078	0.079	0.23	0.027	1.9
	Sb	<0.62	ZZZ	ZZZ	zzz	0.51	0.32	0.43	0.23	0.13	0.48	<0.38	0.80	0.23	0.51	<6.5	0.15	0.47	0.079	< 0.016	0.31	0.087	0.42	0.041	0.20
	Cs	<0.0067	ZZZ	<0.035	<0.035	<0.079	<0.079	0.014	<0.019	<0.019	0.085	< 0.37	<0.1	<0.1	<0.17	<9.2	<0.015	0.020	<0.012	<0.012	<0.0077	<0.0042	<0.0042	<0.012	0.41
	Ва	1.1	ZZZ	3.3	0.73	<2.3	<2.3	1.4	1.5	0.42	1.1	0.75	2.0	1.4	3.3	<10	2.0	2.0		<0.29	0.33	<0.95	1.2	<0.29	1.4
	La	<0.024	ZZZ			0.13	0.071	0.11	0.072	0.11	0.042	<0.31	<0.08	<0.08	<0.11	<11	<0.016	0.12		<0.24	0.0036	0.034	0.016		0.39
	Се	0.046	ZZZ		<0.022	0.12	0.13	0.20	0.065	<0.028	0.073	<0.31	<0.06	<0.06	0.14	<13	0.021	0.21		<0.0043	0.0092	0.047	<0.020	<0.0043	0.62
	Sm	<0.01	ZZZ		<0.0019	< 0.035	<0.035	0.021	<0.027	<0.027	<0.027	< 0.49	<0.2	<0.2	<0.14	<19	<0.014	<0.022		<0.0018	<0.00076	< 0.0057	0.0012		0.37
	Hf	<0.0096	ZZZ		<0.023	<0.020	<0.020	<0.0066	<0.044	<0.044	<0.044	<0.29	<0.1	<0.1	<0.16	<0.013	<0.029	<0.014		<0.0014	<0.020	<0.0032	<0.0055	<0.0014	< 0.065
	VV	<0.16	ZZZ		<0.084 <0.025	<0.040 <0.028	0.059 <0.028	0.031	<0.027 <0.027	<0.027 0.029	<0.027 <0.027	<0.26 <0.28	<0.06 <0.05	<0.06 <0.05	<0.1 <0.034	0.090 <0.015	0.23 <0.028	<0.013	0.049 <0.0012	0.050 <0.0012	<0.10	0.052 <0.040	0.052 <0.040	<0.043 <0.0012	<0.54 <0.025
	Ta	<0.0061	ZZZ		<0.025	<0.028	<0.028	<0.0034	<0.027	<0.029	<0.027	<0.28	<0.03	<0.03	<0.034	<3.3	<0.028	<0.013		<0.0012	<0.0010	<0.00098	<0.040	<0.0012	0.025
	Dh	<0.65	ZZZ ZZZ		<0.55	1.8	0.079	1.3	2.8	<1.5	5.6	1.1	12	0.60	1.2	<2.1	0.73	1.5		0.52	1.6	1.0	1.1	0.49	2.5
	FD その他(Be)	-	ZZZ	-	-	-	-	0.040	-	- 1.5	-	- 1.1	-	-	- 1.2	-	-	- 1.5	- 1.5	-	-	- 1.0	_ '-'	-	-
	その他(Cd)	_	ZZZ		_	_	_	-	_	_	_	_	_	_	_		_		-	_	0.019	0.24	<0.18	- 1	
炭素成分	OC1	0.096	ZZZ		0.31	0	0	0.30	<0.04	<0.04	<0.04	0.17	<0.2	<0.2	0.24	0.27	0.21	0.26	0.096	0.058	<0.043	<0.048	<0.048	0.033	<0.020
DCSIC/3C/3	OC2	0.64	ZZZ	0.20	0.28	0.29	0.22	0.54	1.0	0.18	0.48	0.43	0.30	0.20	0.33	0.46	0.78	0.46		0.45	0.30	0.70	0.44	0.67	0.72
	OC3	0.24	ZZZ		<0.21	0.32	0.15	0.50	0.49	0.16	0.36	0.11	0.40	<0.2	0.32	0.39	0.35	0.35		0.19	0.27	0.27	0.32	0.23	<0.19
	OC4	0.23	ZZZ	0.12	0.19	0.13	0.070	0.31	0.21	<0.075	0.17	0.11	<0.2	<0.2	0.094	0.13	0.18	0.10	0.20	0.15	0.15	0.17	0.16	0.15	0.12
	Ocpyro	0.17	ZZZ	0	0	0.060	0.0050	0.13	0.11	<0.095	0.16	<0.09	<0.05	<0.05	0.12	0.12	0.10	0.15	0.037	0.18	<0.096	0.22	0.19	<0.00022	0.18
	EC1	0.42	ZZZ			0.14	0.055	0.25	0.19	0.11	0.32	0.18	0.30	0.16	0.12	0.34	0.15	0.32		0.23	0.30	0.28	0.22	0.26	0.22
	EC2	0.38	zzz			0.23	0.12	0.22	0.23	0.11	0.54	0.20	0.30	0.18	0.22	0.24	0.25	0.26		0.26	0.13	0.44	0.21	0.24	0.22
	EC3	<0.023	ZZZ		0.015	0	0	0.020	0.049	0.014	0.069	<0.024	<0.05	<0.05	0	0	0.029	0	0.041	0.042	<0.032	0.046	0.039		0.025
	OC	1.4	ZZZ		0.78	0.80	0.45	1.8	1.8	0.34	1.2	0.82	1.0	0.60	1.1	1.4	1.6	1.3	1.3	1.0	0.72	1.4	1.1	1.1	1.0
	EC	0.63	ZZZ	0.31	0.38	0.31	0.17	0.36	0.36	0.23	0.77	0.38	0.60	0.30	0.22	0.46	0.33	0.43	0.71	0.35	0.43	0.55	0.28	0.50	0.28
	WSOC	0.36	ZZZ	0.21	0.21	-	-	-	0.71	0.82	< 0.55	0.30	-	-	0.81	-	0.88	-	-	-	-	-	1	0.68	-

		· H /3	21712																,		,,,,,	7 0.			
	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	9.3	12.1	3.1	5.0	4.2	3.9	5.8	5.1	4.8	8.9	5.3	4.6	3.8	4.9	4.6	3.6	5.8	7.3	4.7	9.1	4.5	4.0	4.2	4.0
イオン成分	CI-	0.37	0.25	< 0.016	0.44	0.095	0.13	0.17	0.16	< 0.096	0.35	0.13	0.070	0.11	0.24	0.070	0.054	0.41	0.090	0.0092	0.20	0.032	0.038	<0.055	<0.015
	NO3-	0.90	1.0		0.28	0.30	0.27	0.52	0.45	0.41	0.56	0.30	0.16	0.57	0.72	0.76	0.42	1.0		0.68	1.7	0.42	0.24	0.36	0.094
	SO42-	0.68	0.71		0.71	1.2	0.88	0.90	1.1	0.97	1.5	0.85	0.29	0.67	0.86	0.89	0.79	0.88		0.78	1.4	0.65	0.97	0.61	0.76
	3042																								
	Na'	0.058	0.10		0.023	0.057	0.074	0.044	0.085	0.076	0.18	0.054	0.0060	0.027	0.024	0.040	<0.063	0.050		0.021	0.049	0.042	0.042	<0.065	0.030
	NH ₄ ⁺	0.56	0.48	0.31	0.59	0.44	0.40	0.58	0.58	0.50	0.60	0.39	0.16	0.36	0.65	0.53	0.43	0.79	0.78	0.44	1.1	0.50	0.59	0.23	0.31
	K ⁺	0.049	0.099	< 0.03	<0.03	0.055	0.027	0.030	0.021	0.034	0.086	0.042	0.017	0.029	<0.04	0.020	0.028	0.050	0.048	0.056	0.062	0.024	0.032	0.090	0.029
	2+	0.0064	0.017		<0.015	0.0039	0.0028	0.0074	<0.0038	<0.0038	0.013	<0.0080	0.0060	<0.001	<0.0083	<0.01	0.0059	<0.01	<0.084	<0.084	0.0050	0.0060	<0.005	<0.0039	<0.0073
	IVIg																								
	Ca ^{∠⁺}	0.066	0.14		0.025	0.025	0.023	0.064	<0.044	<0.044	0.16	<0.034	0.040	0.040	0.040	0.070	0.023	0.040	<0.23	<0.23	0.019	<0.045	<0.045	<0.046	<0.016
無機成分	Na	-	47	32	<21	57	46	77	77	57	130	39	40	<30	57	49	29	48	59	32	44	41	68	110	50
	Al	160	32	<55	<55	28	19	66	27	19	89	8.5	20	20	65	28	6.8	42	14	<7.8	6.3	<15	<9.2	<2.7	29
	Si	-	-	-	-	-	-	150	82	58	160	28	40	29	-	110	-	72	23	<19	-	<14	<12	13	-
	K	-	100	23	11	54	16	49	31	58	130	29	20	<20	36	39	21	47	62	40	67	40	48	110	33
	Ca		22	<170	<170	14	4.5	76	47	43	310	12	<80	<80	62	72	24	34	39	45	11	<11	<11	<17	11
	Sc	<0.014	<0.14		<0.012	<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	<0.56	<0.2	<0.2	0.10	<0.022	<0.015	<0.028		<0.012	< 0.0061	<0.018	<0.018	<0.012	0.048
	T:	2.9	<1.9		ZZZ	2.3	2.1	5.8	3.4	2.6	9.5	<5.5	4.0	2.0	5.2	5.6	0.87	4.5		< 0.69	<3.6	<1.4	<1.8	0.77	2.6
	\/	0.23	0.15		<0.14	1.8	0.11	0.77	<0.3	0.76	8.3	<0.46	0.30	0.10	0.87	1.3	0.87	0.19		0.56	0.10	2.0	0.032	1.9	<0.38
	v																								
	Ur	0.91	< 0.69		1.7	0.59	0.25	<1.6	0.65	2.0	2.2	0.78	< 0.6	<0.6	1.0	0.66	0.32	0.52		<1.8	<0.21	<1.6	<1.6	1.9	0.56
	Mn	4.2	3.8		2.1	3.8	2.2	4.9	<2.7	5.4	26		7.5	1.6	5.2	4.7	1.5	4.0		0.93	4.8	1.4	2.6	4.1	3.2
	Fe	65	250	<24	<24	51	29	82	55	130	660	58	150	20	98	93	23	59		14	31	<28	28	27	24
	Со	<0.074	<0.14		<0.23	<0.11	<0.11	0.059	0.070	0.032	0.12		<0.08	<0.08	<0.21	<0.88	<0.015	0.022		<0.028	0.012	<0.017	0.017	<0.028	0.061
	Ni	<1.7	<0.11		<0.85	0.84	0.21	0.46	0.51	0.70	2.3	2.0	<0.5	<0.5	3.5	<0.58	<0.31	0.22		< 0.36	<0.12	<1.2	<1.2	0.59	<0.12
	Cu	5.4	2.2	< 0.94	0.96	2.0	1.3	2.8	1.2	1.2	4.2	<7.2	7.0	1.0	230	1.9	0.97	2.6	2.5	0.60	2.1	0.90	1.5	3.2	3.9
	Zn	370	24	6.3	6.4	33	58	15	24	22	57	14	40	<20	<5.4	15	8.8	15	12	28	11	<7.0	<7.0	<7.3	13
	As	0.13	0.18	0.21	0.13	0.17	0.14	0.28	0.30	0.22	0.71	< 0.47	0.60	0.20	< 0.45	<0.8	0.18	0.34	0.11	0.081	0.31	<0.020	0.24	0.084	0.34
	Se	<0.03	< 0.51	< 0.19	<0.19	1.3	0.21	1.0	< 0.51	< 0.51	1.4	<1.4	0.50	<0.2	< 0.76	<1.1	0.12	0.45	<0.038	0.27	0.14	< 0.043	0.065	0.16	< 0.14
	Rb	-	0.31	< 0.063	< 0.063	<0.14	<0.14	0.14	<0.12	0.20	0.91	< 0.55	<0.1	<0.1	<0.2	<1.1	0.044	0.14	0.12	0.080	0.15	0.060	0.14	0.15	0.18
	Мо	0.49	< 0.87	1.8	0.36	0.38	0.37	0.56	0.17	0.15	0.68	<0.70	0.60	<0.2	0.53	<1.3	0.17	0.38	0.19	0.054	0.18	0.13	0.15	0.19	1.2
	Sb	1.0	0.78	ZZZ	ZZZ	0.56	0.48	0.46	0.37	0.36	0.54	0.75	0.70	0.28	0.51	<6.5	0.20	0.80	0.35	0.15	0.39	0.25	0.38	0.45	0.53
	Cs	0.013	< 0.061	< 0.035	<0.035	<0.079	<0.079	0.018	<0.019	0.040	0.16	<0.37	<0.1	<0.1	<0.17	<9.2	<0.015	<0.019		<0.012	0.010	<0.0042	<0.0042	<0.012	0.066
	Ra	2.0	2.2		0.90	<2.3	<2.3	2.0	1.4	0.92	2.5	0.99	1.8	1.3	3.1	<10	2.9	2.2		1.3	0.79	<0.95	1.8	0.87	1.0
	l a	0.035	<0.060		0.015	0.11	0.082	0.064	0.029	0.17	0.096	<0.31	<0.08	<0.08	<0.11	<11	<0.016	0.045		<0.24	0.011	0.013	0.013	<0.24	0.054
	Co	0.086	0.11		0.033	0.097	0.17	0.17	0.052	0.061	0.16	<0.31	<0.06	<0.06	0.14	<13	0.021	0.091	0.012	0.011	0.021	0.022	0.022	0.028	0.19
	Sm	<0.01	<0.089		<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2	<0.14	<19	<0.014	<0.022		<0.0018	< 0.00076	< 0.0057	< 0.00097	<0.0018	0.032
	OIII	0.012	<0.003		<0.023	<0.033	<0.033	<0.0066	<0.027	<0.027	<0.027	<0.49	<0.1	<0.1	<0.14	<0.013	<0.014	<0.022		<0.0014	<0.020	<0.0037	< 0.00057	<0.0014	<0.032
	\/\	<0.16	<0.086	0.023	<0.023	<0.020	<0.020	0.074	<0.044	<0.044	0.18	<0.26	0.070	<0.06	<0.10	0.013	0.10	0.090		<0.0014	<0.020	0.054	0.030	<0.043	<0.54
	VV T-	-	<0.080	<0.025	<0.084	<0.040	<0.040	0.0051	<0.027	0.027	<0.027	<0.28	<0.070	<0.05	<0.034	<0.015	<0.028	<0.030		<0.012	-	< 0.034	<0.040	<0.043	<0.025
	Та	<0.0061	<0.11	<0.025	<0.025	<0.028	<0.028	<0.0081	<0.027	<0.030	<0.027	<0.28	<0.05	<0.05	<0.034		<0.028	<0.013		<0.0012	<0.0010	<0.00098	<0.040	<0.0012	
	In Di															<3.3									0.066
	Pb	4.5	3.7		<0.55	2.0	1.9	1.9	2.2	5.0	9.0	4.2	9.1	1.1	4.2	<2.1	0.98	2.0		0.89	1.7	1.4	3.5	1.6	2.7
	その他(Be)	_	<0.14	-	-	-	-	0.063	-	-		-	-	-	-	-	-	_	-	-		-	-	-	-
	その他(Cd)	-	0.16		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0.080	0.041	<0.18	-	-
炭素成分	001	0.12	0.16		0.27	0	0	0.18	<0.04	0.064	0.18	0.26	<0.2	<0.2	0.25	0.22	0.16	0.30		0.076	<0.043	<0.048	<0.048	<0.025	0.039
	OC2	0.78	0.58		0.25	0.27	0.27	0.49	0.69	0.44	0.98	0.63	0.30	0.30	0.44	0.43	0.69	0.53		0.81	0.49	0.94	0.49	0.83	0.68
	OC3	0.53	0.62	<0.21	<0.21	0.34	0.19	0.42	0.43	0.36	0.56	0.30	0.30	0.30	0.41	0.35	0.29	0.45	0.61	0.40	0.41	0.45	0.23	0.38	0.22
	OC4	0.42	0.36	0.085	0.13	0.17	0.080	0.27	0.22	0.19	0.31	0.22	<0.2	<0.2	0.14	0.11	0.17	0.14	0.36	0.29	0.20	0.28	0.14	0.27	0.19
	Ocpyro	0.46	0.45	0.075	0.080	0.21	0.18	0.26	0.26	0.19	0.47	0.29	<0.05	0.050	0.23	0.20	0.24	0.22	0.42	0.39	0.34	0.43	0.29	0.18	0.34
	EC1	1.1	1.2	0.19	0.24	0.31	0.20	0.34	0.26	0.44	0.94	0.75	0.30	0.30	0.22	0.35	0.24	0.61	0.76	0.47	0.83	0.60	0.38	0.52	0.39
	EC2	0.40	0.42	0.14	0.21	0.30	0.26	0.28	0.34	0.41	0.78	0.32	0.30	0.30	0.32	0.31	0.29	0.38	0.64	0.60	0.27	0.75	0.27	0.36	0.33
	EC3	<0.023	0		0	0	0	0.026	0.082	0.073	0.11	<0.024	<0.05	<0.05	0.0054	0.010	0.044	0.020		0.078	<0.032	0.068	0.031	<0.034	0.051
	OC	2.3	2.2	0.49	0.73	0.99	0.72	1.6	1.6	1.2	2.5	1.7	0.90	0.90	1.5	1.3	1.6	1.6		2.0	1.4	2.1	1.2	1.7	1.5
	EC	1.0	1.2		0.37	0.40	0.28	0.39	0.42	0.73	1.4	0.78	0.50	0.50	0.32	0.47	0.33	0.79		0.76	0.76	0.99	0.39	0.70	0.43
	WSOC	0.88	1.4		0.32	-	-	0.55	< 0.55	< 0.55	<0.55	0.73	0.00	0.50	1.0	-	1.0	0.73			-	0.00	0.00	1.1	-
	11300	0.00	1.4	0.23	0.32			U	\0.55	\0.55	\0.00	0.55	U	U	1.0		1.0	U	U	U		U	U	1.1	

7

表4-1-	48 I H Z	Zロル	りりける	3 H & (	Ž"													(PM2.5	,灰素风	分,イオ	-ン成分	: μg/m	無機成	分:ng/m	1 )
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	5.5	ZZZ	4.0	4.5	4.4	3.7	5.1	8.8	5.6	10.8	5.5	4.1	3.8	5.1	4.7	zzz	5.4	5.5	5.2	5.8	6.1	2.4	6.8	3.6
イオン成分	CI-	0.10	ZZZ	< 0.016	0.070	0.067	0.050	0.11	0.11	< 0.096	0.39	0.21	0.15	0.15	0.18	0.060	0.062	0.13	0.040	0.020	0.17	0.016	0.048	<0.055	<0.015
	NO3-	0.27	ZZZ	0.17	0.17	0.22	0.14	0.33	0.43	0.43	0.60	0.26	0.24	0.48	0.94	0.85	0.45	1.2	1.2	1.1	1.0	0.53	0.18	0.28	0.084
	SO42-	0.41	ZZZ	0.74	0.76	1.3	0.90	0.93	1.2	0.99	1.5	0.94	0.87	0.75	1.0	1.2	0.95	0.95	1.1	1.0	1.2	0.72	0.66	0.92	0.56
	Na⁺	0.039	ZZZ	0.028	0.030	0.047	0.050	0.040	0.085	0.075	0.14	0.060	0.052	0.030	<0.021	0.050	< 0.063	0.030	<0.021	< 0.021	0.042	0.020	0.030	< 0.065	0.021
	NH₄ ⁺	0.22	ZZZ	0.33	0.36	0.48	0.47	0.53	0.60	0.51	0.65	0.44	0.39	0.42	0.71	0.65	0.48	0.75	0.69	0.74	0.80	0.63	0.45	0.41	0.21
	14114	0.018	ZZZ	<0.03	<0.03	0.041	0.017	0.021	0.020	0.039	0.067	0.059	0.033	0.031	<0.04	0.030	0.026	0.040		0.050	0.040	0.018	0.039	0.062	0.035
	K 2+																								
	Mg ²	0.0017	ZZZ	<0.015	<0.015	0.0034	0.0031	0.0063	<0.0038	<0.0038	0.0094	<0.0080	0.0090	<0.001	<0.0083	<0.01	0.0059	<0.01	<0.084	<0.084	0.0047	<0.005	<0.005	<0.0039	<0.0073
	Ca ^{z+}	<0.027	ZZZ	<0.017	0.057	0.013	0.023	0.068	<0.044	<0.044	0.15	<0.034	0.060	0.050	0.047	0.12	0.068	0.040	<0.23	<0.23	0.019	<0.045	<0.045	0.12	0.024
無機成分	Na	-	ZZZ	35	26	56	88	62	62	50	120	48	40	40	57	46	ZZZ	44		23	34	45	5.8	100	45
	Al	72	ZZZ	<55	<55	15	28	55	34	16	94		15	20	55	22	ZZZ	40		24	9.2	<15	<9.2	27	84
	Si	-	-	-	-	-	-	140	94	60	260	140	25	50		110	-	86		<19	-	<14	45		-
	K	-	ZZZ	24	23	55	47	33	29	71	120		<20	20	26	36	ZZZ	50		48	41	48	41		34
	Ca	-	ZZZ	<170	<170	6.3	18	74	53	35	300	18	<80	<80	60	86	ZZZ	43		170	11	24	<11	140	26
	Sc	0.020	ZZZ		<0.012	<0.029	<0.029	<0.18	<0.08	<0.08	<0.08		<0.2	<0.2		<0.022	ZZZ	<0.028		<0.012	< 0.0061	<0.018	<0.018	<0.012	
	Ti	4.4	ZZZ	ZZZ	ZZZ	1.7	4.4	4.6	3.7	2.3	12	<5.5	1.7	3.0	5.7	4.4	ZZZ	4.6		< 0.69	<3.6	<1.4	<1.8	1.5	2.9
	V	0.39	ZZZ	0.18	0.31	0.10	0.15	0.33	<0.3	0.31	2.8	<0.46	0.10	0.20	0.57	1.5	zzz	0.34		0.76	0.11	2.6	<0.023	2.4	<0.38
	Cr	<0.39	ZZZ	<1.1	<1.1	0.17	0.43	<1.6	< 0.61	< 0.61	1.2		<0.6	<0.6	0.46	0.38	ZZZ	0.34		<1.8	<0.21	<1.6	<1.6	0.57	0.37
	Mn	3.1	ZZZ	1.4	1.9	2.2	1.3	2.9	2.7	4.2	18		11	2.0	3.6	4.3	ZZZ	3.5		1.4	<2.1	1.9	2.2	3.1	1.1
	Fe	65	ZZZ	44	<24	35	38	56	78	99	690		120	30	67	84		71		15	21	<28	18	41	15
	Co	<0.074	ZZZ	<0.23	<0.23	<0.11	<0.11	0.052	0.086	0.032	0.16		<0.08	<0.08	<0.21	<0.88	ZZZ	0.022		<0.028	0.0088	<0.017	0.12		<0.017
	Ni	<1.7	ZZZ	<0.85	<0.85	0.37	0.32	<0.27	0.89	0.60	1.8		<0.5	<0.5	<0.29	<0.58	ZZZ	0.24		< 0.36	<0.12	<1.2	<1.2	0.71	<0.12
	Cu	3.5	ZZZ	< 0.94	<0.94	1.3	1.8	2.2	1.6	2.2	4.6	<7.2	6.0	1.0	19	1.9	zzz	2.6		0.93	1.4	2.3	2.0	2.1	<0.47
	Zn	120	ZZZ	35	9.0	5.7	11	8.6	19	24	74		50	<20	<5.4	11	ZZZ	12		22	5.6	12	9.0	<7.3	5.7
	As	0.16	ZZZ	0.31	0.20	0.29	0.30	0.29	0.42	0.32	0.80		0.70	0.30	<0.45	<0.8	ZZZ	0.25		0.16	0.35	0.11	0.33	0.19	0.29
	Se	<0.03	ZZZ	<0.19	<0.19	1.3	<0.20	0.49	< 0.51	< 0.51	1.2	<1.4	0.40	<0.2	<0.76	<1.1	ZZZ	0.33		0.18	0.10	0.090	<0.043	0.25	<0.14
	Rb	-	ZZZ	0.067	<0.063	<0.14	<0.14	0.094	<0.12	0.26	0.80	< 0.55	<0.1	<0.1	<0.2	<1.1	ZZZ	0.16		0.11	0.099	0.085	0.12	0.15	0.10
	Mo	0.78	ZZZ	7.8	1.2	0.54	0.92	0.55	0.42	0.25	0.73	<0.70	0.50	0.40	0.56	<1.3	ZZZ	0.69		0.12	0.13	0.20	0.095	0.39	<0.28
	Sb	<0.62 0.010	ZZZ	<0.035	<0.035	0.66 <0.079	0.78 <0.079	0.39	0.34 <0.019	0.52	0.74 0.18	1.1 <0.37	0.60 <0.1	0.50 <0.1	0.61 <0.17	<6.5 <9.2	ZZZ	0.78 <0.019		0.18 <0.012	0.60 <0.0077	0.36 <0.0042	0.53 <0.0042	1.2 <0.012	0.59 <0.013
	US D		ZZZ	4.5				1 4					1.3	1.3		<10	ZZZ			0.42		1.3			
	Ва	2.2 0.056	ZZZ			<2.3 <0.038	<2.3 0.055	0.067	1.4 0.032	0.80	2.1 0.10	1.0 <0.31	<0.08	<0.08	2.9 <0.11	<10	ZZZ	2.5 0.053		<0.24	0.67	0.017	0.020	0.69 <0.24	0.83 <0.024
	La	0.036	ZZZ	<0.012	<0.012	0.038	0.055	0.067	0.032	0.075	0.10	<0.31	<0.08	<0.08	0.042	<13	ZZZ	0.053		0.014	0.0089	0.017	0.020	0.038	0.024
	Ce C	<0.14	ZZZ ZZZ		<0.022	<0.025	<0.035	<0.013	< 0.036	< 0.045	<0.027	<0.49	<0.06	<0.06	<0.14	<19	ZZZ	<0.022		<0.0018	<0.0076	<0.0057	<0.00097	<0.0018	<0.080
	om .	0.013	ZZZ	<0.0030	<0.0019	<0.035	<0.035	<0.0066	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2	<0.14	<0.013	zzz zzz	<0.022		<0.0018	<0.00076	<0.0037	<0.0055	<0.0018	<0.017
	111	<0.16		<0.023	<0.023	<0.020	<0.020	0.060	<0.044	<0.044	0.091	<0.26	0.070	<0.06	<0.10	0.070	ZZZ	<0.014		0.0014	<0.020	<0.0032	0.040	0.0014	<0.54
	Ta	\U.10	ZZZ ZZZ	<0.084	<0.084	<0.040	<0.040	0.0044	<0.027	<0.027	<0.031	<0.28	<0.070	<0.05	<0.034	<0.070	ZZZ	<0.013		<0.013	- \0.10	<0.043	<0.040	<0.0012	<0.025
	Th	<0.0061	ZZZ	<0.023	<0.023	<0.028	<0.028	<0.0044	<0.027	<0.024	<0.027	<0.29	<0.03	<0.03	<0.034	<3.3	ZZZ	<0.013		<0.0012	0.0011	<0.0098	<0.0011	<0.0012	<0.023
	Dh	1.5	ZZZ	<0.55		1.4	1.6	1.1	2.8	4.6	17		9.6	1.7	1.8	<2.1	ZZZ	1.7		1.5	1.2	3.7	4.0	4.2	0.93
	FD その他(Be)	- 1.5	ZZZ	- (0.55	- (0.55	- 1.4	- 1.0	0.030		- 4.0			- 3.0	- 1.7	- 1.0	- \2.1		- 1./	- 1.7	- 1.0	- 1.2	3.7	- 4.0	- 4.2	-
	その他(Cd)	_	ZZZ	_	_			- 0.030	_	_	_			_	_		_		_	_	0.042	0.090	<0.18	_	_
炭素成分	OC1	0.13	ZZZ	0.18	0.18	0	n	0.18	<0.04	0.044	0.17	0.22	<0.2	<0.2	0.21	0.24	0.18	0.27	0.15	0.073	<0.042	<0.048	<0.048	0.026	0.029
灰东风刀	OC2	0.68	ZZZ	0.19	0.19	0.24	0.24	0.47	0.67	0.44	1.1	0.63	0.30	0.30	0.48	0.47	0.69	0.44		0.78	0.64	0.82	0.47	0.88	0.63
	OC3	0.36	ZZZ	0.13	<0.13	0.42	0.19	0.47	0.49	0.44	0.65		0.30	0.20	0.46	0.47	0.03	0.44		0.76	0.57	0.82	0.47	0.88	0.03
	OC4	0.35	ZZZ	0.15		0.42	0.080	0.24	0.18	0.20	0.03	0.25	<0.2	<0.2	0.15	0.13	0.20	0.13		0.25	0.34	0.40	0.16	0.43	0.20
	Ocpyro	0.35	ZZZ	0.18	0.070	0.27	0.12	0.22	0.18	0.20	0.60		<0.05	0.080	0.13	0.13	0.27	0.13	0.45	0.43	0.57	0.46	0.10	0.43	0.29
	EC1	0.73	ZZZ	0.10	0.000	0.27	0.12	0.28	0.20	0.48	1.1		0.30	0.30	0.28	0.42	0.29	0.45		0.47	0.97	0.40	0.24	0.77	0.23
	EC2	0.44	ZZZ	0.19	0.13	0.31	0.23	0.27	0.35	0.40	1.1	0.30	0.20	0.20	0.20	0.42	0.43	0.33	0.43	0.42	0.35	0.69	0.25	0.48	0.29
	EC3	<0.023	ZZZ	0.13	0.21	0.01	0. <u>2</u> 0	0.029	0.074	0.064	0.18		<0.05	<0.05	0.018	0.010	0.056	0.030		0.042	<0.032	0.064	0.032	<0.034	0.042
	OC	1.9	ZZZ	0.93	0.52	1.1	0.63	1.4	1.6	1.2	2.8	1.7	0.80	0.80	1.6	1.4	1.7	1.4		1 0	2.1	2.0	1.1	2.1	1.4
	EC	0.82	ZZZ	0.35	0.32	0.41	0.03	0.36	0.45	0.74	1.8		0.50	0.40	0.39	0.48	0.51	0.60	0.55	0.50	0.75	0.90	0.34	0.82	0.37
	WSOC	0.30	ZZZ	0.30	0.48	-	-	-	0.56	0.78	1.2		-	-	1.1	-	1.1	-	-	-	-	-	-	1.3	-
		50								2.70															

衣4-1-	49 I H Z	っロい	ロリカム	4ロまり														(PMZ. 5	,灰茶风	が, 12	ン成分	: μg/m	無機成?	万:ng/m	)
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	12.7	ZZZ		18.2	16.0	16.0	16.7	17.8	12.3	19.1	16.7	14.7	16.3	20.8	18.5	22.3	18.4	16.9	9.5	11.6	8.3	10.8	6.1	10.4
イオン成分	CI-	0.25	ZZZ		0.85	0.42	0.61	0.51	0.74	0.10	0.64	0.64	0.27	0.36	0.75	0.29	0.51	0.64	0.075	0.12	0.19	0.025	0.046	-	<0.015
	NO3-	1.3	ZZZ		4.0	4.6	4.6	5.1	3.4	1.2	3.5	4.3	4.2	5.0	6.4	5.9	6.3	6.1	5.5	2.7	3.5	1.3	1.5	-	0.94
	SO42-	0.81	ZZZ		1.1	1.6	1.4	1.3	1.8	2.6	2.5	1.6	1.1	1.6	1.9	2.0	2.3	1.7		2.0	1.7	1.9	2.6		1.9
	Na [⁺]	0.032	ZZZ	0.036	0.032	0.053	0.079	0.046	0.14	0.099	0.10	0.060	0.050	0.052	0.034	0.060	0.064	0.050	0.025	0.022	0.061	0.028	0.057	<0.065	0.058
	NH ₄ ⁺	0.88	ZZZ	2.0	2.0	1.9	2.5	2.2	2.1	1.3	2.1	2.0	1.8	2.2	2.7	2.7	2.9	3.0	2.2	1.5	1.6	1.4	1.7	0.94	0.95
	K ⁺	0.040	ZZZ	0.077	0.089	0.12	0.12	0.084	0.11	0.073	0.090	0.082	0.090	0.10	0.085	0.090	0.10	0.12	0.061	0.076	0.073	0.034	0.084	<0.038	0.067
	Mg ²⁺	0.0015	ZZZ	<0.015	<0.015	0.0023	0.0041	0.0056	<0.0038	<0.0038	0.0044	<0.0080	0.0040	0.0090	<0.0083	<0.01	0.018	<0.01	<0.084	<0.084	0.0058	<0.005	0.0080	<0.0039	<0.0073
	C=2+	<0.027	ZZZ		0.030	0.012	0.026	<0.057	<0.044	<0.044	0.12	0.037	0.050	0.070	0.067	0.11	0.074	0.050		<0.23	0.042	<0.045	<0.045		<0.016
無機成分	Na	-	ZZZ	82	38	58	73	66	140	87	100	50	60	60	72	80	61	57		16	49	31	79	48	100
無饭水刀	ΛI	49	ZZZ			27	36	48	28	13	51	13	20	30	74	18	16	48		<7.8	22	<15	9.5	<2.7	17
	C:	- 40			- \33			100	82	31	170		60	50		110		82		<19		<14	<12		
	K C	_	ZZZ	120	130	130	130	100	160	120	140		80	80	110	110	98	120		82	80	54	130	-	67
	Ca	_	ZZZ	<170		<2.1	14	57	67	21	190		<80	<80	92	100	47	50		69	19	<11	<11	<17	11
	Sc.	<0.014	ZZZ			<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	<0.56	<0.2	<0.2		<0.022	<0.015	<0.028		<0.012	< 0.0061	<0.018	<0.018	<0.012	<0.021
	Ti Ti	5.2	ZZZ		ZZZ	1.8	2.5	4.4	5.6	2.4	6.8	<5.5	3.0	3.0	7.9	4.7	2.2	4.0		<0.69	<3.6	<1.4	<1.8	<0.72	3.3
	V	0.61	ZZZ			0.56	0.67	0.69	1.6	1.0	5.9	0.65	0.60	1.8	4.1	7.3	2.5	2.3		0.60	0.17	4.7	0.66	0.76	1.1
	Cr	<0.39	ZZZ		<1.1	0.52	1.2	<1.6	4.2	<0.61	2.0		<0.6	<0.6	2.0	1.9	3.9	1.1		<1.8	<0.21	<1.6	<1.6	-	0.58
	Mn	2.3	ZZZ			4.3	4.7	5.3	11	<2.7	10		5.7	6.8	9.8	8.0	8.9	7.7		1.7	2.1	0.99	3.6		2.4
	Fe	37	ZZZ			57	62	77	150	49	270		80	100	170	170	79	140		18	29	<28	29		29
	Co	1.3	ZZZ		<0.23	<0.11	<0.11	0.046	0.051	0.030	0.12		<0.08	<0.08	<0.21	<0.88	0.063	0.042		<0.028	0.014	< 0.017	0.018		0.025
	Ni	2.9	ZZZ		<0.25	0.40	0.71	0.29	2.2	0.65	2.2	<0.63	<0.5	0.70	0.97	2.4	3.3	1.2		<0.36	0.13	2.0	<1.2	<0.36	<0.12
	Cu	1.5	ZZZ		2.4	2.7	3.2	4.6	21	1.8	4.4	<7.2	3.0	3.0	140	4.6	9.8	4.1		0.95	2.2	1.2	1.9		1.6
	7n	<40	ZZZ		34	33	78	30	140	17	60		30	30	11	41	49	48		37	14	<7.0	<7.0	<7.3	13
	As	0.52	ZZZ		0.48	0.53	0.55	0.71	0.90	0.82	0.91	0.76	1.0	0.70	0.68	1.1	0.85	0.83		0.32	0.53	0.17	0.73	0.42	0.86
	Se	<0.03	ZZZ	0.28	0.32	1.3	0.44	1.0	0.62	<0.51	<0.51	<1.4	0.50	1.1	2.9	<1.1	0.69	3.7		0.64	0.15	0.16	0.63	0.35	0.59
	Rb	-	ZZZ		0.27	0.22	0.27	0.24	0.31	0.19	0.43	<0.55	<0.1	0.10	0.31	<1.1	0.25	0.33	0.17	0.15	0.21	0.094	0.25	0.12	0.24
	Mo	1.4	ZZZ		3.3	1.4	2.0	1.0	0.58	0.27	0.48	<0.70	0.70	0.70	1.1	1.4	2.7	0.65		0.11	0.18	0.33	0.33	0.14	0.93
	Sb	1.2	ZZZ		zzz	2.0	1.8	2.1	2.9	0.72	1.1	1.6	1.7	1.9	2.3	<6.5	1.8	3.1		0.32	0.48	0.57	1.0		0.75
	Cs	0.013	ZZZ	< 0.035	<0.035	<0.079	< 0.079	0.017	0.026	0.020	0.038	< 0.37	<0.1	<0.1	<0.17	<9.2	0.015	0.048	<0.012	<0.012	0.017	<0.0042	<0.0042	<0.012	0.036
	Ва	0.47	ZZZ		1.2	<2.3	<2.3	1.8	1.4	0.45	1.6	1.1	1.5	2.3	4.5	<10	1.5	2.8	0.82	0.92	0.76	< 0.95	0.95	<0.29	0.95
	La	0.029	ZZZ		0.029	0.067	0.094	0.090	0.16	0.086	0.20	<0.31	<0.08	0.11	<0.11	<11	0.076	0.21	<0.24	<0.24	0.016	0.019	0.031	<0.24	<0.024
	Ce	0.11	ZZZ	0.075	0.060	0.073	0.16	0.17	0.32	0.034	0.18	<0.31	0.12	0.12	0.13	<13	0.11	0.32	0.024	0.029	0.031	0.022	0.023	0.021	0.070
	Sm	<0.01	ZZZ	0.0043	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	< 0.49	<0.2	<0.2	<0.14	<19	<0.014	<0.022	<0.00072	<0.0018	0.0013	<0.0057	0.0015	<0.0018	<0.017
	Hf	< 0.0096	ZZZ	<0.023	<0.023	<0.020	<0.020	< 0.0066	<0.044	<0.044	<0.044	<0.29	<0.1	<0.1	< 0.16	< 0.013	<0.029	<0.014	<0.0014	< 0.0014	<0.020	<0.0032	<0.0055	<0.0014	< 0.065
	W	<0.16	ZZZ	<0.084	<0.084	0.054	0.12	0.15	0.11	0.11	0.091	0.28	0.11	< 0.06	0.26	0.16	0.27	0.13	0.15	<0.012	<0.10	0.077	0.15	<0.043	<0.54
	Та	-	ZZZ	< 0.025	<0.025	<0.028	<0.028	0.0045	< 0.027	< 0.027	< 0.027	<0.28	<0.05	<0.05	< 0.034	< 0.015	<0.028	< 0.013	<0.0012	< 0.0012	-	<0.040	< 0.040	<0.0012	<0.025
	Th	<0.0061	ZZZ	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	<0.07	<0.07	<0.28	<3.3	<0.014	<0.013	<0.017	< 0.0032	0.0030	<0.00098	< 0.0011	<0.0032	<0.021
	Pb	3.7	ZZZ	3.9	5.1	6.4	8.3	5.7	23	5.6	9.3	6.1	9.9	9.2	8.2	7.6	7.9	7.9	2.4	2.4	3.8	2.2	6.2	2.9	5.2
	その他(Be)	-	ZZZ	-	-	-	-	0.19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-
	その他(Cd)	-	ZZZ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.10	0.097	<0.18	-	-
炭素成分	OC1	0.14	ZZZ	0.29	0.38	0	0.17	0.40	0.072	0.058	0.065	0.26	<0.2	<0.2	0.33	0.58	0.44	0.52	0.10	0.069	< 0.043	<0.048	<0.048	<0.025	0.057
	OC2	0.71	ZZZ	0.54	0.58	0.71	0.72	0.95	1.1	0.89	1.1	1.0	0.50	0.60	0.83	0.94	1.4	0.85		0.88	0.44	0.96	0.71	0.61	0.82
	OC3	0.50	ZZZ		0.74	0.92	0.92	0.92	0.80	0.59	0.75	0.72	0.60	0.80	0.79	0.91	0.85	0.83	0.63	0.40	0.38	0.39	0.38	0.26	0.34
	OC4	0.48	ZZZ		0.45	0.60	0.55	0.61	0.41	0.33	0.36	0.62	0.40	0.50	0.46	0.53	0.49	0.45		0.25	0.20	0.27	0.26	0.18	0.25
	Ocpyro	0.77	ZZZ		0.73	0.75	0.76	0.79	0.74	0.33	1.1	0.75	0.40	0.50	0.70	0.84	0.78	0.66		0.63	0.33	0.70	0.82	0.51	0.73
	EC1	1.2	ZZZ		1.5	1.4	1.5	1.4	1.8	1.6	1.8	1.8	1.1	1.3	1.2	1.8	1.8	1.6		0.72	0.83	0.93	1.1	0.63	0.96
	EC2	0.19	ZZZ		0.36	0.47	0.37	0.61	0.43	0.41	0.73	0.27	0.30	0.40	0.67	0.33	0.40	0.29		0.53	0.23	0.59	0.41	0.35	0.41
	EC3	<0.023	ZZZ		0	0.035	0.020	0.079	0.043	0.072	0.14		<0.05	<0.05	0.049	0.020	0.027	0.030		0.050	<0.032	0.056	<0.022		0.031
	OC	2.6	ZZZ		2.9	3.0	3.1	3.7	3.1	2.2	3.4	3.4	2.0	2.5	3.1	3.8	4.0	3.3		2.2	1.4	2.3	2.2	1.6	2.2
	EC	0.62	ZZZ		1.1	1.2	1.1	1.3	1.5	1.8	1.6		1.0	1.3	1.2	1.3	1.4	1.3	1.0	0.67	0.73	0.88	0.69	0.47	0.67
	WSOC	0.56	zzz	1.4	1.6	-	-	-	0.94	1.4	1.6	1.5	-	-	2.1	-	2.8	-	_	-	-	-	!	1.0	-

7文4-1-	30 IHZ	4ロルい	O I A Z	ישאינ	-													(PM2.5,	灰茶风	:ガ, 1 4	ン成分	: μg/m	無機)以	方:ng/m	)
自治	合体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	川梨川	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	3.9	zzz	4.6	4.5	3.9	3.9	6.5	6.6	5.0	11.8	4.6	5.0	3.2	5.2	5.1	5.0	3.8	4.7	3.2	5.4	3.3	6.5	4.0	6.6
イオン成分	CI-	0.098	zzz	< 0.016	0.040	0.054	0.086	0.15	0.12	0.11	0.27	0.034	0.14	0.030	0.16	0.080	0.072	0.050	0.031	0.016	0.093	0.041	0.021	<0.055	<0.015
	NO3-	<0.14	ZZZ	0.21	0.087	0.14	0.13	0.43	0.51	0.20	0.24	0.34	0.63	0.19	0.47	0.61	0.49	0.23	0.30	0.077	0.76	0.093	0.32	0.23	0.17
	SO42-	0.74	zzz	0.84	1.1	1.5	1.4	1.2	1.4	1.3	1.4	1.4	1.1	1.2	1.3	1.5	1.3	1.3	1.3	1.2	1.5	1.1	2.2	1.6	1.6
	Na⁺	0.048	ZZZ	0.034	0.043	0.075	0.097	0.071	0.12	0.085	0.17	0.077	0.075	0.050	0.051	0.060	< 0.063	0.050	0.038	0.046	0.063	0.030	0.040	0.066	0.064
	NH₄ ⁺	0.33	zzz	0.38	0.42	0.54	0.71	0.62	0.66	0.46	0.54	0.48	0.54	0.45	0.65	0.68	0.62	0.54	0.55	0.47	0.77	0.62	1.1	0.63	0.61
	14114	0.0085	ZZZ	<0.03	<0.03	0.020	0.038	0.027	0.027	0.019	0.038	0.026	0.035	0.024	<0.04	0.020	0.035	0.020	0.013	0.028	0.033	0.0088	0.033	0.050	0.032
	K 2+																								
	Mg	0.0024	ZZZ	<0.015	<0.015	0.0037	0.0052	0.0088	<0.0038	<0.0038	0.011	<0.0080	0.0090	0.0050	0.019	<0.01	0.0078	<0.01	<0.084	<0.084	0.0081	<0.005	0.0063	<0.0039	0.023
	Ca ²⁺	<0.027	ZZZ	0.021	0.036	0.011	0.018	0.066	<0.044	<0.044	0.20	<0.034	0.060	0.020	0.044	0.050	0.025	0.030	<0.23	<0.23	0.018	<0.045	<0.045	<0.046	0.12
無機成分	Na	-	ZZZ	42	56	56	72	94	84	120	190	63	70	30	70	61	22	59	70	52	51	20	62	66	68
	Al	57	ZZZ	<55	<55	29	24	80	20	<9.5	230	16	30	14	41	<16	2.9	35	35	<7.8	9.9	<15	<9.2	<2.7	30
	Si	-	-	-	-	-	-	160	110	31	600	<8.9	50	16	-	75	-	76	21	<19	-	<14	14	6.9	-
	K	-	ZZZ	21	25	30	20	46	44	41	92	34	20	<20	16	37	17	27	28	18	33	14	53	31	32
	Ca	-	ZZZ	<170	<170	<2.1	7.6	99	81	22	790	23	<80	<80	35	51	<9.3	37	<17	<24	10	<11	<11	<17	58
	Sc	0.015	ZZZ	<0.012	<0.012	<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	<0.56	<0.2	<0.2	<0.092	<0.022	<0.015		<0.012	<0.012	<0.0061	<0.018	<0.018	<0.012	0.12
	Ti	<1.9	ZZZ	ZZZ	ZZZ	2.1	1.9	30	3.7	1.1	22	<5.5	1.9	1.1	6.5	4.5	0.58	2.8	<1.2	< 0.69	<3.6	<1.4	<1.8	0.76	5.6
	V	0.20	ZZZ	0.44	<0.14	0.13	0.17	0.30	1.7	0.95	1.4	<0.46	0.20	0.10	<0.37	<0.57	0.16	0.21	0.11	0.065	0.13	0.77	0.41	0.15	<0.38
	Cr	<0.39	ZZZ	2.3	<1.1	0.46	0.35	<1.6	0.88	< 0.61	1.5	1.1	<0.6	<0.6	1.2	<0.32	0.41	0.43	<0.17	<1.8	<0.21	<1.6	<1.6	0.62	0.55
	Mn	1.6	ZZZ	2.2	1.5	0.98	0.71	3.3	2.8	<2.7	14	2.1	10	0.40	3.1	<1.6	0.54	1.1	0.66	0.32	<2.1	0.14	2.1	0.73	1.6
	Fe	25	ZZZ	190	40	25	24	80	80	46	430	24	100	<7	68	81	15	38	18	6.5	17	<28	25	9.5	26
	Co	<0.074	ZZZ	<0.23	<0.23	<0.11	<0.11	0.16	0.74		0.10	<0.42	<0.08	<0.08	<0.21	<0.88	<0.015		<0.028	<0.028	0.010	<0.017	0.018	<0.028	0.028
	Ni	<1.7	ZZZ	<0.85	<0.85	0.74	0.42	<0.27	0.74	0.40	2.4	< 0.63	<0.5	<0.5	<0.29	<0.58	<0.31	0.11	<0.36	< 0.36	<0.12	<1.2	<1.2	< 0.36	<0.12
	Cu	1.0	ZZZ	2.0	<0.94	1.4	1.1	2.5	1.1	<1.1	1.8	<7.2	5.0	0.70	<7	3.1	<0.72	0.91	2.0	0.30	1.1	0.92	0.94	<0.30	<0.47
	Zn	60	ZZZ	38	7.1	7.2	16	11	14	6.8	26	8.5	90	<20	<5.4	5.4	2.7	4.0	<7.3	<7.3	4.9	<7.0	<7.0	<7.3	6.6
	As	0.15	ZZZ	0.30	0.35	0.17	0.23	0.30	0.32	0.32	0.45	<0.47	0.40	0.30	<0.45	<0.8	0.21	0.40	0.22	0.23	0.27	0.030	0.45	0.33	0.49
	Se	<0.03	ZZZ	<0.19	<0.19	0.43	<0.20	0.46	< 0.51	< 0.51	0.90	<1.4	0.40	<0.2	<0.76	<1.1	0.68	4.8	0.087	0.076	0.15	<0.043	0.39	0.10	0.25
	Rb		ZZZ	0.077	0.070	<0.14	<0.14	0.15	<0.12	<0.12	0.43	< 0.55	<0.1	<0.1	<0.2	<1.1	0.049	0.091	0.060	0.053	0.094	0.030	0.19	0.062	0.16
	Mo	<0.42	ZZZ	8.3	0.69	<0.077	0.17	0.18	0.26	<0.091	0.29	<0.70	0.30	<0.2	0.17	<1.3	0.087	0.088	0.072	0.041	0.15	0.036	0.29	0.067	0.29
	Sb	<0.62 <0.0067	ZZZ	ZZZ	ZZZ	0.24	0.30	0.27	0.19	0.15	0.32	<0.38	0.40	0.10	0.46	< 6.5	0.12	0.18	0.068	0.061	0.14	0.045	0.18 <0.0042	0.11	0.15
	US D		ZZZ	<0.035	<0.035	<0.079	<0.079	0.015	<0.019	<0.019	0.058	<0.37	<0.1	<0.1	<0.17	<9.2	<0.015		<0.012	<0.012		<0.0042		<0.012	
	Ва	0.37 <0.024	ZZZ	2.3 <0.012	1.1	<2.3 0.040	<2.3	3.7 0.057	0.040	0.48	2.7 0.097	1.1 <0.31	2.3 <0.08	08.0	3.4 <0.11	<10	< 0.016	0.80	0.58 <0.24	0.35 <0.24	0.46 0.0077	< 0.95	0.55	<0.29 <0.24	0.78 <0.024
	La	<0.024	ZZZ	<0.012	0.014	0.040	0.20	0.057	0.040	<0.029		<0.31	0.060	<0.08	0.084	<11 <13	<0.016	0.071	0.0063	<0.043	0.0077	0.0090	0.013 <0.020	0.0059	
	Sm Sm	<0.038	ZZZ	0.0027	<0.0019	<0.027	<0.035	<0.013	<0.081	<0.028	0.18 <0.027	<0.49	<0.2	<0.06	< 0.14	<19	<0.02		0.0063	<0.0043	<0.00076	<0.012	<0.00097	<0.0059	0.069 <0.017
	OIII	<0.0096	ZZZ ZZZ	<0.0037	<0.0019	<0.033	<0.033	0.0081	<0.027	<0.027	<0.027	<0.49	<0.2	<0.1	<0.14		<0.014	<0.022	< 0.0013	<0.0018	<0.00070	<0.0037	<0.00057	<0.0018	<0.017
	\A/	<0.0030	ZZZ	0.023	<0.023	<0.020	<0.040	0.0081	<0.044	<0.044	<0.044	<0.25	<0.06	<0.06	0.20	0.050	0.029	<0.014	<0.040	<0.0014	<0.020	<0.0032	0.0033	<0.043	<0.54
	Ta	- \0.10	ZZZ	<0.025	<0.034	<0.040	<0.040	0.041	<0.027	<0.027	<0.027	0.62	<0.05	<0.05	<0.034	<0.015	<0.028	<0.013	<0.040	<0.012	- \0.10	<0.043	<0.040	<0.043	<0.025
	Th	<0.0061	ZZZ	<0.023	<0.023	<0.028	<0.028	<0.0082	<0.027	<0.024	<0.024	<0.02	<0.03	<0.03	<0.034	<3.3	<0.028		<0.0012	<0.0012	0.0011	<0.0098	<0.040	<0.0012	<0.023
	Dh	0.78	ZZZ	0.59	1.0	1.0	1.7	1.9	3.2	2.1	4.4	2.1	18	1.2	1.2	<2.1	0.72		1.6	1.1	1.2	0.85	5.2	2.1	2.9
	その他(Be)	-	ZZZ	-	-	- 1.0	- 1.7	0.051	- 0.2	-		-	-	-	- 1.2	- \2.1	-	- 1.0	- 1.0	- '.'	- 1.2	- 0.00	-	-	-
	その他(Cd)	_	ZZZ	_	_	_	_	- 0.031	_	_	_	_	_	_		_		_	_	_	0.045	0.019	<0.18	-	_
炭素成分	OC1	<0.046	ZZZ	0.15	<0.13	0	0	0.29	0.052	0.049	0.075	0.096	<0.2	<0.2	0.21	0.25	0.22	0.25	0.068	<0.020	0.045	<0.048	<0.048	<0.025	0.032
汉东汉万	OC2	0.24	ZZZ	0.18	<0.16	<0.012	0.16	0.45	0.66	0.35	0.57	0.43	0.20	<0.2	0.36	0.42	0.68	0.27	0.37	0.21	0.003	0.53	0.29	0.19	0.43
	OC3	<0.19	ZZZ	<0.21	<0.10	0.15	0.14	0.45	0.36	0.29	0.36	0.31	0.20	<0.2	0.25	0.12	0.30		0.16	0.10	0.32	0.18	0.14	0.097	<0.19
	OC4	0.16	ZZZ	0.15	0.063	0.055	0.045	0.30	0.15	0.14	0.19	0.18	<0.2	<0.2	0.12	0.11	0.17		0.12	0.084	0.16	0.13	0.088	0.048	0.11
	Ocpyro	0.25	ZZZ	0.14	0.15	0.16	0.17	0.31	0.36	0.14	0.55	0.17	0.10	0.060	0.30	0.30	0.32	0.24	0.33	0.23	0.15	0.36	0.39	0.17	0.42
	EC1	0.39	ZZZ	0.33	0.22	0.18	0.18	0.41	0.34	0.38	0.50	0.45	0.30	0.20	0.29	0.42	0.32	0.35	0.33	0.24	0.52	0.34	0.47	0.25	0.48
	EC2	0.13	ZZZ	0.19	0.13	0.17	0.20	0.36	0.37	0.31	0.71	0.25	0.30	0.12	0.38	0.30	0.33	0.24	0.29	0.13	0.14	0.38	0.21	0.16	0.26
	EC3	<0.023	ZZZ	0.13	0.70	0.17	0.20	0.043	0.063	0.047	0.14	<0.024	<0.05	<0.05	0.0087	0.010	0.038	0.050	0.046	<0.021	<0.032	0.032	<0.022	<0.034	<0.021
	OC	0.69	ZZZ	0.62	0.21	0.37	0.52	1.8	1.6	0.97	1.7	1.4	0.80	0.40	1.2	1.4	1.7	1.1	1.0	0.62	1.1	1.2	0.91	0.50	0.99
	EC	0.03	ZZZ	0.38	0.20	0.19	0.32	0.50	0.41	0.60	0.80	0.33	0.50	0.40	0.38	0.43	0.37	0.40	0.34	0.14	0.41	0.39	0.29	0.24	0.32
	WSOC	<0.24	ZZZ	0.29	0.23	-	-	-	<0.55	1.6	<0.55	0.52	-	-	0.85	-	1.5	-	-	-	-	-	-	0.44	-

表4-1-	OI IHZ	יתםכי	51月2	り日まり	Č.													(PM2.5	,灰素放	分,イオ	ン成分	: μg/m	無機以	分:ng/m	i')
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	10.4	12.1	4.6	8.0	7.7	8.9	9.7	11.1	6.4	10.0	11.3	8.3	6.3	8.1	8.1	10.3	6.0	7.9	4.0	8.2	5.2	6.7	5.5	8.5
イオン成分	CI-	0.52	0.60	< 0.016	0.15	0.42	0.70	0.26	0.25	0.17	0.34	0.48	0.39	0.070	0.60	0.22	0.37	0.24	0.045	0.020	0.18	0.054	0.026	<0.055	<0.015
	NO3-	1.3	0.86	0.21	0.63	0.64	1.1	0.94	1.2	0.67	0.81	1.1	0.81	0.65	1.1	1.4	1.6	0.79	0.93	0.21	1.2	0.33	0.97	0.16	0.46
	SO42-	1.8	1.9	1.5	1.6	2.1	1.9	1.8	1.5	1.5	1.5	1.7	1.5	1.2	1.3	1.5	1.7	1.4	1.6	1.2	2.1	1.2	3.0	1.1	2.2
	Na⁺	0.072	0.12	0.037	0.031	0.060	0.072	0.061	0.089	0.081	0.12	0.072	0.063	0.049	0.043	0.060	0.086	0.050	0.025	0.024	0.072	0.048	0.045	<0.065	0.054
	NH ₄ ⁺	1.2	1.1	0.64	0.84	1.1	0.93	1.1	0.88	0.69	0.73	0.96	0.75	0.56	1.1	0.95	1.1	0.83	0.82	0.52	1.2	0.68	1.7	0.46	0.94
	K ⁺	0.084	0.14		<0.03	0.074	0.060	0.057	0.048	0.082	0.040	0.053	0.054	0.041	0.054	0.040	0.066	0.040		0.046	0.059	0.038	0.047	0.043	0.059
	N 2+	0.011	0.023	<0.015		0.0027	0.0039	0.0087	<0.0038	<0.0038	<0.0038	<0.0080	0.012	0.0030	<0.0083	<0.01	0.011	<0.01	<0.084	<0.084	0.0055	<0.005	0.010	<0.0039	<0.0073
	Mg ⁻																								
- 100 B 41	Ca ²⁺	0.054	0.14		0.039	0.011	0.033	0.093	<0.044	<0.044	0.12	<0.034	0.090	0.040	0.051	0.090	0.11	0.040	<0.23	<0.23	0.027	<0.045	<0.045	0.15	0.046
無機成分	Na		47		49	80	66	87	95	49	96		70	<30	68	63	59	55		34	86	36	21	70	75
	Al	69	30			37	28	110	59	<9.5	48		40	12	46	23	30	38		<7.8	26	<15	26	10	47
	Si	-	-	-	-	-	-	210	170	50	180		70	30	-	120	-	77		<19	-	<14	<12		
	K	-	80			87	50	81	88	120	95		50	<20	69	61	70	50		36	67	56	53	85	56
	Ca	-	22			12	23	130	130	40	210		<80	<80	130	81	82	42		<24	43	<11	<11	140	39
	Sc	<0.014	<0.14			<0.029	<0.029	<0.18	<0.08	<0.08	<0.08		<0.2	<0.2		<0.022		<0.028		<0.012	<0.0061	<0.018	<0.018	<0.012	
	Ti	3.3	11			2.4	4.3	8.6	7.7	1.7	7.4	<5.5	4.0	2.0	7.0	6.9	3.8	3.2		< 0.69	<3.6	<1.4	<1.8	2.0	5.3
	V	0.25	0.14			0.64	0.29	0.39	1.9	0.71	3.1	<0.46	0.20	0.10	0.73	1.5	2.3	0.35		0.071	0.18	1.3	0.29	0.61	0.42
	Gr	0.78	< 0.69			1.1	1.4	<1.6	1.8	1.0	1.2	4.1	< 0.6	<0.6	0.84	0.83	1.2	0.28		<1.8	0.30	<1.6	<1.6	1.3	0.58
	Mn	5.3 81	5.2 370			4.5 54	4.7 57	6.6 120	5.2 140	4.2 120	7.0 160		9.1 130	1.3	5.8 130	6.6 140	7.1 140	3.0 61		0.56 10	3.8 61	1.4 <28	2.6 26		5.1
	Fe	<0.074	< 0.14			<0.11	<0.11	0.075	0.30			<0.42		<0.08	<0.21		0.069	0.027		<0.028		0.028	0.040		45 0.037
	Go N:	<0.074	1.1			0.63	0.11	0.075	0.30	0.025	0.094	1.2	<0.08 <0.5	<0.08	<0.21	<0.88 1.7	1.3	0.027		<0.028	0.017 <0.12	<1.2	<1.2	<0.028	0.037
	NI O	5.0	2.0			2.4	2.8	4.3	6.7	4.7	4.1	1.2 <7.2	5.0	1.0	200	4.9	4.5	2.9		0.70	3.2	2.1	0.99	1.3	2.7
	Cu Z-	140	30			45	2.8	30	53	38	110		5.0 40	<20	<5.4	16	22	8.2		<7.3	3.2 14	<7.0	<7.0	<7.3	17
	As	0.42	0.36			0.45	0.45	0.56	0.45	0.32	0.37		0.60	0.30	<0.45	<0.8	0.45	0.37		0.27	0.50	0.14	0.45	0.25	0.91
	So.	0.039	0.58	0.42		2.4	<0.20	0.64	0.45	0.52	<0.51	<1.4	0.50	<0.2	3.5	1.8	0.43	0.96		0.10	0.30	<0.043	0.43	0.23	0.43
	Rb	- 0.033	0.38			0.20	0.14	0.04	0.33	0.38	0.28	<0.55	<0.1	<0.2	<0.2	<1.1	0.37	0.14		0.071	0.21	0.12	0.46	0.11	0.43
	Mo	0.64	< 0.87			0.86	1.3	0.84	0.33	<0.091	0.14	<0.70	0.50	<0.1	0.58	<1.3	0.79	0.14		0.031	0.17	0.084	0.30	0.085	0.62
	Sb	0.97	0.56			0.76	1.9	0.67	1.2	0.65	2.8	2.1	1.4	0.40	1.1	<6.5	0.78	0.14	0.10	0.031	0.61	0.30	0.26	0.34	0.48
	Cs	0.017	< 0.061			<0.079	<0.079	0.019	0.035	0.044	0.032	<0.37	<0.1	<0.1	<0.17	<9.2	0.033	<0.019		<0.012	0.016	<0.0042	<0.0042	<0.012	0.032
	Ba	2.6	1.5		2.3	2.8	<2.3	2.7	3.8	0.61	1.6		2.8	1.7	5.8	<10	3.5	1.8		0.34	0.96	<0.95	1.0	0.76	1.2
	La	0.049	<0.060			0.13	0.059	0.088	0.076	0.033	0.062	<0.31	<0.08	<0.08	<0.11	<11	0.051	0.11		<0.24	0.017	0.014	0.013	<0.24	0.049
	Ce	0.12	< 0.067	<0.022	0.090	0.18	0.096	0.16	0.13	<0.028	0.076	<0.31	0.10	<0.06	0.11	<13	0.10	0.23		< 0.0043	0.038	0.028	<0.020	0.028	0.094
	Sm	<0.01	<0.089	0.0022	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2	<0.14	<19	<0.014	<0.022		<0.0018	0.0016	<0.0057	0.0021	0.0019	<0.017
	Hf	<0.0096	<0.11		<0.023	<0.020	<0.020	0.0098	<0.044	<0.044	<0.044	<0.29	<0.1	<0.1	<0.16	<0.013	<0.029	<0.014	0.0022	< 0.0014	<0.020	< 0.0032	< 0.0055	<0.0014	<0.065
	W	<0.16	<0.086	<0.084	<0.084	<0.040	0.050	0.13	<0.027	<0.027	<0.027	<0.26	<0.06	<0.06	0.19	0.30	0.27	<0.04	0.11	<0.012	<0.10	<0.043	0.13	<0.043	<0.54
	Та	-	<0.11	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.28	<0.05	<0.05	0.034	<0.015	<0.028	<0.013	<0.0012	<0.0012	-	<0.040	<0.040	<0.0012	<0.025
	Th	< 0.0061	<0.10	<0.02	<0.02	< 0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	<0.07	< 0.07	<0.28	<3.3	<0.014	<0.013	<0.017	< 0.0032	0.0031	<0.00098	< 0.0011	<0.0032	<0.021
	Pb	2.9	3.3	1.1	6.3	4.7	3.8	3.3	9.0	8.0	5.2	9.8	8.0	1.2	4.5	2.2	4.1	1.9	2.4	1.6	3.1	2.0	3.5	2.0	3.8
	その他(Be)	-	<0.14	-	-	-	1	0.094	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Ī	-
	その他(Cd)	-	< 0.096	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.082	0.071	<0.18	-	-
炭素成分	OC1	0.15	0.25	0.18	0.33	0	0.16	0.45	0.12	0.042	0.23	0.30	<0.2	<0.2	0.33	0.49	0.65	0.29	0.13	0.033	0.046	<0.048	<0.048	0.031	0.034
	OC2	0.75	0.68	0.27	0.33	0.44	0.46	0.75	1.1	0.63	1.3	0.93	0.40	0.40	0.65	0.69	1.5	0.50	0.84	0.41	0.39	0.94	0.56	0.69	0.70
	OC3	0.54	0.53	0.25	0.22	0.50	0.42	0.67	0.65	0.49	0.76	0.49	0.50	0.40	0.55	0.61	0.67	0.36	0.34	0.20	0.32	0.48	0.22	0.29	0.21
	OC4	0.46	0.32			0.21	0.24	0.43	0.35	0.26	0.38	0.43	0.30	0.20	0.26	0.24	0.38	0.11	0.22	0.15	0.17	0.29	0.15	0.22	0.17
	Ocpyro	0.62	0.56			0.38	0.37	0.52	0.62	0.26	0.62	0.48	0.20	0.19	0.46	0.41	0.38	0.32		0.33	0.39	0.49	0.56	0.45	0.55
	EC1	1.3	1.0			0.59	0.60	0.75	1.3	0.90	1.3		0.70	0.50	0.62	0.86	0.98	0.56		0.38	0.69	0.73	0.69	0.57	0.67
	EC2	0.39	0.36			0.35	0.50	0.58	0.71	0.52	0.63	0.32	0.40	0.40	0.60	0.52	0.58	0.33	0.58	0.32	0.17	0.67	0.37	0.47	0.41
	EC3	<0.023	0			0	0	0.057	0.075	0.076	0.10		<0.05	<0.05	0.027	0.010	0.059	0.010		0.030	<0.032	0.060	0.032	0.034	0.046
	oc	2.5	2.3			1.5	1.7	2.8	2.8	1.7	3.3	2.6	1.5	1.3	2.3	2.4	3.6	1.6		1.1	1.3	2.2	1.5	1.7	1.7
	EC	1.1	0.80	0.42		0.56	0.73	0.87	1.5	1.2	1.4		0.90	0.80	0.79	0.98	1.2	0.58	0.77	0.40	0.47	0.97	0.53	0.62	0.58
	WSOC	1.1	1.4	0.55	0.47	-	-	-	0.78	0.63	1.9	1.0	-	-	1.5	-	2.3	-	-	-	-	-	-	1.1	-

衣4-1-	32 I/J2	ינוםט	ОГЛ	/ロエ (	· .													(PMZ. 5	,灰茶风	:分, 1 3	ン成分	: μg/m	無機成	方:ng/m	)
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市		相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	22.3	17.8		14.9	16.0	18.0	20.3	15.6	9.8	16.4	21.6	18.9	8.8	12.2	15.9	20.0	9.8		6.5	12.9	8.3	16.3	8.7	15.2
イオン成分	CI-	0.99	0.49		0.95	0.33	0.55	0.57	0.38	0.14	0.29	0.93	0.93	0.040	0.40	0.28	0.96	0.45		0.020	0.40	0.037	0.12	<0.055	<0.015
	NO3-	5.0	3.2		2.2	3.7	4.3	4.8	2.4	0.89	1.8	3.9	5.0	1.9	2.8	4.2	4.8	2.0		1.0	2.9	0.54	3.5	0.27	1.8
	SO42-	2.0	1.7		1.3	1.8	1.8	1.8	2.3	1.9	2.4	2.2	2.0	1.5	1.9	2.2	2.3	1.6		1.4	1.7	1.1	4.3	1.9	3.5
	Na ^T	0.094	0.094		0.039	0.067	0.086	0.064	0.085	0.066	0.12	0.078	0.090	0.041	0.034	0.060	0.084	0.050		0.022	0.13	0.021	0.068	<0.065	0.061
	NH ₄ ⁺	2.5	1.7		1.5	1.7	2.2	2.3	1.7	1.0	1.3	2.0	2.0	0.98	1.6	2.2	2.6	1.3		0.84	1.6	0.81	3.1	0.93	1.8
	K ⁺	0.15	0.19	0.030	0.050	0.16	0.12	0.095	0.066	0.064	0.10	0.10	0.12	0.053	0.041	0.080	0.12	0.060	0.061	0.052	0.087	0.028	0.081	0.058	0.069
	Mg ²⁺	0.012	0.022	<0.015	<0.015	0.0024	0.0055	0.011	<0.0038	<0.0038	0.0077	<0.0080	0.0080	0.0020	0.0085	0.010	0.015	<0.01	<0.084	<0.084	0.0050	<0.005	0.013	<0.0039	0.0076
	Ca ²⁺	0.13	0.20	0.052	0.083	0.024	0.071	0.16	0.062	<0.044	0.13	< 0.034	0.10	0.030	0.077	0.19	0.11	0.030	<0.23	<0.23	0.053	<0.045	<0.045	0.13	0.093
無機成分	Na	-	59	48	68	80	57	88	79	57	100	68	80	<30	73	72	77	59	47	45	130	58	88	65	63
	Al	130	56	77	<55	52	53	130	50	15	98	26	40	16	58	47	38	38	33	17	56	16	22	75	46
	Si	-	-	-	-	-	-	260	150	61	310	73	90	30	-	180	-	69	45	<19	-	<14	15	42	-
	K	-	150			160	95	130	110	99	160	150	100	40	73	92	120	70		58	94	74	120	120	53
	Ca	-	35			6.2	11	170	120	30	230	39	<80	<80	80	160	78	39		44	54	43	<11	140	35
	Sc	0.015	<0.14			<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	<0.56	<0.2	<0.2		0.023	<0.015	<0.028		<0.012	0.011	<0.018	<0.018	<0.012	<0.021
	Ti	6.3	4.6		ZZZ	6.6	7.0	13	7.2	2.5	12	<5.5	6.0	3.0	9.5	10	5.7	4.2		< 0.69	7.1	<1.4	<1.8	2.2	6.3
	V	2.4	0.65	0.49		1.3	1.7	2.9	4.8	3.1	5.9	3.0	3.0	1.4	2.0	5.2	5.5	0.83		1.7	0.21	3.5	1.9	0.94	1.6
	Cr	2.1	< 0.69		4.3	1.4	1.5	2.3	2.3	1.1	1.4	1.8	1.1	<0.6	1.4	1.3	4.6	0.78		<1.8	0.59	<1.6	<1.6	0.95	1.1
	Mn	14 210	9.2		15 150	11 140	11 140	13 240	9.7 160	4.1 73	13 330		12 210	2.9 60	8.8 160	12 300	23 380	5.8 86		1.6 19	11 88	2.1 <28	10 74	5.1 53	7.2 64
	Fe	0.12	0.15		<0.23	<0.11	<0.11	0.12	0.40	0.039	0.11	<0.42	<0.08	<0.08	<0.21	<0.88	0.13	0.037		<0.028	0.025	0.019	0.30	<0.028	0.34
	Ni.	2.0	7.2		<0.23	1.3	1.4	1.7	1.6	0.039	1.8	2.9	1.4	<0.08	<0.21	1.8	3.6	0.037		0.028	0.023	<1.2	<1.2	<0.36	1.2
	Cu	9.6	4.6			7.5	5.2	9.3	5.1	1.4	3.7	<7.2	7.0	3.0	<7	7.5	10	3.7		1.7	4.0	3.7	3.7	2.2	4.5
	7n	150	38			49	44	73	88	1.7	95		7.0	<20	19	34	69	22		16	45	13	39	<7.3	21
	As	0.53	0.54		0.63	0.52	0.42	0.59	0.36	0.33	0.66	0.75	0.80	0.40	0.54	<0.8	1.0	0.60		0.24	0.35	0.16	0.79	0.52	0.84
	Se	0.045	< 0.51	0.22	0.42	2.7	0.68	1.1	0.80	0.75	1.7	<1.4	1.3	0.40	2.3	2.6	5.8	0.16		0.19	0.17	0.15	0.76	0.36	0.78
	Rb	-	0.38	0.17	0.22	0.32	0.25	0.40	0.28	0.25	0.54	<0.55	0.20	<0.1	0.20	<1.1	0.44	0.22	0.17	0.12	0.21	0.15	0.33	0.22	0.26
	Мо	1.8	<0.87	0.72	2.9	1.2	2.8	1.2	0.52	0.18	0.89	1.8	1.1	<0.2	1.5	<1.3	2.0	0.30	0.19	0.14	0.48	0.18	0.99	0.44	0.48
	Sb	1.8	2.0		zzz	2.3	2.8	1.9	1.1	0.83	1.5		1.8	0.80	1.2	<6.5	2.2	1.1		0.47	1.1	0.52	1.1	0.43	0.55
	Cs	0.041	< 0.061		<0.035	<0.079	<0.079	0.043	0.033	0.028	0.095	<0.37	<0.1	<0.1	<0.17	<9.2	0.075	0.026		<0.012	0.014	<0.0042	0.029	<0.012	0.041
	Ва	4.3	3.0		4.1	4.0	3.1	5.3	3.4	0.83	2.4	3.7	5.2	3.9	5.3	<10	4.3	2.0		0.83	2.0	<0.95	2.8	1.2	1.2
	La	0.18	<0.060		0.072	0.25	0.17	0.22	0.13	0.17	0.088	0.34	0.16	<0.08	<0.11	<11	0.10	0.11		<0.24	0.029	0.031	0.078	<0.24	0.035
	Ce	0.34	0.097	0.049	0.16	0.32	0.31	0.36	0.15	0.045	0.15	0.37	0.30	<0.06	0.14	<13	0.18	0.19		0.019	0.058	0.050	0.11	0.035	0.069
	Sm	<0.01	<0.089		<0.0019	< 0.035	<0.035	<0.013 0.020	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2 <0.1	<0.14	<19	<0.014 <0.029	<0.022		<0.0018	0.0030	<0.0057	0.0015 <0.0055	0.0039	<0.017 <0.065
	HT	0.029 <0.16	<0.11	<0.023 <0.084	<0.023 0.091	0.022	<0.020 0.12	0.020	<0.044 0.030	<0.044 <0.027	<0.044 0.10	<0.29 <0.26	<0.1 0.090	<0.1	<0.16 0.18	<0.013 0.17	0.029	<0.014 0.070		<0.0014 0.020	<0.020 <0.10	<0.0032 0.049	0.0055	<0.0014 <0.043	0.59
	Ta	- \0.10	<0.080		<0.031	<0.028	<0.028	0.0055	<0.030	0.027	<0.027	<0.28	<0.090	<0.05	<0.034	<0.015	<0.028	<0.013		<0.0012	-	<0.049	<0.040	<0.043	<0.025
	Th	0.0072	<0.10	<0.02	<0.023	<0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	<0.07	<0.07	<0.28	<3.3	<0.020	<0.013		<0.0012	0.0051	<0.00098	0.0013	<0.0012	<0.021
	Pb	7.3	6.6		4.7	8.3	6.4	7.8	7.5	4.0	9.1	21	10	4.0	4.0	6.5	9.3	5.0		3.0	2.9	2.9	8.2	4.9	3.8
	その他(Be)	-	<0.14	_	-	-	-	0.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	0.23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	0.11	0.11	0.20	-	-
炭素成分	OC1	0.19	0.19	0.30	0.52	0.30	0.30	0.66	0.15	0.060	0.082	0.34	0.20	<0.2	0.37	0.58	0.58	0.36	0.23	0.076	0.12	<0.048	<0.048	0.086	0.076
	OC2	1.4	1.0	0.44	0.65	1.0	0.97	0.94	1.4	0.87	1.1	1.4	0.90	0.60	0.86	1.0	1.6	0.68	1.3	0.79	0.67	1.0	0.94	0.86	0.93
	OC3	1.1	1.1	0.58	0.73	1.1	0.99	1.0	0.85	0.65	0.73	0.99	1.0	0.50	0.98	0.85	1.1	0.52	0.65	0.39	0.75	0.46	0.41	0.33	0.27
	OC4	0.89	0.57	0.40	0.43	0.61	0.58	0.66	0.48	0.42	0.34	1.0	0.60	0.30	0.42	0.52	0.62	0.28	0.40	0.26	0.34	0.31	0.26	0.24	0.21
	Ocpyro	1.0	0.90		0.54	0.51	0.66	0.72	0.93	0.42	1.1	0.55	0.40	0.30	0.63	0.60	0.43	0.52		0.58	0.57	0.59	0.87	0.64	0.80
	EC1	2.4	2.0		1.3	1.7	1.7	1.3	2.2	1.6	1.8	3.3	1.7	0.80	0.88	1.7	1.8	1.1	1.4	0.66	1.4	0.84	1.2	0.87	0.98
	EC2	0.37	0.38		0.50	0.56	0.62	0.91	0.78	0.51	0.88	0.41	0.50	0.50	0.84	0.53	0.40	0.26		0.58	0.28	0.72	0.61	0.38	0.67
	EC3	<0.023	0		0	0.015	0	0.073	0.095	0.094	0.17	<0.024	<0.05	<0.05	0.035	0.030	<0.024	0.020		0.069	<0.032	0.048	0.034	<0.034	0.059
	OC	4.6	3.8		2.9	3.5	3.5	4.0 1.6	3.8	2.4	3.4	4.3	3.1 1.8	1.9	3.3	3.6	4.3	2.4 0.86		2.1	2.5	2.4	2.5 0.97	2.2	2.3
	EC WSOC	1.8	1.5		1.3	1.8	1.7	1.6	2.1 1.9	1.8 2.1	1.8	3.2 1.8	1.8	1.0	1.1 1.9	1.7	1.8	U.86 -	1.3	0.73	1.1	1.0	0.97	0.61	0.91
	**300	2.0	2.5	0.08	1.1	-	_	_	1.9	۷.۱	2.3	1.8	-	_	1.9	-	2.0	_	1 - 1	_	-		_	0.1	- 1

_表4-1-	O3 1712	ノロル	51月2	8日まで	<i>.</i>													(PM2.5	,灰素放	分,イオ	ン成分	: μg/m	無機以	分:ng/m	-)
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	20.7	24.2	12.0	15.6	13.0	14.0	14.7	18.2	12.9	15.7	20.8	17.2	8.2	11.7	11.3	15.0	8.3	15.3	5.5	19.1	11.0	17.0	11.7	17.4
イオン成分	CI-	1.0	0.70	0.079	0.77	0.22	0.38	0.31	0.24	0.21	0.19	0.61	0.33	0.080	0.24	0.15	0.34	0.27	0.078	0.027	0.35	0.060	0.037	<0.055	0.031
	NO3-	4.1	4.5	0.55	1.5	1.9	2.0	2.3	2.0	0.89	1.1	3.6	2.8	1.1	1.9	2.0	2.7	1.1	3.0	0.47	3.9	0.96	1.0	0.32	0.78
	SO42-	2.8	2.3	2.8	2.6	3.2	2.9	2.4	2.3	2.4	2.2	2.9	2.0	1.5	1.8	2.4	2.5	1.7	2.0	1.4	3.3	1.7	6.1	2.9	5.5
	Na ⁺	0.098	0.047	0.055	0.064	0.087	0.13	0.073	0.083	0.085	0.061	0.082	0.098	0.027	0.028	0.050	0.063	0.030	0.025	0.026	0.12	0.033	0.098	< 0.065	0.10
	NH. ⁺	2.7	2.5	1.3	1.8	1.8	1.6	1.7	1.6	1.2	1.0	2.0	1.7	0.76	1.3	1.4	1.8	1.1	1.6	0.68	2.4	1.1	2.7	1.3	2.3
	14114	0.14	0.26		0.063	0.22	0.15	0.070	0.072	0.085	0.066	0.10	0.096	0.048	0.058	0.060	0.078	0.050		0.054	0.12	0.045	0.11	0.085	0.13
	K 2±																								
	Mg ²	0.010	0.0094	<0.015	<0.015	0.0045	0.0058	0.0089	<0.0038	<0.0038	0.0092	<0.0080	0.0080	0.0020	<0.0083	<0.01	0.012	<0.01	<0.084	<0.084	0.0084	<0.005	0.012	<0.0039	0.012
	Ca ²⁺	0.059	<0.059	0.030	0.067	0.020	0.085	0.13	<0.044	<0.044	0.15	0.035	0.13	0.060	0.088	0.080	0.11	0.030	<0.23	0.29	0.060	<0.045	<0.045	0.098	0.081
無機成分	Na	-	65	76	92	84	91	91	100	73	97	74	120	<30	61	59	61	46	71	41	140	65	190	100	120
	Al	79	69	<55	<55	37	64	120	73	16	120	38	40	30	84	34		39		21	66	25	100	14	66
	Si	-	-	-	-	-	-	250	260	73	330		80	50	-	140		72		25	-	<14	40	35	-
	K	-	200	82	110	120	110	100	140	140	130	120	90	40	79	73	74	61	120	51	130	86	190	140	110
	Ca	-	67		<170	2.4	19	150	170	32	320	52	<80	<80	52	85	68	38		<24	86	22	680	100	45
	Sc	0.018	<0.14	<0.012	<0.012	<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	< 0.56	<0.2	<0.2	<0.092	<0.022	0.016	<0.028	<0.012	<0.012	0.013	<0.018	<0.018	<0.012	<0.021
	Ti	9.0	5.9		zzz	3.7	10	11	9.7	3.6	13	<5.5	8.0	10	11	8.6	5.9	5.1	3.8	1.2	4.2	<1.4	<1.8	2.4	6.8
	V	2.6	0.60		0.66	0.89	0.85	0.77	9.7	3.7	8.4	7.3	2.9	0.80	1.6	2.1	9.6	0.95	0.51	0.46	0.55	3.5	1.3	2.5	1.3
	Cr	1.4	1.0		3.3	0.76	1.1	<1.6	4.0	< 0.61	0.78	2.1	0.70	<0.6	1.6	1.0	3.3	1.1		<1.8	0.77	<1.6	<1.6	0.78	0.67
	Mn	12	13		10	6.3	7.6	7.4	16	<2.7	8.4		9.4	4.6	16	6.3	16	4.5		1.3	11	3.1	21	5.4	6.3
	Fe	280	120		120	78	130	150	270	67	200		180	60	190	190	190	76		20	100	<28	46	46	61
	Co	<0.074	<0.14		<0.23	<0.11	0.13	0.098	0.42	0.039	0.080	<0.42	<0.08	<0.08	<0.21	<0.88	0.11	0.036		<0.028	0.044	0.026	20	<0.028	0.048
	Ni	<1.7	1.0		0.86	0.85	3.1	0.64	2.9	1.3	2.0		1.1	<0.5	<0.29	1.1	4.2	0.82	< 0.36	< 0.36	0.51	<1.2	25	0.65	0.30
	Cu	6.6	4.5		3.8	3.8	6.8	5.1	8.2	5.5	3.5		7.0	3.0	<7	7.7		3.0		1.1	5.4	3.2	4.1	2.6	4.3
	Zn	130	60		36	47	43	27	51	23	76		70	20	14	17		8.9		<7.3	32	<7.0	54	<7.3	24
	As	0.62	0.54	0.62	0.71	0.52	0.67	0.60	0.59	0.43	0.59	0.73	1.1	0.50	<0.45	<0.8	0.74	0.35	0.27	0.21	0.72	0.23	1.6	0.63	1.7
	Se	0.11	0.81	0.60	0.80	1.4	0.93	0.57	1.2	0.72	< 0.51	<1.4	1.2	0.40	1.7	5.7	2.4	0.40		0.13	0.49	0.12	1.2	0.52	1.2
	Rb	-	0.52		0.28	0.24	0.29	0.29	0.40	0.26	0.36	<0.55	0.20	<0.1	0.24	<1.1	0.20	0.15		0.096	0.33	0.18	0.50	0.27	0.47
	Мо	1.7	1.1		2.1	0.77	1.3	0.45	0.67	0.20	0.40	1.2	0.80	<0.2	1.4	<1.3	1.2	0.24		0.094	0.51	0.23	0.45	0.30	0.32
	Sb	8.8	3.7		ZZZ	1.4	1.8	2.0	1.5	1.2	0.93	10	1.6	0.70	1.2	<6.5	4.0	0.85		0.29	1.2	0.61	0.87	0.64	0.78
	Cs	0.043	< 0.061		<0.035	<0.079	<0.079	0.026	0.042	0.020	0.029	<0.37	<0.1	<0.1	<0.17	<9.2	0.020	<0.019		<0.012	0.027	<0.0042	0.018	<0.012	0.057
	Ва	4.6	3.6		3.5	<2.3	<2.3	4.7	5.2	1.2	2.3	4.2	7.3	3.1	6.1	<10	3.7	1.9		0.74	2.2	2.4	2.2	1.8	1.8
	La	0.12	0.072		0.075	0.24	0.30	0.15	0.12	0.21	0.089	<0.31	0.17	<0.08	<0.11	<11	0.076	0.091		<0.24	0.047	0.028	0.074	<0.24	0.073
	Ce	0.25	0.17	0.036	0.11	0.22	0.58	0.29	0.19	0.056	0.12	<0.31	0.40	<0.06	0.17	<13	0.17	0.17		0.018	0.074	0.044	0.077	0.058	0.10
	Sm	<0.01	<0.089		0.0032	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2	<0.14	<19	<0.014	<0.022		<0.0018	0.0032	<0.0057	0.0051	<0.0018	<0.017
	Hf	0.015	<0.11		<0.023	<0.020	<0.020	0.016	<0.044	<0.044	<0.044	<0.29	<0.1	<0.1	<0.16	<0.013	0.048	<0.014	0.0042	<0.0014	<0.020	<0.0032	<0.0055	0.0035	<0.065
	W	<0.16	<0.086	<0.084	<0.084	<0.040	0.12	0.10	0.036	<0.027	<0.027	<0.26	0.070	<0.06	0.19	0.16	0.81	0.050	0.19	<0.012	<0.10	0.077	0.21	0.054	<0.54
	Та	-	0.17		<0.025	<0.028	<0.028	0.0047	<0.027	<0.027	<0.027	0.58	<0.05	<0.05	<0.034	<0.015	<0.028	<0.013		<0.0012	-	<0.040	<0.040	<0.0012	<0.025
	Th	<0.0061	<0.10		<0.02	<0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	<0.07	<0.07	<0.28	<3.3	<0.014	<0.013		<0.0032	0.0067	<0.00098	0.0030	<0.0032	<0.021
	Pb	11	9.5		5.3	6.1	6.0	5.3	11	9.9	6.6	13	14	4.3	5.7	3.8	4.5	4.1	3.7	2.7	5.0	5.0	12	6.6	9.8
	その他(Be)	-	<0.14		-	-	-	0.18	-	-	-	-	-	-	-	-	-		-	-	-	_	-	-	-
	その他(Cd)	-	0.20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.15	0.15	0.29	-	-
炭素成分	OC1	0.17	0.31	0.25	0.63	0	0.23	0.66	0.086	<0.04	<0.04	0.36	0.20	<0.2	0.39	0.74	0.54	0.38		0.075	0.089	<0.048	<0.048	0.13	0.034
	OC2	1.4	1.4		0.70	0.83	0.93	1.2	1.5	1.0	0.97	1.5	0.90	0.70	0.98	0.97	1.6	0.67	1.6	0.69	0.82	1.3	0.99	1.2	1.0
	OC3	1.1	1.3		0.58	0.68	0.81	1.0	0.80	0.73	0.89	1.0	0.80	0.60	0.79	0.81	0.94	0.48		0.32	0.85	0.57	0.36	0.46	0.31
	OC4	0.85	0.79		0.43	0.39	0.48	0.64	0.41	0.41	0.48		0.60	0.40	0.44	0.35	0.57	0.21	0.44	0.25	0.32	0.36	0.25	0.29	0.23
	Ocpyro	1.1	1.3		0.77	0.64	0.70	0.84	1.1	0.41	1.4		0.40	0.30	0.67	0.62	0.55	0.51	1.1	0.46	0.87	0.78	1.0	0.90	0.76
	EC1	2.6	2.8		1.5	1.2	1.6	1.4	2.3	2.2	2.1		1.8	0.80	1.0	1.3	1.6	0.90		0.55	1.8	1.2	1.5	1.4	1.4
	EC2	0.29	0.48		0.38	0.53	0.57	0.82	0.83	0.57	0.86	0.38	0.60	0.60	0.84	0.62	0.41	0.34		0.48	0.38	0.90	0.50	0.51	0.51
	EC3	<0.023	0.033			0	0.015	0.077	0.12	0.10	0.15		<0.05	<0.05	0.053	0.030	<0.024	0.030		0.057	<0.032	0.048	0.036	<0.034	0.027
	oc	4.6	5.1		3.1	2.5	3.2	4.3	3.9	2.6	3.7	4.4	3.0	2.1	3.3	3.5	4.2	2.3	4.2	1.8	2.9	3.0	2.6	3.0	2.3
	EC	1.8	2.0		1.1	1.1	1.5	1.5	2.2	2.5	1.7		1.9	1.0	1.2	1.3	1.5	0.76	1.7	0.63	1.3	1.4	1.0	1.0	1.2
	WSOC	2.0	3.4	0.88	1.2	-	-	-	2.1	2.5	2.2	1.7	-	-	2.4	-	2.6	-	-	-	-	-	-	2.1	-

20.1		0 11 73	2.,,,_																			,		-	
	ì体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査均	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	21.8	24.7	15.0	22.8	20.0	24.0	23.3	27.3	16.8	24.3	24.5	26.8	13.9	19.6	22.7	27.5	15.0	20.9	11.4	23.2	13.7	21.8	15.3	18.8
イオン成分	CI-	0.45	0.81	0.079	0.77	0.77	0.62	0.85	0.50	0.22	0.55	0.38	0.70	0.15	0.67	0.42	0.73	0.19	0.15	0.076	0.40	0.036	0.29	<0.055	<0.015
1-3 = 19073	NO3-	3.1	4.0		1.9	2.6	3.2	3.7	3.5	1.2	2.6	3.5	4.7	2.1	3.4	4.9	5.6	2.6	3.9	1.5	5.4	1.2	2.2	0.42	0.67
	SO42-	3.4	4.6			5.2	4.3	3.7	3.8			4.0	2.9	3.1		4.7	4.5	3.5	2.8		5.1	2.4	5.3	3.7	3.7
	5042-				3.9					3.4	4.8				3.6					2.6					
	Na [⁺]	0.087	0.095	0.058	0.12	0.13	0.12	0.087	0.11	0.076	0.13	0.093	0.12	0.062	0.064	0.10	0.15	0.080	0.037	0.043	0.11	0.026	0.088	<0.065	0.065
	NH₄ ⁺	2.2	3.1	1.9	2.3	2.9	2.9	2.8	2.4	1.8	2.7	2.3	2.7	1.8	2.4	3.4	3.4	2.4	2.3	1.5	3.4	1.5	2.9	1.7	1.5
	K ⁺	0.16	0.38	0.097	0.15	0.20	0.18	0.14	0.13	0.088	0.12	0.13	0.17	0.094	0.11	0.13	0.17	0.11	0.12	0.097	0.16	0.056	0.18	0.13	0.14
	2+	0.012	0.015	<0.015	<0.015	0.0068	0.0079	0.013	<0.0038	<0.0038	<0.0038	<0.0080	0.016	0.0060	0.0095	0.010	0.033	<0.01	<0.084	<0.084	0.0091	<0.005	0.013	<0.0039	<0.0073
	Mg																								
	Ca ²⁺	0.045	0.081	0.026	0.081	0.034	0.092	0.15	0.070	<0.044	0.33	<0.034	0.11	0.050	0.096	0.24	0.20	0.040	<0.23	<0.23	0.053	<0.045	<0.045	0.059	0.027
無機成分	Na	-	92	73	130	100	110	120	170	100	150	83	130	60	100	110	110	81	60	83	120	62	140	91	140
	Al	85	55	<55	<55	59	74	160	88	36	140	32	60	40	54	81	54	61	70	17	66	<15	48	20	90
	Si	-	-	-	-	-	-	320	260	62	400	130	130	80	-	240	-	110	92	<19	-	<14	<12	35	-
	K	_	250	120	200	180	240	180	260	170	210	150	170	80	130	150	160	110	170	120	170	130	290	210	170
	Ca	_	47	<170	<170	7.5	9.6	200	190	32	460	41	<80	<80	40	230	150	53	76	<24	71	<11	45	50	66
	Sc	0.022	<0.14		<0.012	<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	<0.56	<0.2	<0.2	<0.092	0.031	<0.015	<0.028		<0.012	0.013	<0.018	<0.018	<0.012	
	T:	7.5	4.5			6.4	5.4	15	13	3.5	16	<5.5	9.0	5.0	17	12	7.2	6.0	4.1	1.4	5.8	<1.4	<1.8	1.6	9.3
	11 V	1.4	0.89	ZZZ	ZZZ			1.3	11					0.90	1.7	11	11	1.2	0.64	1.4					
	V			1.1	0.89	1.2	1.2			6.3	14	2.5	1.5							1.2	0.96	6.3	2.3	3.1	2.3
	Cr	0.86	0.76		1.9	2.9	1.0	<1.6	9.4	1.3	2.0	1.8	1.3	<0.6	3.4	2.5	5.4	1.6	<0.17	<1.8	0.68	<1.6	<1.6	1.5	1.6
	Mn	12	11	3.6	13	9.4	13	13	18	6.0	20	12	14	6.9	14	21	28	8.0	5.4	3.8	11	3.6	11	6.3	11
	Fe	170	100	79	130	120	140	220	250	100	480	140	230	80	190	320	450	110	76	33	110	<28	79	45	94
	Со	<0.074	<0.14		<0.23	<0.11	<0.11	0.10	1.9	0.15	0.36	<0.42	<0.08	<0.08	<0.21	<0.88	0.15	0.055	<0.028	<0.028	0.053	0.047	0.38	<0.028	0.081
	Ni	<1.7	0.65	<0.85	<0.85	1.1	0.88	1.1	3.1	2.3	4.7	1.4	1.1	<0.5	0.66	4.0	4.9	1.0	< 0.36	< 0.36	0.63	1.8	1.3	0.91	0.92
	Cu	7.3	4.8	1.8	4.2	5.2	6.8	8.5	7.6	4.5	6.4	<7.2	11	3.0	24	14	12	4.3	6.9	2.7	5.1	3.8	5.7	4.7	6.3
	Zn	130	46	31	47	53	110	73	80	27	130	30	80	20	12	61	86	28	9.0	<7.3	39	<7.0	72	<7.3	50
	As	1.6	1.4	1.1	1.0	1.1	1.6	1.1	0.96	0.79	0.98	1.0	1.2	0.70	1.2	<0.8	1.4	1.0	0.46	0.61	1.1	0.44	1.5	1.0	1.9
	Se	0.11	2.6	0.97	1.2	1.4	1.5	0.86	1.5	0.79	1.5	<1.4	1.1	1.3	5.4	5.5	2.7	3.9	0.37	0.51	0.85	0.37	1.3	0.85	1.5
	Rb	-	0.66	0.35	0.50	0.42	0.50	0.50	0.61	0.44	0.63	< 0.55	0.30	<0.1	0.43	<1.1	0.55	0.31	0.26	0.22	0.43	0.23	0.54	0.37	0.59
	Мо	1.0	< 0.87	0.71	1.1	1.4	1.0	1.0	1.4	0.67	1.0	1.3	1.3	0.30	0.88	2.1	2.1	0.49	0.23	0.19	0.62	0.56	1.0	0.38	0.88
	Sb	4.9	3.0	ZZZ	ZZZ	2.4	4.2	1.9	2.2	1.2	1.1	2.9	2.8	1.0	1.6	<6.5	1.9	1.1	0.70	0.75	1.3	0.79	1.5	0.98	1.5
	Cs	0.039	< 0.061	<0.035	0.045	<0.079	<0.079	0.045	0.064	0.054	0.081	< 0.37	<0.1	<0.1	<0.17	<9.2	0.063	0.038	<0.012	<0.012	0.037	<0.0042	0.044	0.017	0.063
	Ra	3.6	3.0	1.9	4.3	4.1	2.8	6.1	5.2	1.4	4.3	3.5	7.6	3.0	5.6	<10	7.5	2.8	3.8	1.1	2.4	1.0	1.7	1.9	3.1
	l a	0.12	<0.060		0.084	0.13	0.18	0.20	0.45	0.24	0.19	<0.31	0.25	<0.08	<0.11	<11	0.16	0.12	<0.24	<0.24	0.052	0.030	0.082	<0.24	0.096
	Co	0.23	0.096	0.046	0.15	0.22	0.30	0.44	0.46	0.11	0.26	<0.31	0.40	0.10	0.12	<13	0.32	0.21	0.081	0.039	0.082	0.050	0.13	0.061	0.17
	Sm	<0.01	<0.089	0.0058	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.49	<0.40	<0.2	<0.14	<19	<0.014	<0.022	0.0021	<0.0018	0.0039	<0.0057	0.0046	0.0035	<0.017
	OIII	0.018	<0.089	<0.0038	0.024	0.023	<0.033	0.020	<0.027	<0.027	<0.027	<0.49	<0.1	<0.1	<0.14	<0.013	<0.014	<0.022	0.0021	< 0.0014	<0.020	<0.0037	<0.0055	0.0033	<0.017
	\/\	0.018	<0.086	<0.023	<0.024	0.023	0.020	0.020	0.14	0.14	0.14	<0.26	0.13	<0.06	0.38	0.69	1.2	0.014	0.0034	0.025	<0.020	0.0032	0.0033	0.0010	<0.54
	VV T.	- 0.51	<0.080	<0.084	<0.084	<0.073	<0.038	0.0045	<0.027	< 0.027	<0.027	<0.28	< 0.13	<0.05	<0.034	< 0.015	<0.028	<0.013	<0.0012	<0.0012	- \0.10	<0.040	<0.040	<0.0012	<0.025
	Ti Ti																					<0.00098			
	In Di	0.016	<0.10	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	<0.07	<0.07	<0.28	<3.3	<0.014	<0.013	<0.017	<0.0032	0.0074		0.0022	<0.0032	<0.021
	Pb	12	14	6.0	9.4	17	13	9.1	14	8.5	12	11	23	6.5	11	10	11	7.5	5.1	9.0	8.1	8.7	15	8.9	11
	その他(Be)	-	<0.14	-	-	-	-	0.43	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
H + A / A	その他(Cd)	-	0.38	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-	-	0.23	0.16	0.51	-	
炭素成分	OC1	0.14	0.30	0.26	0.94	0.31	0.43	0.75	0.17	<0.04	0.11	0.37	0.30	<0.2	0.43	0.93	0.51	0.45	0.21	0.067	0.076	<0.048	<0.048	0.039	0.039
	OC2	1.6	1.3	0.57	1.2	1.1	1.4	1.4	2.0	1.0	1.5	1.7	1.2	0.80	1.1	1.3	2.2	0.99	2.0	1.1	0.89	1.4	1.2	1.5	1.4
	OC3	1.1	1.1	0.37	1.2	0.90	1.3	1.2	1.2	0.68	1.0	1.1	1.3	0.80	0.86	1.0	1.3	0.60	1.1	0.53	0.88	0.62	0.58	0.57	0.57
	OC4	0.94	0.76	0.39	0.79	0.66	0.97	0.76	0.59	0.37	0.52	1.3	0.90	0.50	0.54	0.68	0.84	0.38	0.50	0.35	0.35	0.36	0.34	0.34	0.35
	Ocpyro	1.4	1.4		1.3	0.93	1.1	1.2	1.6	0.37	1.7	0.78	0.70	0.70	0.93	1.0	0.73	0.88	1.6	0.94	0.95	0.91	1.3	1.2	1.3
	EC1	2.8	2.8	1.3	3.0	2.0	2.6	2.2	4.2	2.4	3.9	3.2	2.9	1.5	1.7	2.4	3.2	1.6	2.5	1.3	2.1	1.4	2.1	1.7	1.9
	EC2	0.35	0.44	0.31	0.52	0.36	0.53	0.65	0.65	0.61	0.83	0.34	0.40	0.50	0.74	0.43	0.54	0.39	1.1	0.66	0.55	0.81	0.72	0.71	0.70
	EC3	<0.023	0.027	0.010	0.040	0	0.020	0.071	0.10	0.10	0.14	<0.024	<0.05	< 0.05	0.066	0.040	0.037	0.030	0.093	0.045	0.058	0.058	<0.022	0.038	<0.021
	OC	5.2	4.9	2.4	5.4	3.9	5.2	5.3	5.6	2.4	4.8	5.3	4.4	3.1	3.9	4.9	5.6	3.3	5.4	3.0	3.1	3.3	3.4	3.6	3.7
	EC	1.8	1.9	0.84	2.3	1.4	2.1	1.7	3.4	2.7	3.2	2.8	2.6	1.3	1.6	1.9	3.0	1.1	2.1	1.1	1.8	1.4	1.5	1.2	1.3
	WSOC	2.1	3.5		2.1			/	2.0	2.5	3.0		-	- 1.0	2.8		3.3		-		- 1.0		-	2.5	
	11300	۷.۱	3.0	1.0	4.1				2.0	۵.ن	5.0	۷.۵			۷.0		0.0							۵.5	

表4-1-	55 1月2	9 1 11	りり月く	り日まで	Z.													(PM2.5	,灰素成	分,イオ	-ン成分	: μg/m	無機成	分:ng/m	ı")
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	6.5	ZZZ	13.2	12.5	17.0	9.2	9.3	7.1	2.8	11.5	5.1	7.6	7.9	10.2	9.2	8.0	11.2	25.9	5.4	9.0	6.6	9.8	4.3	6.3
イオン成分	CI-	0.15	ZZZ	0.14	0.42	0.92	0.13	0.37	0.21	< 0.096	0.85	0.11	0.19	0.20	0.40	0.32	0.19	0.47	0.42	0.13	0.25	0.032	0.093	<0.055	<0.015
	NO3-	0.64	ZZZ	3.8	3.1	5.1	2.5	2.4	0.90	0.24	1.3	0.98	1.5	2.0	2.9	2.7	1.8	3.2	8.4	1.2	3.0	0.80	1.4	0.60	0.70
	SO42-	0.88	ZZZ	1.8	1.6	2.2	1.7	1.4	1.6	0.90	2.5	1.2	1.3	1.4	1.5	1.7	1.3	1.7	2.5	1.0	1.2	0.60	1.1	0.81	0.59
	Na ⁺	0.035	ZZZ	0.021	0.016	0.041	0.043	0.026	0.052	<0.04	0.11	0.038	0.027	0.020	<0.021	0.030	< 0.063	0.030	<0.021	< 0.021	0.019	<0.0068	0.024	< 0.065	<0.014
	NH₄⁺	0.66	ZZZ	1.9	1.7	2.5	1.9	1.5	0.97	0.44	1.9	0.67	0.91	1.3	1.6	1.5	1.1	1.7	3.6	0.86	1.4	0.66	1.1	0.47	0.45
	K ⁺	0.027	ZZZ	0.046		0.14	0.055	0.047	0.057	0.016	0.040	0.037	0.042	0.052	0.041	0.050	0.043	0.070		0.048	0.058	0.025	0.092	0.071	0.027
	N 2+	<0.0014		<0.015	<0.015	0.0028	0.0019	<0.0045	<0.0038	<0.0038	<0.0038	<0.0080	<0.001	<0.001	0.012	<0.01	0.0043	<0.01	<0.084	<0.084	<0.0018	<0.005	<0.005	<0.0039	<0.0073
	Mg ⁻		ZZZ																						
- 100 B 41	Ca ²	<0.027	ZZZ	<0.017	<0.017	0.0060	0.012	<0.057	<0.044	<0.044	0.061	0.15	0.020	0.020	<0.021	0.030	0.021	0.010		<0.23	<0.015	<0.045	<0.045	<0.046	<0.016
無機成分	Na		ZZZ	<21	<21	44	55	35	36	8.5	81	10	<30	<30	31	35	24	32		<12	14	11	35	31	17
	Al	54	ZZZ	<55	<55	13	25	11	15	<9.5	14		11	15	23	<16	2.9	13		<7.8	6.6	<15	<9.2	<2.7	<6.9
	Si	-	-	-	-	-	-	35	54	6.9	49		26	30		27	-	15		<19	-	<14	<12	<3.3	-
	K		ZZZ	54	66	110	68	54	79	14	84		30	40	51	48	35	63		42	63	42	150	66	25
	Ca	-	ZZZ	<170	<170	7.8	21	14	18	<7.1	41		<80	<80	37	29	<9.3	25		<24	<9.4	<11	110	<17	12
	5c	0.018	ZZZ			<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	< 0.56	<0.2	<0.2		<0.022		<0.028		<0.012	<0.0061	<0.018	<0.018	<0.012	
	lı	3.7	ZZZ	ZZZ	ZZZ	2.8	2.8	2.2	3.2	<0.85	3.2	<5.5	1.0	3.0	2.6	1.8	0.79	2.0		< 0.69	<3.6	<1.4	<1.8	<0.72	3.0
	V	0.63	ZZZ	0.48	0.37	0.70	0.80	0.47	1.1	0.31	2.1	<0.46	0.50	0.50	0.68	2.7	2.7	0.58		0.57	0.20	0.64	0.86	1.2	0.48
	Gr	<0.39	ZZZ	<1.1	<1.1	2.4	0.46	<1.6 2.1	2.6 16	< 0.61	0.93	<0.41	<0.6	<0.6	0.47	1.1	0.36	0.58		<1.8	0.35	<1.6	<1.6 3.4	0.93	1.9
	Mn	2.1 44	ZZZ	4.4 300	6.9	7.5 64	3.3	2.1	230	<2.7	15 380	0.72 8.3	3.0 50	2.2 30	2.8	4.8 53	3.3	2.7 36		1.0 6.0	3.2 27	2.1 <28	3.4	9.2	2.6
	Fe	<0.074	ZZZ	<0.23	36 <0.23	0.14	<0.11	0.015	0.028	9.9	0.053	<0.42	<0.08	<0.08	33 <0.21	<0.88		0.015		<0.028	0.014	<0.017	0.099	<0.028	16 0.021
	CO NI:	99	ZZZ	<0.23	<0.23	1.0	0.65	<0.27	0.028	0.022	1.3	<0.42	<0.08	<0.08	0.63	1.4	0.59	0.015		<0.028	0.014	<1.2	<1.2	<0.028	0.021
	NI O	53	ZZZ	1.1	1.9	3.4	1.9	1.5	<1.1	<1.1	3.8	<7.2	2.0	2.0	57	2.8	0.89	2.0		0.36	1.3	3.0	2.7	2.2	3.0
	Cu Z-	<40	ZZZ	70		3.4	110	1.5	53	2.0	3.8		<2.0 <20	<20	<5.4	2.8 19	20	16		<7.3	6.9	<7.0	89	10	13
	As	0.68	ZZZ	0.62		0.96	0.89	0.64	0.38	<0.13	0.89	<0.47	0.80	0.70	0.85	<0.8	0.37	0.87		0.20	0.19	0.097	0.21	0.14	
	Se.	<0.03	ZZZ	0.45	0.72	0.53	<0.20	0.36	0.63	<0.13	0.70	<1.4	0.20	0.50	<0.76	<1.1	0.37	0.34	0.39	0.19	0.14	0.061	0.25	0.14	0.20
	Rb	-	ZZZ	0.14	0.12	0.23	0.17	0.14	0.52	<0.12	0.49	<0.55	<0.1	<0.1	0.21	<1.1	0.11	0.17		0.074	0.14	0.063	0.16	0.13	0.061
	Mo	0.57	ZZZ	0.91	0.46	1.6	0.24	0.21	0.58	<0.091	0.61	<0.70	<0.2	0.20	0.43	<1.3	0.23	0.33	0.30	0.15	0.16	0.16	0.63	0.21	0.38
	Sb	<0.62	ZZZ	ZZZ	ZZZ	1.9	1.2	0.62	0.52	0.042	0.74	<0.78	0.60	0.60	0.82	<6.5	0.55	0.77	0.77	0.23	0.23	0.40	0.50	0.64	0.59
	Cs	0.014	ZZZ		< 0.035	<0.079	<0.079	0.010	0.075	<0.019	0.091	<0.37	<0.1	<0.1	<0.17	<9.2	<0.015	<0.019		<0.012	<0.0077	<0.0042	<0.0042	<0.012	<0.013
	Ва	0.67	ZZZ	0.76	0.70	<2.3	<2.3	0.71	0.64	<0.07	0.63	<0.37	0.80	0.80	1.5	<10	0.64	1.1		<0.29	0.61	<0.95	1.4	0.31	0.96
	La	0.032	ZZZ	0.015	0.042	0.058	<0.038	0.050	0.11	<0.017	0.19	<0.31	<0.08	<0.08	<0.11	<11	0.019	0.039	<0.24	<0.24	0.0065	0.015	0.031	<0.24	<0.024
	Ce	0.069	ZZZ	<0.022	0.081	0.10	0.055	0.11	0.042	<0.028	0.087	<0.31	0.060	< 0.06	0.065	<13	0.048	0.060	0.027	< 0.0043	0.014	0.028	0.043	0.0050	0.030
	Sm	<0.01	ZZZ	< 0.0019	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2	<0.14	<19	<0.014	<0.022	<0.00072	<0.0018	< 0.00076	< 0.0057	<0.00097	<0.0018	<0.017
	Hf	< 0.0096	ZZZ	<0.023	<0.023	<0.020	<0.020	< 0.0066	<0.044	<0.044	<0.044	<0.29	<0.1	<0.1	< 0.16	<0.013	<0.029	<0.014	<0.0014	< 0.0014	<0.020	<0.0032	< 0.0055	< 0.0014	<0.065
	W	<0.16	ZZZ	0.11	<0.084	0.10	0.055	0.057	0.032	<0.027	0.048	<0.26	0.080	<0.06	0.13	0.13	0.082	0.080	0.16	0.034	<0.10	0.071	0.20	0.083	<0.54
	Та	1	ZZZ	< 0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	< 0.027	<0.28	<0.05	<0.05	< 0.034	<0.015	<0.028	<0.013	<0.0012	< 0.0012	ı	<0.040	<0.040	<0.0012	<0.025
	Th	<0.0061	ZZZ	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	<0.07	<0.07	<0.28	<3.3	<0.014	<0.013	<0.017	< 0.0032	<0.0010	<0.00098	<0.0011	<0.0032	<0.021
	Pb	2.4	ZZZ	2.6	2.9	5.8	4.5	2.8	6.8	<1.5	15	1.1	8.8	4.7	6.3	5.5	2.3	3.8	7.8	2.0	1.9	2.9	8.1	5.5	2.0
	その他(Be )	-	ZZZ	-	-	-	-	0.13	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_
	その他(Cd)	-	ZZZ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.067	0.085	<0.18	-	-
炭素成分	OC1	<0.046	ZZZ	0.23	0.30	0	0	0.19	<0.04	<0.04	0.068	0.19	<0.2	<0.2	<0.0046	0.16	0.060	0.22	0.092	<0.020	<0.043	<0.048	<0.048	<0.025	<0.020
	OC2	0.45	ZZZ	0.44	0.52	0.71	0.50	0.73	0.59	0.14	0.92	0.54	0.30	0.40	0.60	0.62	0.81	0.61	1.5	0.44	0.34	0.73	0.67	0.49	0.71
	OC3	<0.19	ZZZ	0.31	0.39	0.58	0.41	0.44	0.35	0.20	0.50	0.14	0.20	0.70	0.77	0.35	0.33	0.47		0.25	0.28	0.43	0.55	0.29	0.42
	OC4	0.24	ZZZ	0.24	0.25	0.28	0.23	0.31	0.15	<0.075	0.27	0.14	<0.2	0.30	0.20	0.17	0.19	0.26		0.19	0.13	0.29	0.32	0.20	0.27
	Ocpyro	0.32	ZZZ	0.32	0.34	0.41	0.30	0.38	0.25	<0.095	0.67	0.21	<0.05	0.20	0.34	0.27	0.27	0.45		0.14	0.20	0.37	0.65	0.27	0.37
	EC1	0.47	ZZZ	0.68	0.74	0.82	0.52	0.49	0.33	0.13	0.97	0.34	0.40	0.80	0.42	0.59	0.44	0.83		0.31	0.49	0.52	0.94	0.45	0.51
	EC2	0.16	ZZZ	0.55	0.47	0.52	0.49	0.43	0.41	0.14	0.75	0.23	0.30	0.30	0.45	0.32	0.37	0.41	1.2	0.31	0.28	0.71	0.57	0.39	0.54
	EC3	<0.023	ZZZ	0.045		0	0.030	0.064	0.042	0.022	0.094	<0.024	<0.05	<0.05	0.036	0.010	<0.024	0.050		0.028	0.045	0.079	0.042	<0.034	0.062
	oc	1.1	ZZZ	1.5	1.8	2.0	1.4	2.1	1.3	0.34	2.4	1.2	0.70	1.8	1.9	1.6	1.7	2.0		1.0	0.95	1.8	2.2	1.2	1.8
	EC	0.31	ZZZ	0.96	0.88	0.93	0.74	0.60	0.53	0.29	1.1	0.36	0.60	1.0	0.57	0.65	0.54	0.84	2.0	0.51	0.62	0.94	0.90	0.57	0.74
	WSOC	0.34	ZZZ	0.79	0.79	-	-	-	0.61	<0.55	1.7	0.65	-	-	1.3	-	1.5	-	_	-	-	-	-	0.76	-

衣4-1-	56 1月3	ロロル	り1月3	ロコより	ž –													(PM2.5,	,灰素灰	分,イオ	ン成分	: μg/m°	無機风:	分:ng/m	ř)
	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都		横浜市	川崎市	相模原市		山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	11.5	13.4	14.2	9.5	14.0	15.0	13.4	12.6	7.8	16.2	10.4	12.6	11.3	14.4	13.8	13.7	11.2	8.8	4.4	10.8	8.9	8.3	6.4	8.0
イオン成分	CI-	0.60	0.26	0.45	0.15	0.098	0.17	0.20	0.36	< 0.096	0.53	0.17	0.29	0.20	0.35	0.11	0.19	0.22	0.074	0.034	0.11	0.12	0.069	<0.055	< 0.015
	NO3-	2.1	3.1	3.2	1.9	5.8	5.4	5.0	1.8	0.94	2.2	2.1	4.1	3.9	5.2	5.4	4.2	3.9	2.6	1.1	2.6	3.2	0.96	1.2	1.8
	SO42-	1.9	1.3	2.0	0.77	1.2	3.2	1.1	2.5	2.5	3.0	2.2	1.7	1.3	1.5	1.8	2.0	1.7	1.2	0.77	2.0	1.4	1.3	1.2	1.0
	Na [⁺]	0.053	<0.028	0.020	0.022	0.028	0.043	0.016	0.060	0.057	0.059	0.058	0.027	<0.002	< 0.021	0.030	< 0.063	0.020	< 0.021	< 0.021	0.021	0.023	0.022	<0.065	<0.014
	NH₄⁺	1.7	1.7	2.0	0.95	2.1	2.4	2.0	1.7	1.2	2.2	1.4	1.7	1.7	2.1	2.5	2.0	1.8	1.3	0.67	1.6	1.9	1.1	0.93	0.90
	V ⁺	0.097	0.16	0.044	0.040	0.10	0.069	0.041	0.074	0.036	0.049	0.020	0.067	0.046	<0.04	0.060	0.067	0.050	0.043	0.039	0.059	0.030	0.035	<0.038	0.032
	Mg ²⁺	0.0058	<0.0014	<0.015		0.0013	0.0021	<0.0045	<0.0038	<0.0038	<0.0038	<0.0080	<0.001	<0.001	<0.0083	<0.01	0.0046	<0.01	<0.084	<0.084	0.0022	0.0051	<0.005	<0.0039	<0.0073
	8																								
<del>-</del> 146 - 15 ()	Ca ²⁺	<0.027	<0.059	<0.017	0.031	0.0069	0.016	<0.057	<0.044	<0.044	<0.044	0.044	0.030	0.030	0.030	0.050	0.029	0.020	<0.23	<0.23	0.015	<0.045	<0.045	<0.046	<0.016
無機成分	Na	-	13	<21	24	26	32	25	64	41	75	32	30	<30	19	46	27	23	25	<12	17	18	46	31	29
	Al	99	<9.8	<55	<55	19	21	24	26	<9.5	23	5.1	30	18	<18		6.3	11	24	<7.8	9.0	<15	<9.2	5.0	<6.9
	Si	-	-	-	-	-	-	74	110	14		33	60	20	-	46	-	28	6.4	<19	-	<14	<12	<3.3	-
	K		89	52		52	54	50	120	47		42	50	30	49		48	47		25	64	36	71	43	33
	Ca	-	19	<170		5.0	15	32	90	7.5			<80	<80	<27		20		<17		<9.4	<11	99	<17	<9.7
	5c	0.020	<0.14	<0.012		<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	< 0.56	<0.2	<0.2	<0.092		<0.015		<0.012		<0.0061	<0.018	<0.018	<0.012	<0.021
	11	3.3 0.40	<1.9 0.12	ZZZ	ZZZ	4.6 0.19	2.2 0.42	2.8 0.23	3.9 1.3	< 0.85	6.9	<5.5 <0.46	4.0	3.0	1.3 <0.37	2.5 1.8	1.1	1.6	<1.2 0.027	< 0.69	<3.6	<1.4 1.1	<1.8 0.19	<0.72	1.4 <0.38
	V			0.33	1.4			V.23 <1.6		0.76	2.3		0.30	0.20				0.29		0.020	0.16			1.8 <0.17	
	Ur M:	< 0.39	< 0.69	1.4 3.2		0.33 4.3	2.7 6.0	5.1	10 7.7	<0.61 <2.7	1.3 4.4	<0.41	<0.6 4.9	<0.6 2.6	0.34 4.1	0.66 6.2	0.46		<0.17	<1.8 0.29	0.35 3.0	<1.6 1.4	<1.6 3.6	1.2	0.19
	Mn	2.3 62	2.5 17	3.2		4.3 50	78	62	350	24	140	1.9 26	80	40	4.1	96	36	2.3 32	0.83	6.7	28	<28	3.6	8.6	1.2
	Со	< 0.074	<0.14	<0.23	0.25	<0.11	<0.11	0.021	0.048	<0.022	0.060	<0.42	<0.08	<0.08	<0.21		0.020	0.015		<0.028	0.014	<0.017	0.099	<0.028	<0.017
	CO NI:	<1.7	0.14	<0.23		0.11	1.3	<0.27	0.048	<0.022	1.0	<0.42	<0.08	<0.08	0.54		0.020	0.015	<0.028	<0.028	0.014	<1.2	<1.2	<0.028	<0.017
	C	4.0	1.2	1.5		3.5	3.5	3.9	4.6	<1.1	3.9	<7.2	3.0	2.0	<7		2.1		2.5	1.3	1.9	1.6	2.4	1.7	2.5
	Zn.	4.0 <40	26	1.3		3.5	3.5	3.9	29	7.1	65	9.5	3.0	<20	<5.4		2.1	1.9	<7.3	<7.3	7.9	<7.0	44	<7.3	6.6
	Δε	1.3	0.20	0.36	0.20	0.23	0.27	0.24	1.3	0.78	1.4	1.3	0.70	0.30	<0.45	<0.8	0.64		0.13	0.044	0.29	0.13	0.24	0.16	0.17
	Se.	<0.03	<0.51	<0.19		0.47	0.51	0.27	1.0	<0.51	0.76	<1.4	0.40	0.40	<0.76	<1.1	0.49	0.47	0.076	0.044	0.14	0.10	0.33	0.10	0.23
	Rh	-	0.26	0.13	0.13	<0.14	0.16	0.15	0.74	<0.12	0.30	<0.55	<0.1	<0.1	<0.2	<1.1	0.12		0.070	0.046	0.15	0.064	0.17	0.068	0.14
	Mo	0.87	<0.87	12		1.2	0.38	0.36	0.97	0.24	0.46	<0.70	0.30	0.20	0.33		0.52	0.15	0.13	0.031	0.17	0.33	0.23	0.15	<0.28
	Sh	3.3	0.46	ZZZ	ZZZ	2.6	3.2	0.86	0.78	0.51	1.0	0.58	1.4	0.80	1.0		1.0		0.10	0.16	0.28	1.3	0.66	0.57	0.80
	Cs	0.019	<0.061	< 0.035		<0.079	<0.079	0.0088	0.13	<0.019	0.068	<0.37	<0.1	<0.1	<0.17		<0.015		<0.012		0.011	<0.0042	<0.0042	<0.012	<0.013
	Ba	1.2	0.87	0.59	0.68	<2.3	<2.3	1.6	1.1	0.32	0.93	0.57	1.5	1.3	2.6		1.3	1.3	0.74	0.34	0.91	<0.95	2.0	<0.29	1.2
	La	0.094	<0.060	<0.012		0.12	0.082	0.099	0.17		0.087	<0.31	<0.08	<0.08	<0.11		0.036	0.095	<0.24	<0.24	0.0099	0.021	0.032	<0.24	0.026
	Ce	0.18	< 0.067	<0.022	<0.022	0.27	0.15	0.18	0.16	<0.028	0.081	<0.31	0.14	0.10	0.14	<13	0.073	0.15	0.0060	< 0.0043	0.019	0.030	0.046	0.024	0.063
	Sm	<0.01	<0.089	< 0.0019	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2	<0.14	<19	<0.014	<0.022	<0.00072	<0.0018	<0.00076	< 0.0057	<0.00097	<0.0018	<0.017
	Hf	0.010	<0.11	<0.023	<0.023	<0.020	<0.020	< 0.0066	<0.044	<0.044	<0.044	<0.29	<0.1	<0.1	<0.16	<0.013	<0.029	<0.014	< 0.0014	< 0.0014	<0.020	<0.0032	<0.0055	<0.0014	< 0.065
	W	<0.16	<0.086	0.29	<0.084	<0.040	<0.040	0.057	0.19	0.35	0.098	0.34	0.060	<0.06	0.13	0.080	0.19	<0.04	<0.040	<0.012	<0.10	<0.043	0.094	<0.043	<0.54
	Та	-	<0.11	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.28	<0.05	<0.05	<0.034	<0.015	<0.028	<0.013	<0.0012	<0.0012	-	<0.040	<0.040	<0.0012	<0.025
	Th	<0.0061	<0.10	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	<0.07	<0.07	<0.28	<3.3	<0.014	<0.013	<0.017	<0.0032	0.0016	<0.00098	<0.0011	<0.0032	<0.021
	Pb	4.2	2.3	2.1	5.2	18	3.5	3.2	10	3.4	15	4.5	15	2.9	3.1	3.6	3.3	2.2	2.4	0.77	1.6	2.4	5.1	5.1	2.0
	その他(Be )	_	<0.14	-	-	-	-	0.16	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
	その他(Cd)	-	<0.096	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.049	0.10	<0.18	-	-
炭素成分	OC1	0.10	0.062	0.27	0.32	0	0.18	0.33	0.040	<0.04	0.12	0.25	<0.2	<0.2	0.17	0.30	0.26	0.24	0.048	<0.020	<0.043	<0.048	<0.048	<0.025	<0.020
	OC2	0.80	0.61	0.49	0.51	0.65	0.65	0.82	1.0	0.62	1.2	0.94	0.50	0.40	0.72	0.73	1.2		0.80	0.33	0.52	0.75	0.66	0.60	0.73
	OC3	0.44	0.57	0.36	0.47	0.70	0.73	0.66	0.59	0.38	0.71	0.27	0.50	0.40	0.68	0.51	0.63	0.35	0.44	0.28	0.44	0.39	0.37	0.29	0.34
	OC4	0.45	0.26	0.32	0.30	0.39	0.43	0.44	0.28	0.18	0.38	0.28	0.30	0.30	0.31	0.26	0.33	0.14	0.34	0.22	0.20	0.28	0.23	0.19	0.23
	Ocpyro	0.71	0.60	0.45	0.32	0.34	0.36	0.45	0.78	0.18	1.2	0.49	0.20	0.18	0.48	0.39	0.55	0.37	0.61	0.29	0.38	0.45	0.56	0.40	0.39
	EC1	1.1	0.85	0.87	0.73	0.65	0.90	0.64	1.1	0.62	1.8	1.1	0.80	0.50	0.53	0.79	0.96	0.60	0.70	0.28	0.83	0.72	0.67	0.45	0.49
	EC2	0.26	0.56	0.43	0.40	0.72	0.71	0.63	0.62	0.42	0.97	0.38	0.50	0.60	0.63	0.39	0.53	0.38	0.57	0.27	0.35	0.60	0.48	0.34	0.44
	EC3	<0.023	0	0.025		0.030	0.035	0.086	0.093	0.071	0.13	<0.024	<0.05	<0.05	0.069	0.020	0.033		0.049	0.029	0.053	0.047	0.030	<0.034	0.052
	oc	2.5	2.1	1.9	1.9	2.1	2.4	2.7	2.7	1.4	3.6	2.2	1.6	1.4	2.4	2.2	3.0	1.7	2.2	1.1	1.5	1.9	1.8	1.5	1.7
	EC	0.65	0.81	0.88	0.82	1.1	1.3	0.91	1.0	0.93	1.7	0.99	1.1	0.90	0.75	0.81	0.97	0.65	0.71	0.29	0.85	0.92	0.62	0.39	0.59
	WSOC	1.4	1.9	1.0	0.90	-	-	-	0.79	0.69	1.4	1.2	-	-	1.6	-	1.8	-	-	-	-	-	-	1.1	-

直接性極   一次	(1 m2.5, 灰糸成刀, イオン成刀. μ g/ш 無板成刀	
### 2 PMZ 子原	,千葉県┃千葉県┃千葉市┃東京都┃東京都┃神奈川県┃横浜市┃川崎市┃相模原市┃山梨県┃山梨県┃長野県┃静岡県┃静岡県┃静	司市 浜松市
日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校   日本学校	勝浦   富津   千葉   綾瀬   多摩   大和   横浜   川崎  相模原  甲府   吉田   長野   富士   湖西   『	岡 浜松
NO3-	14.6 17.1 17.5 20.7 12.7 18.8 20.2 21.9 13.4 10.4 11.4 9.9 10.6 16.3	8.9 15.0
No.   Solid   1	0.17 0.48 0.44 0.23 0.070 0.62 0.46 0.47 0.21 0.032 0.060 0.13 0.063 0.077 <	.055 <0.015
Nat	0.88 3.6 4.4 3.0 3.6 5.9 5.7 5.5 4.0 1.1 1.7 1.3 1.5 1.8	0.15 1.0
Na	22 40 52 18 24 29 40 41 29 20 27 36 31 50	
NH4"   19   2.6   1.0   1.9   2.6   2.9   2.8   2.5   1.0   3.2   3.2   1.6   1.9   2.9   3.3   3.3   2.6   1.2   1.6   1.8   1.8   2.8   1.4     Mg"   0.0053   0.017   0.015   0.015   0.015   0.015   0.015   0.005   0.007   0.0035   0.017   0.016   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001   0.008   0.001		
大きな   1		
Mg/2*		
横線球分	0.057 0.093 0.11 0.077 0.064 0.33 0.090 0.11 0.080 0.039 0.12 0.049 0.048 0.086 <	.038 0.099
無機成分   A	. <0.0038   <0.0038   <0.0080   <0.001   <0.001   0.0088   <0.01   0.017   <0.01   <0.084   <0.084   0.0045   0.0067   0.0078   <0.018   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088   <0.0088	0.0073 (0.0073
Al	<0.044         0.052         0.061         0.020         0.030         0.076         0.050         0.046         0.020         <0.23         <0.23         0.017         0.054         <0.045	.046 <0.016
A    92   27   55   55   27   30   58   27   16   29   11   30   20   44   28   19   21   51   51   52   51   14   527	48 84 45 90 <30 43 71 71 34 24 <12 35 44 100	55 83
Si		
K		
Ca - 20 4170 4170 8.9 74 6.9 58 14 78 18 8.8 0 480 47 57 35 27 26 424 12 24 120 23 Sc 0.022 40.14 40.012 40.012 40.012 40.029 40.18 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08 40.08		_
Sc		
Ti		
V   0.66   0.35   0.15   1.8   1.4   2.0   3.2   3.1   1.5   6.4   0.77   4.1   1.4   3.1   13   12   1.6   0.42   1.1   0.24   4.1   2.4   1.0   0.7		
Cr		
Mn		
Fe 74 36 < 24 36 56 81 170 150 38 210 39 170 50 120 280 290 59 15 10 24 <28 42 11   Co <0.074		
Co		
Ni		
Cu 3.3 1.8		
The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The		
As		
Se   0.060   0.51   0.19   0.77   0.82   0.66   0.87   0.90   0.51   0.98   0.44   0.90   2.5   1.1   1.3   1.4   2.7   0.23   0.18   0.37   0.16   0.84   0.38   0.86   0.87   0.90   0.29   0.18   0.52   0.55   0.20   0.1   0.33   0.1   0.40   0.21   0.14   0.15   0.15   0.15   0.14   0.31   0.17   0.18   0.17   0.18   0.17   0.18   0.17   0.18   0.17   0.18   0.17   0.18   0.17   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0		
Rb		
Mo		
Sb 1.1 1.0 2zz 2zz 1.2 1.2 1.2 0.89 0.68 0.88 0.98 1.3 0.80 1.1 <6.5 0.99 0.80 0.36 1.4 0.22 0.31 0.88 0.28   Cs 0.023 <0.061 <0.035 <0.035 <0.079 <0.079 0.041 0.028 <0.019 0.066 <0.37 <0.1 <0.1 <0.1 <0.17 <9.2 0.069 0.027 <0.012 <0.012 <0.012 <0.012 <0.014 <0.0042 0.0055 <0.012   Ba 1.3 1.5 0.95 1.4 <2.3 6.0 3.1 1.6 0.47 1.4 1.1 3.6 1.8 5.4 <10 2.7 1.6 1.1 5.8 0.95 1.4 0.41   Ce 0.15 0.074 <0.022 0.091 0.12 0.14 0.39 0.11 <0.028 0.094 <0.31 0.14 <0.08 <0.11 <11 0.11 0.11 0.11 0.11 <0.24 <0.24 <0.24 0.020 0.028 0.069 0.024   Ce 0.15 0.074 <0.022 0.091 0.12 0.14 0.39 0.11 <0.028 0.094 <0.31 0.19 0.11 0.14 <13 0.16 0.18 0.022 0.061 0.033 0.045 0.072 0.072 0.014   Sm		_
Cs 0.023		
Ba		
La 0.076		
Ce 0.15 0.074 0.022 0.091 0.12 0.14 0.39 0.11 0.028 0.094 0.31 0.19 0.11 0.14 0.13 0.16 0.18 0.022 0.061 0.033 0.045 0.072 0.014   Sm		
Sm		
Hf		
W 0.29 <0.086 <0.084 <0.084 <0.084 0.20 0.14 0.39 0.22 0.15 0.23 0.47 0.13 0.070 0.23 1.3 0.38 0.15 0.047 <0.012 0.13 0.045 1.0 0.12 Ta - 0.33 <0.025 <0.025 <0.025 <0.028 <0.028 <0.022 <0.027 <0.027 <0.027 <0.027 <0.028 <0.05 <0.05 <0.05 <0.05 <0.034 <0.015 <0.028 <0.013 <0.0012 <0.0012 - <0.0012 - <0.040 <0.0012		
Ta - 0.33 <0.025 <0.025 <0.028 <0.028 <0.022 <0.022 <0.027 <0.027 <0.027 <0.027 <0.027 <0.028 <0.05 <0.05 <0.034 <0.015 <0.028 <0.013 <0.013 <0.0012 <0.0012 - <0.040 <0.040 <0.0012		
[th [<0.0061] <0.10] <0.007] <0.007] <0.007] <0.007] <0.0079 <0.0079 <0.0079 <0.0082 <0.024 <0.024 <0.024 <0.024 <0.029 <0.07 <0.07 <0.28 <0.01 <0.014 <0.013 <0.017 <0.0032 0.0032 0.0032 <0.0078 0.0032		_
Pb 12 4.5 0.61 3.9 4.5 6.9 6.4 10 3.5 12 7.0 15 4.2 5.3 9.6 8.6 3.8 2.4 2.5 2.9 2.8 9.9 3.3		_
その他(Be) - <0.14 0.18		
その他(Cd) - 0.15 0.094 0.15 0.19 -		
炭素成分		
OC2 1.1 0.81 0.48 0.62 0.66 0.87 0.95 1.2 0.78 1.1 1.0 0.70 0.50 0.69 0.99 1.5 0.79 1.1 0.81 0.38 1.0 0.84 0.80		
OC3 0.74 0.63 0.52 0.46 0.52 0.78 0.79 0.86 0.64 0.69 0.50 0.60 0.40 0.58 0.63 0.72 0.47 0.48 0.40 0.29 0.44 0.33 0.32		
OC4 0.61 0.47 0.36 0.32 0.25 0.50 0.61 0.40 0.38 0.30 0.50 0.40 0.30 0.29 0.43 0.50 0.26 0.34 0.29 0.14 0.28 0.24 0.22		
Ocpyro 1.1 0.97 0.74 0.66 0.59 0.74 0.96 1.3 0.38 1.2 0.92 0.50 0.40 0.68 0.91 0.79 0.64 0.94 0.80 0.37 0.84 1.1 0.77		
EC1 1.7 1.6 1.1 1.0 0.85 1.4 1.4 1.7 1.4 1.6 1.8 0.90 0.70 0.88 1.7 1.6 1.0 0.98 0.94 0.66 1.1 1.4 0.78		
EC2 0.21 0.39 0.36 0.57 0.48 0.75 0.73 0.62 0.63 0.85 0.32 0.50 0.50 0.78 0.48 0.42 0.40 0.76 0.67 0.25 0.76 0.44 0.58		
EC3 < 0.023 0.033 0.010 0.020 0.015 0.050 0.15 0.095 0.12 0.14 < 0.024 < 0.05 < 0.05 0.050 0.050 0.040 < 0.024 0.050 0.077 0.077 < 0.032 0.089 0.027 0.051		_
OC 3.7 3.0 2.4 2.4 2.0 3.1 3.9 3.8 2.2 3.3 3.2 2.2 1.6 2.5 3.5 3.8 2.5 2.9 2.3 1.2 2.6 2.5 2.1		
EC 0.81 1.1 0.73 0.93 0.76 1.5 1.3 1.1 1.8 1.4 1.2 1.0 0.80 1.0 1.3 1.2 0.81 0.88 0.89 0.54 1.1 0.77 0.64	. 1.8  1.4  1.2  1.0  0.80  1.0  1.3  1.2  0.81  0.88  0.89  0.54  1.1  0.77	0.64 0.88

	00 2/,.																	,	,			,			
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
調査は	也点名	土浦	直岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多座	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	17.3	15.3	5.5	14.3	12.0	15.0	11.6	13.8	10.1	14.9	15.6	10.6	10.7	15.2	13.8	14.1	13.5	13.0	12.0	7.1	8.8	23.8	13.1	21.1
イオン成分	CI-	0.41	0.32	< 0.016	0.29	0.15	0.10	0.26	0.43	0.14	0.41	0.44	0.22	0.14	0.28	0.13	0.18	0.50	0.075	0.14	0.12	0.077	0.041	<0.055	<0.015
13 2 10073	NO3-	4.6	2.2	0.25	2.7	3.7	4.0	3.2	2.6	1.7	3.0	4.3	3.2	3.8	5.0	4.4	4.2	4.9	3.5	3.2	1.4	1.7	3.6	0.37	2.2
	SO42-	2.2	2.0	1.3	1.4	2.2	2.1	1.6	1.9	2.0	2.5	1.9	2.0	1.7	2.2	2.9	2.5	2.1	3.0	2.5	1.6	2.5	6.5	4.3	5.9
	Na [⁺]	0.053	0.057	0.013	0.021	0.049	0.054	0.037	0.078	0.082	0.073	0.062	0.041	0.013	<0.021	0.050	<0.063	0.030	<0.021	<0.021	0.047	0.023	0.048	<0.065	0.055
	NH ₄ ⁺	2.3	1.6	0.53	1.5	1.7	1.7	1.7	1.9	1.3	2.4	2.0	1.6	1.8	2.3	2.5	2.1	2.7	2.2	1.9	1.1	1.8	4.0	2.0	2.9
	V ⁺	0.11	0.15	0.091	0.051	0.16	0.070	0.058	0.057	0.035	0.041	0.061	0.070	0.058	0.057	0.060	0.067	0.080	0.053	0.061	0.042	0.031	0.11	0.083	0.14
	2±																								
	Mg ²	0.0036	0.011	<0.015	<0.015	0.0025	0.0042	0.0049	<0.0038	<0.0038	<0.0038	0.040	0.0050	<0.001	0.040	<0.01	0.0071	<0.01	<0.084	<0.084	0.0053	<0.005	0.0085	<0.0039	<0.0073
	Ca ²⁺	0.034	0.083	<0.017	0.044	0.010	0.024	0.062	<0.044	<0.044	<0.044	0.047	0.050	0.030	< 0.021	0.080	0.045	0.020	<0.23	<0.23	0.019	< 0.045	< 0.045	<0.046	<0.016
無機成分	Na	-	38	<21	<21	38	51	45	78	87	81	40	30	<30	37	57	25	32	50	<12	39	29	95	50	73
	Al	57	33	<55	<55	28	24	48	23	<9.5	23	9.8	19	16	40	<16	6.4	25	<13	<7.8	13	27	15	<2.7	33
	Si	-	-	-	-	-	-	110	100	35	82	18	30	27	-	83	-	47	12	<19	-	<14	32	20	-
	K.	_	100	130	23	77	110	73	98	62	110	85	50	30	67	74	49	73	91	54	48	44	200	140	120
	Co	_	19	<170	<170	5.6	9.1	65	61	12	79	20	<80	<80	70	83	18	30	44	<24	12	16	17	<17	18
	Ca Ca	0.020	<0.14		<0.012	<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	< 0.56	<0.2	<0.2		<0.022	<0.015	<0.028	<0.012	<0.012	< 0.0061	<0.018	<0.018	<0.012	
	30 T:											-		-											
	11	3.0	<1.9	ZZZ	ZZZ	3.6	3.5	4.9	3.8	1.2	4.9	<5.5	4.0	3.0	4.5	4.6	1.2	3.3	<1.2	< 0.69	<3.6	<1.4	2.2	<0.72	5.3
	V	0.49	0.25	0.15	0.88	0.69	0.66	0.34	0.65	0.31	2.8	<0.46	0.40	0.30	1.4	5.4	2.1	0.30	0.085	0.24	0.20	0.58	1.2	1.8	<0.38
	Cr	< 0.39	< 0.69	<1.1	1.3	0.50	0.83	<1.6	1.2	< 0.61	1.0	0.42	<0.6	<0.6	2.0	1.7	1.5	1.7	<0.17	<1.8	<0.21	<1.6	<1.6	0.18	1.3
	Mn	5.7	2.3	1.1	2.9	6.1	5.3	4.6	13	<2.7	12	3.8	6.4	2.9	6.3	7.5	7.9	8.5	2.2	1.3	<2.1	2.0	8.6	3.6	7.9
	Fe	110	28	<24	36	63	57	67	140	32	240	52	120	30	89	140	53	180	18	9.8	21	<28	65	20	65
	Co	< 0.074	< 0.14	<0.23	< 0.23	< 0.11	< 0.11	0.036	0.036	<0.022	0.047	< 0.42	<0.08	<0.08	< 0.21	<0.88	0.031	0.043	<0.028	<0.028	0.011	< 0.017	0.051	<0.028	0.050
	Ni	43	0.31	<0.85	<0.85	0.70	0.76	0.28	0.84	< 0.39	0.80	< 0.63	<0.5	< 0.5	0.96	2.0	1.1	1.2	< 0.36	< 0.36	0.23	<1.2	<1.2	< 0.36	0.15
	Cu	2.7	1.5	< 0.94	1.2	2.6	3.0	2.7	7.3	<1.1	3.0	<7.2	4.0	1.0	45	3.4	2.1	3.4	2.0	0.91	1.1	1.9	4.1	3.5	9.7
	Zn	47	14	5.2	8.9	21	42	24	54	11	38	15	40	<20	<5.4	26	20	18	25	<7.3	5.0	11	40	<7.3	37
	As	0.54	0.46	0.32	0.24	0.48	0.59	0.46	0.72	0.58	0.90	0.63	0.70	0.50	0.73	<0.8	0.53	0.94	0.30	0.31	0.46	0.14	2.3	1.1	1.9
	Se	<0.03	0.51	0.26	<0.19	1.1	0.28	0.52	< 0.51	<0.51	0.55	<1.4	0.50	0.80	1.2	<1.1	0.46	5.4	0.17	0.21	0.11	0.13	1.6	0.60	1.3
	Rb	-	0.28	0.18	< 0.063	0.16	0.27	0.18	0.32	0.14	0.28	<0.55	<0.1	<0.1	0.21	<1.1	0.14	0.20	0.16	0.11	0.11	0.086	0.47	0.28	0.46
	Mo	<0.42	<0.87	0.40	0.36	0.51	0.98	0.51	0.30	0.21	0.28	<0.70	0.50	<0.2	1.1	<1.3	1.5	0.35	0.27	0.21	0.10	0.19	1.0	0.28	0.65
	Sh	0.66	0.88	ZZZ	ZZZ	1.2	2.2	1.0	1.2	0.60	0.82	1.2	0.80	0.70	1.2	<6.5	0.55	1.0	0.41	0.52	0.10	1.8	0.92	0.89	1.2
	Co	0.016	<0.061	<0.035	<0.035	<0.079	<0.079	<0.0083	0.042	<0.019	0.045	<0.37	<0.1	<0.1	<0.17	<9.2	0.021	0.019	<0.012	<0.012	<0.0077	<0.0042	0.033	<0.012	0.055
	D-	1.2	1.6	1.4	1.5	<2.3	<2.3	1.8	1.3	0.42	1.1	0.94	1.3	1.3	2.8	<10	1.2	1.9	0.73	0.47	0.58	< 0.95	2.9	0.79	2.1
	Da L	0.059	<0.060	<0.012	0.017	0.073	0.057	0.071	0.083	0.023	0.097	<0.31	<0.08	<0.08	<0.11	<11	0.034	0.056	<0.24	<0.24	0.011	0.023	0.036	<0.24	0.074
	La											-		-											
	Ce	0.096	<0.067	0.026	0.036	0.069	0.10	0.13	0.14	<0.028	0.12	<0.31	0.060	<0.06	0.080	<13	0.055	0.12 <0.022	0.028 <0.00072	0.0091	0.019	0.036	0.051	0.023	0.13 <0.017
	Sm	<0.01	<0.089	0.0030	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2	<0.14	<19	<0.014			<0.0018	<0.00076	<0.0057	0.0012	<0.0018	
	Hf	<0.0096	<0.11	<0.023	<0.023	<0.020	<0.020	<0.0066	<0.044	<0.044	<0.044	<0.29	<0.1	<0.1	<0.16	<0.013	<0.029	<0.014	<0.0014	<0.0014	<0.020	<0.0032	<0.0055	<0.0014	<0.065
	W	0.17	<0.086	<0.084	<0.084	0.11	0.25	0.12	0.14	0.15	0.15	<0.26	0.11	< 0.06	<0.1	0.18	0.16	<0.04	0.057	0.022	<0.10	<0.043	0.89	<0.043	0.55
	Та	-	<0.11	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.28	<0.05	<0.05	<0.034	<0.015	<0.028	<0.013	<0.0012	<0.0012	-	<0.040	<0.040	<0.0012	<0.025
	Th	<0.0061	<0.10	<0.02	<0.02	<0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	< 0.07	<0.07	<0.28	<3.3	<0.014	<0.013	<0.017	<0.0032	0.0015	<0.00098	0.0028	<0.0032	<0.021
	Pb	4.2	3.4	1.9	1.2	5.0	19	6.0	10	2.4	8.3	5.2	10	3.7	5.3	5.3	4.1	3.9	4.2	2.7	2.8	3.6	13	7.8	9.5
	その他(Be)	-	<0.14	-	-	-	-	0.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	その他(Cd)	-	< 0.096	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.032	0.10	0.33	-	-
炭素成分	OC1	0.12	0.14	0.23	0.45	0	0.15	0.20	0.059	<0.04	<0.04	0.31	<0.2	<0.2	0.25	0.32	0.28	0.36	0.055	0.024	0.053	<0.048	<0.048	<0.025	0.078
	OC2	1.0	0.70	0.27	0.52	0.57	0.66	0.74	1.0	0.59	0.86	0.93	0.50	0.40	0.55	0.73	1.4	0.64	0.91	0.74	0.38	0.89	1.2	0.95	1.5
	OC3	0.72	0.63	0.33	0.61	0.54	0.62	0.55	0.58	0.39	0.50	0.45	0.40	0.40	0.47	0.40	0.58	0.48	0.36	0.32	0.32	0.33	0.42	0.32	0.49
	OC4	0.69	0.41	0.20	0.39	0.31	0.43	0.41	0.28	0.20	0.21	0.45	0.30	0.30	0.22	0.27	0.33	0.30	0.25	0.22	0.14	0.24	0.29	0.21	0.34
	Ocpyro	1.0	0.83	0.38	0.53	0.47	0.47	0.53	0.92	0.56	0.81	0.60	0.30	0.30	0.50	0.55	0.60	0.44	0.79	0.61	0.34	0.68	1.3	0.91	1.4
	EC1	1.8	1.2	0.58	1.1	0.75	1.2	0.78	1.1	0.64	1.0	1.6	0.80	0.60	0.59	1.1	0.97	1.0	0.98	0.62	0.66	0.94	1.9	1.1	2.0
	EC2	0.34	0.42	0.21	0.53	0.51	0.59	0.56	0.53	0.40	0.80	0.25	0.50	0.50	0.62	0.38	0.46	0.35	0.76	0.60	0.22	0.88	0.76	0.78	0.88
	EC3	<0.023	0.027	0.21	0.015	0.015	0.025	0.054	0.080	0.066	0.12	<0.024	<0.05	<0.05	0.048	0.030	0.40	0.030	0.077	0.050	<0.032	0.096	0.047	0.043	0.058
	OC C	3.5		1.4	2.5	1.9	2.3	2.4	2.8	1.7	2.4	2.7	1.6	1.5	2.0	2.3	3.2	2.2	2.4	1.9	1.2	2.1		2.4	
			2.7 0.82	0.41	1.1	0.81		0.86	0.79				1.0	0.80	0.76	0.96	0.86	0.94	1.0	0.66	0.54	1.2	3.2 1.4	1.0	3.8 1.5
	EC	1.1				0.81	1.3	0.86		0.55	1.1	1.3	1.0	0.80		0.96		0.94	1.0	0.66	U.54	1.2	1.4		
	WSOC	1.8	1.9	0.53	0.88	-	-	-	0.94	<0.55	1.9	1.4	-	-	1.5	-	1.8	-	_	-	-	-	-	1.7	-

自治性調査地基本事項	点名	茨城県 土浦	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
		十油	rate con										V/V/ UI	不小印	1720011200	「灰/六リ	71 [ [ [ [ ] ] ] ]	1017////101		四未示	区 北 木	門工四元	H1. Im] NC		WELWIN
基本事項		工/冊	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
	PM2.5濃度	6.4	10.0	4.4	6.2	4.8	5.2	5.6	6.8	5.7	11.4	6.5	4.4	3.3	4.7	7.0	5.6	4.6	6.3	5.8	6.2	10.4	3.9	9.1	4.9
イオン成分 (	CI-	0.13	0.19	< 0.016	0.42	0.25	0.13	0.27	< 0.096	< 0.096	0.31	0.13	0.18	0.12	0.13	0.050	0.048	0.10	0.024	0.013	0.10	0.043	0.024	<0.055	<0.015
	NO3-	0.38	1.2	0.16	0.32	0.28	0.45	0.48	0.75	0.39	1.0	0.49	0.57	0.41	0.68	1.5	0.58	0.87	0.96	0.87	0.81	1.2	0.19	0.29	0.063
	SO42-	0.77	1.2	1.1	0.99	1.5	1.3	1.2	1.3	1.2	1.8	1.1	1.3	1.0	1.2	1.6	1.2	1.2	1.2	1.5	1.4	2.4	1.1	2.5	1.3
1	3042		0.035					0.050									<0.063		/O 001						
<u> </u>	Na'	0.032		0.016	0.021	<0.026	0.034		0.056	0.045	0.10	0.049	0.032	0.014	<0.021	0.030		0.020	<0.021	<0.021	0.029	0.036	0.017	<0.065	0.020
1	NH ₄ ⁺	0.41	0.75	0.46	0.65	0.74	0.61	0.75	0.66	0.56	1.2	0.59	0.52	0.53	0.74	0.96	0.65	0.74	0.76	0.85	0.82	1.5	0.71	1.3	0.53
	K ⁺	0.042	0.10	<0.03	<0.03	0.015	0.039	0.024	0.019	0.068	0.050	0.051	0.046	0.025	< 0.04	0.030	0.026	0.030	0.042	0.057	0.036	0.052	0.025	0.045	0.039
1 5	Ma ²⁺	0.0055	0.017	<0.015	<0.015	0.0012	0.0014	<0.0045	<0.0038	<0.0038	<0.0038	<0.0080	0.0070	<0.001	0.031	<0.01	0.0054	<0.01	<0.084	<0.084	0.0036	0.015	<0.005	<0.0039	<0.0073
H H	- 2+	<0.027	0.12			<0.0053		<0.057		<0.044	0.12	<0.034			<0.021		0.033	0.030				0.12		<0.046	<0.016
<del></del>	Ua⁻	₹0.027		<0.017	0.12		0.016		<0.044				0.080	0.030		0.11			<0.23	<0.23	0.021		<0.045		
無機成分	Na	-	33	<21	<21	22	41	40	46	27	100	33	<30	<30	23	44	7.1	28	27	<12	23	36	31	35	29
1	Al	130	35	<55	<55	7.5	29	51	36	13	95	8.3	17	14	37	<16	3.7	24	<13	<7.8	14	16	80	<2.7	21
	Si	-	-	-	-	-	-	130	110	56	170	31	40	25	-	100	-	55	23	<19	-	<14	39	19	-
į.	K	-	77	16	69	17	32	35	48	64	84	52	20	<20	38	45	15	38	44	50	41	61	42	77	40
	Ca	-	55	<170	<170	<2.1	11	59	70	23	220	14	<80	<80	75	87	<9.3	39	25	<24	9.7	56	<11	<17	14
	Sc	0.017	< 0.14	< 0.012	<0.012	<0.029	<0.029	<0.18	<0.08	<0.08	<0.08	< 0.56	<0.2	<0.2	<0.092	<0.022	< 0.015	<0.028	<0.012	<0.012	< 0.0061	<0.018	<0.018	<0.012	< 0.021
-	Ti	3.8	11	zzz	zzz	0.25	4.1	4.4	4.3	2.3	9.8	<5.5	1.6	1.0	3.7	6.1	<0.52	2.7	<1.2	< 0.69	<3.6	<1.4	<1.8	<0.72	3.0
,	v	0.34	0.18	0.27	0.28	0.084	0.23	0.29	0.70	<0.3	1.5	<0.46	0.10	0.10	<0.37	6.4	0.40	0.20	0.040	0.31	0.14	2.2	0.062	1.1	<0.38
ļ ,	0-	< 0.39	< 0.69	<1.1	<1.1	<0.12	0.60	<1.6	0.88	<0.61	1.6	0.69	<0.6	<0.6	0.34	1.1	0.48	0.36	0.99	<1.8	<0.21	<1.6	2.2	0.56	0.53
1	Man	6.0	3.2	0.55	6.6	1.0	3.2	2.7	5.5	4.3	1.0	4.9	7.1	0.80	2.0	9.9	1.1	2.2	1.9	0.90	<2.1	2.0	3.1	3.1	2.5
	VIFI	93	96	<24	55	1.0	48	2.7 54	120	51	590	39	110	11	47	130	13	52	21	8.8	19	<28	25	19	
l l	re O																								22
<u> </u>	Co	<0.074	<0.14	<0.23	<0.23	<0.11	<0.11	0.042	0.037	<0.022	0.13	<0.42	<0.08	<0.08	<0.21	<0.88	<0.015	0.031	<0.028	<0.028	0.010	<0.017	<0.017	<0.028	0.24
ļ <u>Ľ</u>	Ni	<1.7	0.27	<0.85	<0.85	<0.19	1.4	<0.27	0.60	0.45	0.90	< 0.63	<0.5	<0.5	<0.29	1.6	<0.31	0.19	< 0.36	< 0.36	<0.12	<1.2	<1.2	< 0.36	<0.12
<u> </u>	Cu	3.7	1.8	< 0.94	2.2	2.2	2.4	2.0	1.9	<1.1	3.4	<7.2	5.0	0.60	51	3.1	<0.72	1.9	0.99	0.55	0.96	2.1	1.6	3.0	3.5
4	Zn	330	65	11	26	7.0	28	12	21	12	66	14	70	<20	12	28	6.6	7.2	<7.3	<7.3	4.4	29	<7.0	<7.3	11
1	As	0.32	0.26	0.24	0.43	0.13	0.30	0.26	0.31	0.27	0.77	<0.47	0.60	0.30	<0.45	<0.8	0.19	0.28	0.24	0.17	0.35	0.26	0.35	0.49	0.38
	Se	<0.03	< 0.51	<0.19	0.33	0.61	<0.20	0.53	< 0.51	<0.51	1.6	<1.4	0.30	<0.2	<0.76	<1.1	0.18	0.14	<0.038	0.090	0.088	0.13	< 0.043	0.24	<0.14
<u> </u>	Rb	-	0.22	<0.063	0.14	<0.14	<0.14	0.085	0.20	<0.12	0.48	<0.55	<0.1	<0.1	<0.2	<1.1	0.032	0.12	0.084	0.063	0.092	0.13	0.072	0.14	0.11
1	Мо	<0.42	<0.87	1.6	1.0	0.34	0.58	0.65	0.36	0.42	0.41	<0.70	0.50	<0.2	0.27	3.1	0.16	0.30	0.10	0.067	0.11	0.14	0.25	0.24	<0.28
	Sb	< 0.62	0.57	ZZZ	zzz	0.14	0.73	1.3	0.44	0.28	0.74	1.3	0.50	0.30	0.44	<6.5	0.15	0.61	0.26	0.23	0.21	0.45	0.32	0.42	0.51
	Cs	0.0092	< 0.061	< 0.035	<0.035	<0.079	< 0.079	0.011	0.020	< 0.019	0.075	< 0.37	<0.1	<0.1	<0.17	<9.2	<0.015	<0.019	<0.012	<0.012	<0.0077	<0.0042	<0.0042	<0.012	<0.013
[ E	Ва	2.2	1.7	0.68	1.2	<2.3	<2.3	1.6	1.7	0.73	2.2	1.1	1.1	0.80	2.9	<10	0.48	1.8	0.70	0.38	0.66	1.4	1.7	1.1	0.85
Ī	La	0.043	< 0.060	<0.012	0.016	<0.038	0.069	0.061	0.13	0.050	0.11	< 0.31	<0.08	<0.08	<0.11	<11	< 0.016	0.044	<0.24	<0.24	0.011	0.020	0.013	<0.24	<0.024
	Ce	0.11	< 0.067	0.024	0.037	<0.018	0.14	0.12	0.087	0.039	0.13	< 0.31	<0.06	<0.06	0.052	<13	0.023	0.089	0.0059	0.021	0.017	0.036	<0.020	0.070	0.048
1	Sm	<0.01	<0.089	0.0034	<0.0019	<0.035	<0.035	<0.013	<0.027	<0.027	<0.027	<0.49	<0.2	<0.2	<0.14	<19	<0.014	<0.022	< 0.00072	<0.0018	<0.00076	< 0.0057	0.0021	<0.0018	<0.017
Ī	Hf	0.010	<0.11	<0.023	<0.023	<0.020	<0.020	<0.0066	<0.044	<0.044	<0.044	<0.29	<0.1	<0.1	<0.16	<0.013	<0.029	<0.014	< 0.0014	<0.0014	<0.020	<0.0032	<0.0055	<0.0014	< 0.065
Ī	N	<0.16	<0.086	<0.084	0.11	<0.040	<0.040	0.067	0.044	<0.027	0.31	<0.26	0.070	<0.06	<0.1	0.52	0.019	<0.04	<0.040	<0.012	<0.10	<0.043	0.022	<0.043	<0.54
Ė	Та	-	<0.11	<0.025	<0.025	<0.028	<0.028	<0.0022	<0.027	<0.027	<0.027	<0.28	< 0.05	< 0.05	<0.034	<0.015	<0.028	<0.013	<0.0012	<0.0012	-	<0.040	<0.040	<0.0012	<0.025
	Th	<0.0061	<0.10	0.024	<0.02	<0.079	<0.079	<0.0082	<0.024	<0.024	<0.024	<0.29	<0.07	<0.07	<0.28	<3.3	<0.014	<0.013	<0.017	<0.0032	<0.0010	<0.00098	<0.0011	<0.0032	<0.021
<u> </u>	Dh	2.2	1.8	<0.55	3.7	0.56	2.2	1.3	3.6	2.8	9.7	4.3	12	1.1	1.4	7.3	0.85	1.2	1.7	3.6	1.0	3.2	2.4	3.6	1.6
i i	その他(Be)		<0.14	-	-	-	-	0.040	-	-	-	-	- 12	- 1.1	- 1.4	- 7.0	-	- 1.2	- 1.7	-	- 1.0	-		- 0.0	-
-	その他(Cd)	_	<0.096	_	_	_	_	- 0.040	_	_	_	_		_	_	_	_	_	_	-	0.026	0.13	<0.18	-	_
	OC1	0.074	0.090	<0.13	0.29	- 0		0.19	0.045	<0.04	0.077	0.34	<0.2	<0.2	0.28	0.34	0.50	0.22	0.16	0.034	0.020	<0.048	<0.18	<0.025	0.031
	OC2	0.074	0.20	0.18	0.29	0.33	0.34	0.19	0.043	0.43	0.077	0.34	0.30	0.30	0.28	0.50	1.5	0.22	0.10	0.034	0.007	1.0	0.42	0.023	0.69
	OC3		0.61	<0.18		0.33	0.34		0.78			0.72	0.30	0.30	0.39		0.55	0.37				0.41			
-		0.36			<0.21			0.34		0.38	0.47					0.45			0.36	0.28	0.30		0.18	0.33	0.34
-	OC4	0.35	0.33	0.10	0.13	0.11	0.18	0.24	0.19	0.23	0.18	0.25	<0.2	<0.2	0.12	0.25	0.25	0.090	0.26	0.21	0.14	0.27	0.13	0.25	0.18
	Ocpyro	0.45	0.48	0.14	0.19	0.23	0.21	0.29	0.38	0.51	0.73	0.35	0.090	0.090	0.27	0.40	0.16	0.21	0.53	0.46	0.26	0.73	0.35	0.71	0.42
	EC1	0.72	0.77	0.23	0.35	0.28	0.39	0.35	0.48	0.49	0.75	1.1	0.40	0.30	0.25	0.62	0.34	0.34	0.55	0.46	0.60	0.83	0.34	0.80	0.43
	EC2	0.40	0.53	0.19	0.29	0.33	0.45	0.36	0.44	0.47	0.97	0.25	0.30	0.20	0.37	0.41	0.48	0.32	0.47	0.41	0.22	0.79	0.26	0.64	0.32
-	EC3	<0.023	0.027	0	0	0.0050	0.010	0.061	0.074	0.090	0.21	<0.024	<0.05	<0.05	0.032	0.030	0.042	0.030	0.079	0.044	<0.032	0.081	<0.022	<0.034	0.029
	OC	1.9	2.2	0.42	0.87	0.94	1.1	1.6	1.8	1.6	2.2	2.0	1.0	0.80	1.4	1.9	3.0	1.1	2.2	1.5	1.1	2.4	1.1	2.1	1.7
	EC	0.67	0.85	0.28	0.45	0.39	0.64	0.48	0.61	0.54	1.2	1.0	0.60	0.40	0.38	0.66	0.70	0.48	0.57	0.45	0.56	0.97	0.25	0.73	0.36
N	WSOC	0.71	1.5	0.28	0.34	-	-	-	0.71	0.98	1.4	0.94	-	-	1.1	-	1.6	-	-	-	-	-	-	1.5	-

表4-1-60 期間平均値(1月20日~2月3日まで)

(PM2.5, 炭素成分, イオン成分: μg/m³ 無機成分:ng/m³)

<u> 衣4-1-</u>	100 期间	一十岁世	<u>! (   77 4</u>	<u> </u>	ЛОНО	<del>, ()</del>												(PM2.5,	,灰系放	:刀,14	ン 放分:	μg/m	悪機成り	J. Hg/H	<u>,                                      </u>
自治	体名	茨城県	栃木県	群馬県	群馬県	埼玉県	埼玉県	さいたま市	千葉県	千葉県	千葉県	千葉市	東京都	東京都	神奈川県	横浜市	川崎市	相模原市	山梨県	山梨県	長野県	静岡県	静岡県	静岡市	浜松市
	地点名	土浦	真岡	前橋	館林	鴻巣	幸手	さいたま	市原	勝浦	富津	千葉	綾瀬	多摩	大和	横浜	川崎	相模原	甲府	吉田	長野	富士	湖西	静岡	浜松
基本事項	PM2.5濃度	11.9	17.6	8.5	11.1	10.9	11.3	11.8	12.4	8.3	13.9	12.0	11.5	8.0	11.2	11.3	13.1	9.3	11.4	6.5	10.1	7.8	10.7	7.6	10.3
イオン成分	CI-	0.39	0.39	0.088	0.41	0.34	0.32	0.35	0.30	0.12	0.42	0.34	0.31	0.13	0.39	0.20	0.31	0.31	0.096	0.051	0.21	0.051	0.071	0.028	0.0092
	NO3-	1.9	2.6	1.2	1.6	2.4	2.3	2.4	1.7	0.73	1.6	2.1	2.2	1.9	2.7	2.9	2.8	2.3	2.6	1.1	2.2	1.00	1.3	0.34	0.78
	SO42-	1.5	2.3	1.5	1.5	2.1	2.0	1.6	1.9	1.7	2.3	2.0	1.4	1.4	1.7	2.1	2.0	1.7	1.7	1.5	2.0	1.5	2.9	1.9	2.4
	Na ⁺	0.059	0.075	0.030	0.038	0.060	0.075	0.051	0.092	0.073	0.11	0.071	0.057	0.034	0.043	0.053	0.055	0.043	0.022	0.022	0.062	0.029	0.051	0.035	0.048
	NUL +	1.3	1.7	0.97	1.2	1.5	1.5		1.3	0.87	1.5	1.3	1.2		1.5	1.7	1.6	1.5	1.4	0.91	1.4	1.1	1.7	0.92	1.1
	NH ₄ ⁺							_																	
	K [*]	0.076	0.18	0.046	0.045	0.10	0.076	0.056	0.057	0.051	0.068	0.064	0.067	0.049	0.064	0.056	0.069	0.059	0.054	0.059	0.065	0.032	0.069	0.057	0.065
	Mg ²⁺	0.0058	0.014	0.0075	0.0075	0.0032	0.0042	0.0068	0.0023	0.0019	0.0058	0.0074	0.0072	0.0025	0.011	0.0057	0.011	0.0054	0.042	0.042	0.0054	0.0041	0.0069	0.0020	0.0062
	Ca ²⁺	0.037	0.088	0.018	0.048	0.014	0.036	0.069	0.028	0.022	0.13	0.036	0.066	0.039	0.049	0.094	0.066	0.031	0.12	0.13	0.027	0.032	0.023	0.055	0.033
無機成分	Na	_	50	38	42	59	68	72	93	63	107	50	63	28	58	62	47	48	54	31	60	40	77	64	70
, (J.2.7573	Al	82	33	33	28	29	35		40	15	78	15			50	24	16	33	27		23	12	24	12	38
	Si	-	-	-	-		_	158	125	41	219	49			_	107		63	31			7.0	17	19	-
	K	_	116	63	67	85	79		96	80	119	72			60	68	64	61	84			56	112	95	63
	Ca		33	85	85	5.8	18		86	24	251	23	40		80	87	42	36	53	34	25	17	80	47	26
	Sc	0.015	0.070		0.0060	0.015	0.015		0.040	0.040	0.040	0.28	0.10		0.050	0.013	0.0082	0.014				0.0090	0.0090	0.0060	0.055
	T:	4.1	3.9	ZZZ	ZZZ	2.9	4.0		5.4	1.9	9.5	2.8	3.9		6.9	5.8	2.4	3.5	1.4	0.48	2.6	0.70	0.99	0.98	4.3
	\/	0.76	0.49	0.40	0.56	0.72	0.67	0.89	2.8	1.5	5.0	1.2	1.0		1.2	4.3	4.0	0.68	0.28	0.55	0.24	2.5	0.83	1.4	0.69
	Cr.	0.76	0.43	1.2	1.4	0.72	0.07	0.83	3.0	0.63	1.4	1.0			1.2	1.1	2.0	0.80	0.28	0.90	0.24	0.80	0.83	0.73	0.84
	Mn	5.3	5.0	2.5	5.8	4.8	5.2		8.6	2.8	13	6.4		2.7	6.5	7.7	8.8	4.3	2.1	1.2	4.1	1.7	5.8	2.9	4.1
	F-	95	97	80	56	60	68		160	61	374	68	173	40	108	152	132	75	30	13	42	1.7	39	2.5	38
	C-	0.13	0.076	0.12	0.12	0.061	0.060		0.32	0.031	0.11	0.21	0.049		0.11	0.44	0.055	0.029	0.014	0.014	0.018	0.016	1.5	0.014	0.100
	Co	11	0.076	0.12	0.12	0.061	0.060		1.3	0.031	1.9	0.21	0.049	0.040	0.60	1.5	2.0	0.029	0.014	0.014	0.018	0.016			
	NI																						2.4	0.33	0.32
	Gu	7.8 119	2.6	1.2	2.1	3.0	3.3		5.2	1.9	3.8	3.6 18			65	4.8	5.2	2.8	2.8	1.0	2.3	2.7	2.6	2.1	3.4 17
	Zn		33	28	27	30	50		48	16	71				6.9	26	34	16	16	10.0	15	8.1	33	4.1	
	As	0.55	0.65	0.42	0.44	0.44	0.50		0.58	0.43	0.79	0.61	0.79		0.46	0.45	0.61	0.64	0.25	0.22	0.43	0.16	0.73	0.42	0.80
	Se	0.036	0.58	0.26	0.37	1.3	0.43	0.69	0.62	0.38	0.88	0.70	0.62	0.57	1.86	1.6	1.2	2.7	0.15	0.20	0.23	0.11	0.59	0.31	0.57
	Rb		0.32	0.14	0.16	0.17	0.19		0.30	0.19	0.49	0.28	0.10		0.19	0.55	0.20	0.18	0.15	0.099	0.17	0.10	0.25	0.16	0.27
	Мо	0.83	0.52	4.4	1.2	0.82	1.0		0.50	0.21	0.58	0.58	0.74		0.75	1.2	1.3	0.35	0.19	0.10	0.24	0.20	0.48	0.22	0.61
	Sb	1.8	1.2	ZZZ	ZZZ	1.3	1.6		0.99	0.56	0.98	1.9	1.2		1.0	3.3	1.1	0.92	0.41	0.35	0.57	0.56	0.68	0.54	0.66
	Cs	0.019	0.031	0.018	0.019	0.040	0.040		0.038	0.022	0.079	0.19			0.085	4.6	0.026	0.018		0.0060	0.012	0.0021	0.011	0.0068	0.061
	Ва	2.0	1.9	2.1	1.7	1.7	1.8		2.2	0.65	1.9	1.6	2.9		3.9	5.0	2.5	1.9	1.6	0.95	1.0	0.78	1.6	0.74	1.4
	La	0.066	0.033	0.013	0.033	0.10	0.11	0.11	0.13	0.087	0.11	0.17	0.080	0.045	0.055	5.5	0.053	0.091	0.12	0.12	0.018	0.022	0.037	0.12	0.066
	Се	0.14	0.067	0.025	0.065	0.13	0.21	0.22	0.14	0.035	0.13	0.17	0.14		0.11	6.5	0.099	0.16	0.026	0.017	0.032	0.034	0.046	0.030	0.13
	Sm	0.0050	0.045	0.0028	0.0011	0.018	0.018		0.014	0.014	0.014	0.25	0.10	0.10	0.070	9.5	0.0070	0.011		0.00090	0.0012	0.0029	0.0021	0.0014	0.036
	Hf	0.010	0.055	0.012	0.012	0.012	0.010		0.022	0.022	0.022	0.15	0.050	0.050	0.080	0.0065	0.017	0.0070	0.0019	0.00070	0.010	0.0016	0.0028	0.00096	0.033
	W	0.13	0.043	0.11	0.050	0.059	0.079	0.11	0.072	0.073	0.11	0.18	0.077	0.033	0.15	0.29	0.35	0.084	0.072	0.015	0.056	0.072	0.30	0.048	0.31
	Та	-	0.15	0.013	0.013	0.014	0.014		0.014	0.017	0.014	0.21	0.025	0.025	0.018	0.0075	0.014	0.0065	0.00060	0.00060	-	0.020	0.020	0.00060	0.013
	Th	0.0043	0.050	0.011	0.010	0.040	0.040	0.0041	0.012	0.012	0.012	0.15	0.035	0.035	0.14	1.7	0.0070	0.0065	0.0085	0.0016	0.0026	0.00049	0.0011	0.0016	0.055
	Pb	4.9	5.3	1.9	3.5	5.9	5.7	4.1	8.3	4.4	9.9	6.7	12	3.3	4.5	4.7	4.5	3.4	3.0	2.4	2.8	3.0	6.9	4.2	4.6
	その他(Be)	_	0.070	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	_
	その他(Cd)	-	0.12	-	-	-	-	0.14	-	-	-	-	-	-	-	-	-	-	-	-	0.080	0.11	0.17	-	-
炭素成分	OC1	0.12	0.19	0.21	0.38	0.044	0.13		0.065	0.034	0.090	0.27	0.13	0.10	0.27	0.42	0.35	0.32	0.13	0.045	0.048	0.024	0.024	0.032	0.038
	OC2	0.87	0.80	0.35	0.48	0.56	0.60		1.0	0.60	1.00	0.91	0.52	0.43	0.64	0.73	1.3	0.60	1.1	0.64	0.49	0.93	0.71	0.79	0.87
	OC3	0.57	0.70	0.32	0.42	0.57	0.57	0.66	0.63	0.45	0.64	0.50	0.52	0.43	0.59	0.56	0.64	0.44	0.54	0.32	0.46	0.42	0.34	0.33	0.31
	OC4	0.51	0.43	0.25	0.29	0.31	0.35	0.45	0.31	0.24	0.31	0.48	0.31	0.26	0.27	0.30	0.37	0.21	0.33	0.23	0.21	0.27	0.22	0.22	0.22
	Ocpyro	0.69	0.79	0.37	0.43	0.43	0.44		0.69	0.29	0.88	0.49	0.24		0.47	0.49	0.44	0.42	0.75	0.46	0.42	0.57	0.69	0.54	0.65
	EC1	1.3	1.4	0.68	0.89	0.80	0.93	0.86	1.3	0.96	1.4	1.5	0.91	0.63	0.64	1.0	1.0	0.80	1.0	0.55	0.91	0.79	0.95	0.75	0.87
	EC2	0.31	0.41	0.30	0.37	0.42	0.46	0.53	0.52	0.42	0.81	0.30	0.39	0.38	0.56	0.40	0.42	0.33	0.69	0.45	0.27	0.69	0.43	0.46	0.47
	EC3	0.012	0.016	0.0096	0.0093	0.0082	0.015	0.064	0.078	0.072	0.14	0.012	0.025	0.025	0.036	0.021	0.032	0.030	0.063	0.047	0.024	0.062	0.028	0.024	0.039
	ОС	2.7	2.9	1.5	2.0	1.9	2.1	2.8	2.7	1.6	2.9	2.6	1.8	1.5	2.3	2.5	3.1	2.0	2.8	1.7	1.6	2.2	2.0	1.9	2.1
	EC	0.96	1.1	0.61	0.85	0.81	0.97	0.91	1.2	1.2	1.5	1.4	1.0	0.76	0.76	0.96	1.1	0.75	1.1	0.58	0.78	0.97	0.71	0.68	0.72
	WSOC	1.1	2.1	0.64	0.85	-	-	-	1.0	1.2	1.5	1.1	-	-	1.6	-	1.9	-	-	-	-	-	-	1.3	-
					2.50			V # + H	14日間の			A+ 101 #0	BB ( + = + 1/	かハヘル	計質から階	≥M ±1-	+A-11-T-0	B/± + :# 4	かはについ	· - / - 4	出下限值(	01/2を田	HO BB 3	正 内値を管	年出した

※基本は14日間の期間平均値。ただし、欠測期間は該当部分のみ計算から除外。また、検出下限値未満の値については、検出下限値の1/2を用いて期間平均値を算出した。

表4-2 フィルターパック法によるガス状成分及びエアロゾル成分濃度

(nmol/m³)

124-2	7111			- み ② / J . ング期間	7 17 190 2	/) // (	<u>,                                    </u>		15073 11.			-	エアロゾ	ル(粒子)	)	(1	nmol/m")
調査地点名	試料	盟	<del>カンフリ</del> 始	終	7												
(自治体名)	番号	Date	Time	Date	Time	SO2	HNO3	HCI	NH3	SO42-	NO3-	CI-	NH4+	Na+	K+	Mg2+	Ca2+
	1	2015/7/27	10:00	2015/7/28	9:55	37.7	5.6	17.3	272	14.3	15.8	11.6	44.5	31.4	0.0	5.2	4.2
	2	2015/7/28	10:00	2015/7/29	9:55	55.7	13.4	15.1	250	9.3	3.4	1.1	31.6	8.5	0.0	0.1	0.0
	3	2015/7/29	10:00	2015/7/30	9:55	40.9	21.7	13.5	417	28.5	10.2	1.1	77.0	15.2	0.0	0.1	0.0
土浦	4	2015/7/30	10:00	2015/7/31	9:55	38.0	21.2	17.6	322	69.9	32.5	4.3	191.5	19.8	0.0	2.9	7.3
(茨城県)	5	2015/7/31	10:00	2015/8/1	9:55	64.5	32.0	12.0	169	91.6	35.2	1.9	248.3	14.0	0.0	0.5	9.5
	6	2015/8/1	10:00	2015/8/2	9:55	62.8	76.0	39.4	157	176.1	51.7	4.6	433.1	25.4	1.2	2.5	17.2
	7	2015/8/2	10:00	2015/8/3	9:55	66.7	31.7	15.5	275	68.8	10.9	1.6	161.9	9.5	1.0	4.5	10.2
	1	2015/7/27	10:00	2015/7/28	10:00	77.3	38.1	-	591	41.3	12.8	1.7	84.5	9.0	2.3	1.8	5.3
	2	2015/7/28	10:00	2015/7/29	10:00	25.6	18.2	-	399	48.0	10.2	0.7	97.3	4.2	2.5	0.9	4.0
	3	2015/7/29	10:00	2015/7/30	10:00	34.7	-	0.0	395	73.3	21.5	0.3	137.2	13.4	2.4	1.9	3.2
前橋	4	2015/7/30	10:00	2015/7/31	10:00	32.6	-	-	568	53.0	17.7	0.7	110.0	4.0	1.6	0.9	3.8
(群馬県)	5	2015/7/31	10:00	2015/8/1	10:00	39.7	77.2	-	851	119.2	57.7	3.3	272.3	8.2	6.4	1.9	8.6
	6	2015/8/1	10:00	2015/8/2	10:00	25.0	-	-	440	124.0	17.0	0.4	233.0	6.1	6.2	1.6	7.0
	7	2015/8/2	10:00	2015/8/3	10:00	26.1	41.6	12.3	298	168.6	18.2	0.8	321.7	8.9	12.2	2.7	8.7
	1	2015/7/27	10:28	2015/7/28	10:07	0.0	0.0	0.0	0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0
	2	2015/7/28	10:08	2015/7/29	10:00	0.0	0.1	0.1	0	0.2	0.1	0.0	0.3	0.0	0.0	0.0	0.0
70.25	3	2015/7/29	10:03	2015/7/30	10:00	0.0	0.1	0.0	0		0.1	0.0	0.2	0.0	0.0	0.0	0.0
鴻巣	4	2015/7/30	10:02	2015/7/31	10:40	0.0	0.1	0.0	0		0.1	0.0	0.2	0.0	0.0	0.0	0.0
(埼玉県)	5	2015/7/31	10:42 10:02	2015/8/1 2015/8/2	10:00 10:00	0.0	0.2	0.1	0	0.3	0.1	0.0	0.6	0.0	0.0	0.0	0.0
	6 7	2015/8/1 2015/8/2	10:02	2015/8/2	10:00	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1	2015/8/2	10:02	2015/8/3	10:00	230.5	64.2	120.4	283	114.3	92.4	150.8	136.7	185.9	4.9	17.6	65.1
	2	2015/7/28	10:00	2015/7/29	10:00	155.2	58.3	132.3	622	180.0	92.4	21.2	271.3	75.5	5.0	11.9	18.9
	3	2015/7/29	10:00	2015/7/30	9:59	116.3	53.6	113.3	388	134.6	75.8	21.2	204.9	30.4	4.2	9.3	22.3
市佰	4	2015/7/30	9:59	2015/7/31	9:59	204.9	81.8	117.1	413	203.0	86.2	18.8	338.6	21.4	5.2	11.0	76.2
市原 (千葉県)	5	2015/7/31	9:59	2015/8/1	0:00	509.4	158.9	214.6	598	318.9	140.9	42.4	501.1	38.2	5.6	12.7	41.9
	6	2015/8/1	0:00	2015/8/2	9:59	301.0	118.1	111.6	395	344.7	94.2	25.4	593.4	38.9	2.9	5.6	81.6
	7	2015/8/2	9:59	2015/8/3	9:59	290.2	74.0	127.2	481	278.5	74.0	21.0	471.0	21.7	5.2	7.0	64.1
	1	2015/7/27	10:00	2015/7/28	9:30	212.4	21.2	26.0	614	2.7	7.9	<3.1	12.2	3.9	<1.4	0.2	0.8
	2	2015/7/28	10:00	2015/7/29	9:30	63.1	17.6	37.0	302	125.9	63.0	<3.1	260.6	41.5	2.5	1.9	12.2
	3	2015/7/29	15:12	2015/7/30	9:33	94.3	25.6	28.2	388	58.7	39.4	3.6	171.5	21.0	3.3	0.9	8.0
綾瀬	4	2015/7/30	10:04	2015/7/31	9:35	81.2	3.4	13.2	398	22.1	12.6	<3.1	63.0	4.5	<1.4	0.2	1.6
(東京都)	5	2015/7/31	10:00	2015/8/1	9:30	266.9	37.6	22.0	624	22.2	9.2	<3.1	63.4	1.9	<1.4	0.1	1.0
	6	2015/8/1	10:00	2015/8/2	9:30	193.1	97.1	32.0	329	202.0	76.4	4.9	471.7	26.3	4.7	1.4	12.0
	7	2015/8/2	10:00	2015/8/3	9:30	182.2	10.2	33.0	486	14.7	5.5	<3.1	49.5	7.7	2.7	0.1	1.1
	1	2015/7/27	10:00	2015/7/28	9:30	18.8	12.8	22.3	121	29.8	28.9	13.5	46.2	39.8	4.4	4.9	0.0
	2	2015/7/28	10:00	2015/7/29	9:30	-	-	-	-	-	-	-	-	-	-	-	-
	3	2015/7/29	10:00	2015/7/30	9:30	29.2	35.9	22.4	108	93.7	19.5	2.9	154.9	21.1	2.9	4.0	1.9
甲府	4	2015/7/30	10:00	2015/7/31	9:30	16.3	14.3	11.7	102	66.8	8.9	5.0	114.6	11.1	4.3	0.0	1.7
(山梨県)	5	2015/7/31	10:00	2015/8/1	9:30	184.6	6.4	10.5	287	3.9	0.9	1.3	4.7	0.9	0.2	3.3	0.0
	<u>6</u> 7	2015/8/1	10:00	2015/8/2	9:30	20.6 37.7	19.1 20.1	14.7	94 90	92.6 106.0	4.9	1.0	160.0	1.0	5.1 2.6	3.6 7.2	0.6 2.6
		2015/8/2	10:00	2015/8/3 2015/7/28	9:30			18.1			8.8	0.6	180.5	3.0			
	2	2015/7/28	10:06 9:56	2015/7/28	9:44 9:41	11.4	24.2	0.0	142	19.7 49.0	0.0	2.5 1.6	43.3 100.3	9.8 7.5	2.4	1.8	3.1
	3	2015/7/29	9:56	2015/7/29	9:41	9.6 8.6	23.5 25.4	0.0	148 113	87.3	13.8 14.0	0.1	195.9	8.1	2.3	2.6 0.9	4.9 9.3
長野	4	2015/7/29	9:55	2015/7/30	9:44	8.7	37.2	0.0	143	125.9	13.5	1.8	262.7	13.3	3.4	1.6	0.0
(長野県)	5	2015/7/30	10:04	2015/8/1	9:49	9.7	39.7	0.0	217	128.2	12.7	0.0	273.4	8.1	3.4	1.0	0.0
(TX ±1 7K)	6	2015/8/1	9:54	2015/8/2	9:33	10.1	39.4	0.0	225	93.1	15.4	1.4	194.0	6.3	6.4	1.4	7.8
	7	2015/8/2	9:44	2015/8/3	9:47	10.5	26.3	0.0	125	68.9	11.3	1.5	154.5	3.6	3.2	0.8	0.0
	1	2015/7/27	10:00	2015/7/28	10:00	51.7	4.4	22.4	442	40.4	38.1	116.1	62.2	205.7	9.6	14.7	14.1
	2	2015/7/28	10:00	2015/7/29	10:00	64.4	9.9	13.2	238	50.9	29.6	7.9	125.3	44.3	7.4	7.6	14.7
	3	2015/7/29	10:00	2015/7/30	10:00	91.9	23.6	2.8	292	105.1	28.1	4.1	261.0	98.0	7.8	5.6	2.2
富士	4	2015/7/30	10:00	2015/7/31	10:00	67.3	27.2	16.2	270	98.4	14.0	1.6	270.6	16.5	6.0	4.3	0.0
(静岡県)	5	2015/7/31	10:00	2015/8/1	10:00	72.7	13.8	0.0	222	124.8	20.5	1.3	336.0	14.6	7.3	4.8	2.0
	6	2015/8/1	10:00	2015/8/2	10:00	79.5	25.6	12.7	173	130.5	15.9	1.7	327.6	14.2	6.8	4.4	0.5
	7	2015/8/2	10:00	2015/8/3	10:00	79.2	16.6	0.4	239	127.3	16.4	2.7	337.1	14.9	4.6	4.7	8.7
		10.0, 3/ E	10.00	20.0, 0, 0	10.00	, , , ,	10.0	0.7	200	127.0	10.7	/	007.1		1.0		0.7

計算結果がマイナス値となったため、0に修正した

# 5 調査地点の概況

調査地点番号 1

つちうら

調査地点名 土浦(茨城県土浦保健所)

種類 一般局 都県市コード 8203

住所 茨城県土浦市下高津 2-7-46

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 36°04′16″・東経 140°11′27″〈3m〉

用途地域住居地域採取位置局舎屋上

工場及び道路等付近の状況:保健所駐車場の一角にあり、周囲は病院・住宅等、北西方向約300mに国道354号線がある。

地形等の自然条件: 霞ヶ浦から西に 2.6km の微高地上に位置し、北約 700m には東西に桜川が流れている。北約 10km には筑波山麓がある。



測定局周辺の風景





調査地点名 真岡(栃木県真岡市役所)

種類 一般局 都県市コード 9209

住所 栃木県真岡市荒町 5191

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 36°26′25″・東経 140°00′45″〈10m〉

用途地域 近隣商業地域

採取位置 真岡市役所 庁舎屋上

工場及び道路等付近の状況:周囲は住宅地であり、東部には田地が広がる。 南東約 500m に国道 294 号があり、工業団地は西側約 5km にある。

地形等の自然条件:付近は平坦地で拓けている。市役所の道路を挟んですぐ脇を北東から南西に五行川が流れている。

#### 調査地点位置図





まえばし 調査地点名 前橋(群馬県衛生環境研究所)

一般局 種類 都県市コード 10201

住所 群馬県前橋市上沖町 378 調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 36°24′18"・東経 139°05′45"〈3m〉

用途地域 指定なし

群馬県衛生環境研究所敷地内の地上(大気汚染常時監視局) 採取位置

工場及び道路等付近の状況: 付近は田園地帯であり、約500m南には住宅地が広が る。約2km 北に小規模の工業団地がある。約150m 北に県道が東西に走っている。

地形等の自然条件:赤城山麓の南にあり、付近は平坦地である。約300m 南に桃の木川があり、西から東に流れる。

#### 調査地点位置図





中央の建物が前橋一般局、 手前は研究所庁舎



PM2.5 採取装置 (FRM2025) (左・中央)、 PM2.5 自動測定装置(右)

種類 一般局 都県市コード 10207

住所 群馬県館林市仲町 14-1

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 36°14′59″・東経 139°31′57″〈3m〉

**用途地域** 商業地域

採取位置 地上

工場及び道路等付近の状況:周辺は市街地である。西 1km に国道 122 号、南 1.6km に国道 354 号があり、国道 122 号沿いに化学工場がある。

地形等の自然条件:県東南部で、付近は平坦地である。北 3km に渡良瀬川、南 6km に利根川が流れ、多くの池沼が点在する。夏は酷暑となり、最高気温は全国トップレベル。

# 調査地点位置図





調査地点名 鴻巣 (埼玉県鴻巣市役所)

**種類** 一般局 **都県市コード** 11217

住所 埼玉県鴻巣市中央 1-1

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 36°3′56"・東経 139°31′16" 〈4m〉

用途地域 第一種中高層住居専用地域

採取位置 局舎屋上

工場及び道路等付近の状況: 付近は住宅街であるが、約500m 北からは田園地帯が 広がる。北300m には免許センター、南西約420m に国道17号線がある。

**地形等の自然条件**: 周辺は平坦地で、北約 600m のところに西から東に元荒川が流れている。

# 調査地点位置図





調査地点名 幸手(幸手測定局)

種類 一般局 都県市コード 11240

住所 埼玉県幸手市幸手 2262

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 36°4′30″・東経 139°43′54″〈4m〉(標高 7.7m )

用途地域指定なし採取位置局舎屋上

工場及び道路等付近の状況: 付近は田園地帯であるが、約300m 西には住宅街が広がる。 西約750m に国道4号線がある。

地形等の自然条件:周辺は平坦地で、北約1200mのところに西から東に中川が流れている。

# 調査地点位置図





調査地点名 さいたま(大宮測定局)

種類 一般局 **都県市コード** 11103

住所 埼玉県さいたま市大宮区大門町 3-3

調査地点の緯度・経度(世界測地系)〈比高m〉

· 北緯 35°54′22″· 東経 139°37′51″〈10 m〉

**用途地域** 商業地域

採取位置 地上

工場及び道路等付近の状況: 大宮小学校の校庭横にあり、付近は商業地域である。 周囲に大規模な工場はない。西約 1km に一般国道 17 号、西約 3km に首都高速埼玉大宮線、 一般国道 17 号バイパスがある。

地形等の自然条件: 周辺は平坦地で、東約 1.5km に芝川が流れている。 調査地点位置図



測定局周辺の風景





調査地点名 市原 (千葉県環境研究センター)

種類 一般局 都県市コード 12219

住所 千葉県市原市岩崎西 1-8-8 調査地点の緯度・経度(世界測地系)(比高m)

・北緯 35°31′36″・東経 140°04′05″〈海抜 5m〉

用途地域 準工業地域

いちはら

採取位置 千葉県環境研究センター屋上 (測定局の南南西 80m)

工場及び道路等付近の状況: 京葉臨海工業地帯に隣接し、北東から南西に 国道 16 号 (24 時間交通量 36,742 台 大型車混入率 29.1%) があり、この 道路と庁舎の間には緑地公園がベルト状にある。庁舎は特別工業地区内に ある。

地形等の自然条件:付近は平坦地で、北東から南西側に東京湾、海までの最短距離は北西 700m である。東側には南東から北北西にかけて東京湾へ流れる二級河川の養老川があり、川への最短距離は東 1000m である。



測定局周辺の風景



中央の建物が市原岩崎西局



本館屋上の FRM2025i

かつうら

調查地点名 勝浦 (千葉県勝浦市立北中学校)

種類 一般局 都県市コード 12218

住所 千葉県勝浦市小羽戸 58-2

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°10′45″・東経 140°15′56″〈海抜 100m〉

用途地域無指定地域採取位置測定局舎屋上

工場及び道路等付近の状況:県道勝浦夷隅線(24時間交通量,4900台)から50mほど入ったところにある。

地形等の自然条件:海岸までは直線で 4.7km あり、周囲は森林と畑で民家は少ない。

# 測定局位置図







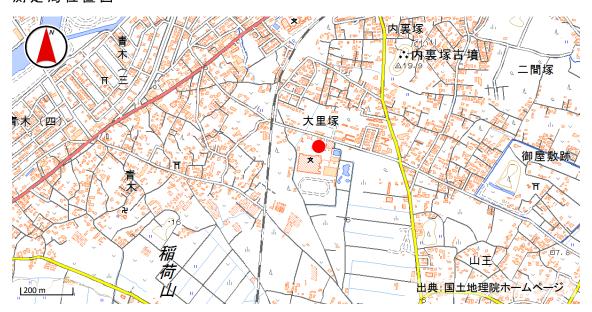
調查地点名 富津 (千葉県富津市富津中学校)

種類 一般局 都県市コード 12226

住所 千葉県富津市下飯野 1135

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°19′20″・東経 139°51′13″〈海抜 9m〉


用途地域 第一種低層住居専用地域

採取位置 測定局舎屋上

工場及び道路等付近の状況: 北西 600m の方向に国道 16 号(24 時間交通量 9,485 台)がある。約 3km 北に新日鐵住金の製鉄所がある。周辺は砂利の駐車場。

地形等の自然条件:平坦で周辺は水田が多い。東京湾が北から南西の方向にあり最短距離は北西 1.3km である。二級河川の小糸川が東から北へ流れ、最短距離は北東 1.6km である。

# 測定局位置図





調査地点名 千葉 (千葉市立千城台北小学校)

種類 一般局 都県市コード 12104

住所 千葉市若葉区千城台北 1-4-1 調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°37′43″・東経 140°11′01″〈5m〉

用途地域 第一種低層住居専用地域

採取位置 局舎屋上

工場及び道路等付近の状況: 大規模な住宅団地内の北端にある小学校の一角に位置している。周囲に大規模な工場はない。

地形等の自然条件:測定地点付近は平地であり、北側に雑木林がある。測定地点から南西約 1.5km のところに、北西から南東に川が流れている。

#### 測定局位置図





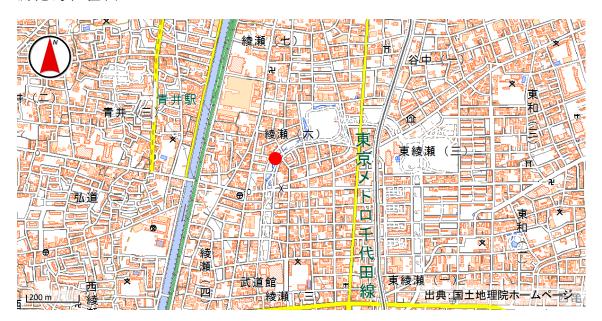
調査地点名 綾瀬(東京都立東綾瀬公園)

種類 一般局 **都県市コード** 13121

住所 東京都足立区綾瀬 6-23

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°46′13″・東経 139°49′33″〈3m〉


用途地域 住居地域

採取位置 地上

工場及び道路等付近の状況:都立東綾瀬公園内にあり、周囲は中低層の住宅である。 付近に幹線道路などはない。

地形等の自然条件:付近は平坦地である。

# 測定局位置図



測定局周辺の風景





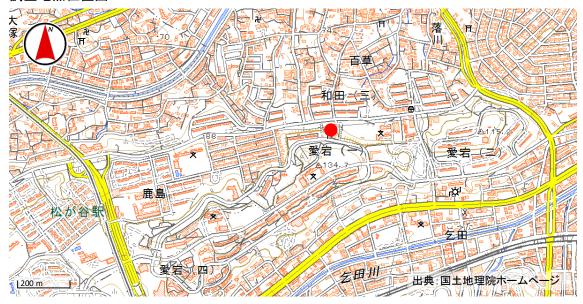
調査地点名 多摩 (愛宕測定局)

種類 一般局 都県市コード 13224

住所 東京都多摩市愛宕 1-65-1

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°38′05″・東経 139°25′54″〈3m〉


用途地域 住居地 域

採取位置 地上

工場及び道路等付近の状況:多摩市所有の緑地帯の中にあり、周囲は神社・小学校・ 住宅等がある。付近に幹線道路などはない。

地形等の自然条件:愛宕山傾斜地の中腹にある。

# 調査地点位置図







調査地点名 大和 (神奈川県大和市役所)

**種類** 一般局 **都県市コード** 14213

住所 神奈川県大和市下鶴間 1-1-1

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°29′14″・東経 139°27′28″〈2m〉

用途地域住居地域採取位置局舎屋上

工場及び道路等付近の状況:付近は住宅地で学校、病院等がある。北にショッピングモールが隣接している。南 400m には国道 246 号、南 600m には東名高速道路がある。

地形等の自然条件:付近は平坦地で、東 800m には境川があり、北から南に流れている。

#### 調査地点位置図







局舎(コンテナ)上に採取機を設置し、試料採取を実施。

調查地点名 横浜 (神奈川県横浜市磯子区総合庁舎)

種類 一般局 **都県市コード** 14107

住所 神奈川県横浜市 磯 子 区 磯 子 3-5-1

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°24′06"・東経 139°37′05"〈10m〉

用途地域 商業地域

採取位置 磯子区総合庁舎屋上

工場及び道路等付近の状況:北約1~2kmに都市ガス工場、LNG火力発電所及び石炭火力発電所があり、北東約2kmには、石油精製工場がある。また、西北西約50mに国道16号線があり、東南東30mには、市道磯子方面578号線がある

地形等の自然条件:横浜市南東部に位置し、根岸湾までの最短距離は南東約500mである。また、JR根岸線以西は数十メートルの崖となっている。 調査地点位置図



測定局周辺の風景





調査地点名 川崎 (田島測定局・田島こども文化センター)

種類 一般局 **都県市コード** 14131

住所 神奈川県川崎市川崎区田島町 20-23

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°30′57″・東経 139°42′42″〈3m〉

用途地域 住居地域

採取位置 地上

工場及び道路等付近の状況:採取場所から南南東 490m 先を県道東京大師横浜線、首都高速横浜羽田線が走り、その先は臨海工業地帯である。北東8km に羽田空港、東 5km に川崎港がある。

地形等の自然条件:付近は平坦地で住宅が密集しており緑の少ない地点である。南東5kmに東京湾、北2.4kmに多摩川が流れる。



測定局周辺の風景





さがみはら

調查地点名 相模原(神奈川県相模原市役所)

**種類** 一般局 都県市コード 14209

住所 神奈川県相模原市中央 2-11-15 調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°34′19″・東経 139°22′23″〈3m〉

**用途地域** 商業地域

採取位置 地上

工場及び道路等付近の状況:付近は公共施設が多い官庁街であり、西側には住宅地が広がっている。北約 200mに国道 16 号がある。相模原台地北部に位置しており、付近は平坦地である。

地形等の自然条件:相模原台地北部に位置しており、付近は平坦地である。 調査地点位置図



測定局周辺の風景





調查地点名 甲府(山梨県衛生環境研究所)

種類 一般局 都県市コード 19201

住所 山梨県甲府市富士見 1-7-31

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°40′19″・東経 138°33′01″ 〈4.5m〉

用途地域住居地域採取位置局舎屋上

工場及び道路等付近の状況: 甲府市外の北西部に位置しており、付近は住宅地域で工場はない。交通量が多い道路として北約100m及び400mに幹線道路があるが、NO₂の環境基準超過の事例はない。

地形等の自然条件: 甲府盆地の北西部、標高 280m の地点で、北〜東側は山地に近接し、西側約 100m を荒川が流れる。測定局舎南側に隣接する形で託児所があり、東風または西風が卓越している。



測定局周辺の風景





ました 調**査地点名** 吉田(富士吉田合同庁舎)

種類 一般局 都県市コード 19202

住所 山梨県富士吉田市上吉田1丁目2-5

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°28′50″・東経 138°48′03 ″〈3m〉

用途地域 住居地域

採取位置 地上

工場及び道路等付近の状況:富士吉田市の中心部に位置し、学校が隣接されている。周囲には住宅及び商業施設があるが、大規模な工場等は無い。交通量が多い道路として北東側約500m及び東側750mに幹線道路がある。地形等の自然条件:富士山の北側、富士五湖の中東部の標高800mに位置する。西側約150mに川が流れているが、ふだんの水量は少ない。



測定局周辺の風景





ながの

調查地点名 長野(長野県環境保全研究所)

種類 一般局 都県市コード 20201

住所 長野県長野市安茂里米村 1978 調査地点の緯度・経度(世界測地系)〈比高m〉


・北緯 36°38′07″・東経 138°10′43″〈4m〉

用途地域 第一種低層住居専用地域

採取位置 局舎屋上

工場及び道路等付近の状況: 長野市街地の南西部に位置し、東側に裾花川が流れている。周囲は住居地域であるが、1km 以内には食品工場が点在する。 東約 300m と北約 600m には、交通量の多い国道等の幹線道路がある。

地形等の自然条件: 南西から北東に流れる千曲川に沿った紡錘形の盆地で、盆地の幅は約8kmである。盆地底部の標高は海抜300~400mで、周囲は海抜1000~2000mの山地に囲まれる。



測定局周辺の風景





調査地点名 富士 (静岡県富士市救急医療センター)

種類 一般局 都県市コード 22210

住所 静岡県富士市津田蓮台場 217 調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 35°09′15″・東経 138°40′39″〈3m〉

用途地域工業地域採取位置局舎屋上

工場及び道路等付近の状況: 富士市街地の南東部に位置し、周囲は工場地域であるが、製紙工場を中心に様々な工場が点在する。南約 1km に東海道新幹線、北約 2.8km に東名高速自動車道があり、また北約 200mと西約 10m に比較的交通量の多い国道等の幹線道路がある。

地形等の自然条件:付近は平坦地で、西南約200mに潤井川が西から南に流れ、田子の浦港にそそいでいる。



測定局周辺の風景





調查地点名 湖西 (静岡県湖西市役所)

こさい

種類 一般局 **都県市コード** 22221

住所 静岡県湖西市吉美 3268

調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 34°43′08″・東経 137°31′51″〈5m〉

用途地域 第二種住居地域

採取位置 局舎屋上

工場及び道路等付近の状況:周囲には主に自動車関連や電器関連の工場が点在して おり、東側には主要幹線道路の国道301号が通っている。また、北側ではミカン栽培など の農業や養豚などの畜産が行われている。

地形等の自然条件:静岡県の最西端に位置し、浜松市、豊橋市に隣接している。南側約5kmには遠州灘、東側は浜名湖が面している。

#### 調査地点位置図







調査地点名 静岡(静岡県静岡市立服織小学校)

種類 一般局 都県市コード 22101

住所 静岡県静岡市葵区羽鳥 6-9-1 調査地点の緯度・経度(世界測地系)〈比高m〉

・北緯 34°59′06″・東経 138°20′09″〈3m〉

用途地域住居地域採取位置局舎屋上

工場及び道路等付近の状況: 静岡市街の北西部にあり、小学校の敷地の隅に設置されている。周辺は住宅地で大きな工場はない。交通量が多い道路として東約1.4kmに国道1号線バイパス及び南約200mに国道362号線がある。

地形等の自然条件:付近は平坦で、住宅と田畑が混在している。東~北~西側は山地に、東~南~西側は安倍川と藁科川に囲まれている。標高は36mであり、北西の風が多い。

#### 調査地点位置図







調査地点名 浜松 (静岡県浜松市立葵が丘小学校)

種類 一般局 都県市コード 22131

住所 静岡県浜松市中区高丘東 3-51-1 調査地点の緯度・経度(世界測地系)(比高m)

・北緯 34°45′43″・東経 137°43′03″〈49m〉

用途地域住居地域採取位置局舎屋上

工場及び道路等付近の状況:住宅地の中であるが、約300m 北には東名高速道路が東西に走っており、約300m 以南には工業地域が広がっている。地形等の自然条件:平坦地の住宅地内にあり、近傍には河川などはない。1.5km ほど東には染地川や馬込川が南北に流れている。7~8km ほど西から南西にかけては浜名湖が広がっている。

# 調査地点位置図







# 6 精度管理結果

# 6.1 イオン成分

# 6.1.1 試料の調製方法

陰イオン、陽イオンそれぞれについて、下記の手順で精度管理試料を調製し、 各機関へ未知濃度試料として配布した。調製濃度を表 6-1 に示す。

#### (1) 陰イオン混合試料

市販の  $Cl^-$ 、 $NO_3^-$ 、 $SO_4^{2-}$ 混合標準液(それぞれ 20, 100,100 mg/L) 25mL を 1000mL メスフラスコに分取後、超純水でメスアップし、精度管理試料(陰イオン)とした。

#### (2) 陽イオン混合試料

市販の Na⁺、NH₄⁺、K⁺、Mg²⁺、Ca²⁺混合標準液(それぞれ 20,25,50,30,50 mg/L) 50mL を 1000mL メスフラスコに分取後、超純水でメスアップし、精度管理試料(陽イオン)とした。

表 6-1 精度管理試料の調製濃度(イオン成分)

(単位:mg/L)

_		陰イオン			陽イオン								
	Cl ⁻	$NO_3^-$	SO ₄ ²⁻	Na⁺	$\mathrm{NH_4}^+$	K⁺	${\rm Mg}^{2^+}$	Ca ²⁺					
調製濃度	0.50	2.5	2.5	1.0	1.25	2.5	1.5	2.5					

# 6.1.2 各機関の測定結果

測定結果を表 6-2 に示す。

#### (1) 陰イオン

各機関の測定結果の平均値は、調製濃度と概ね一致した。

 $Cl^-$ 、 $NO_3^-$ 、 $SO_4^{2-}$ の成分については、機関によるバラツキが CV で 9%以内であり、概ね良好であった。

## (2) 陽イオン

各機関の測定結果の平均値は、調製濃度と概ね一致した。

 $Na^+$ 、 $NH_4^+$ 、 $K^+$ 、 $Mg^{2+}$ については、機関によるバラツキが CV で 8%以内であり、概ね良好であった。

 $Ca^{2+}$ については、平均値から 25%程度過小な値を示した機関が 1 機関あった ため、CV で 11%となった。

表 6-2 各機関の精度管理試料測定結果(イオン成分)

(単位:mg/L)

機関番号-		陰イオン				陽イオン		
	Cl	$NO_3^-$	SO ₄ ²⁻	Na ⁺	$NH_4^+$	$K^{^{+}}$	Mg ²⁺	Ca ²⁺
1	0.57	2.6	2.7	1.1	1.4	2.7	1.6	2.8
2	0.54	2.4	2.4	0.84	1.4	2.6	1.4	2.7
3	0.50	2.5	3.1	0.99	1.2	2.5	1.4	2.4
4	0.52	2.4	2.4	0.96	1.3	2.4	1.5	2.4
5	0.52	2.4	2.4	0.99	1.3	2.5	1.5	2.5
6	0.53	2.5	2.5	0.99	1.2	2.6	1.4	2.2
7	0.47	2.1	2.1	0.88	1.2	2.5	1.5	2.4
8	0.52	2.5	2.3	1.0	1.5	2.3	1.4	2.1
9	0.55	2.4	2.5	1.0	1.2	2.4	1.5	2.2
10	0.51	2.3	2.2	0.98	1.2	2.4	1.1	1.8
11	0.55	2.7	2.6	0.99	1.2	2.5	1.5	2.5
12	0.54	2.6	2.5	0.94	1.2	2.4	1.6	2.8
13	0.54	2.4	2.4	0.96	1.2	2.5	1.5	2.4
14	0.56	2.4	2.3	1.0	1.3	2.5	1.5	2.5
15	0.56	2.5	2.5	0.99	1.2	2.4	1.5	2.4
平均值	0.53	2.4	2.5	0.97	1.3	2.5	1.5	2.4
標準偏差	0.03	0.14	0.23	0.06	0.10	0.10	0.12	0.26
CV(%)	5	6	9	6	8	4	8	11
調製濃度	0.50	2.5	2.5	1.0	1.25	2.5	1.5	2.5

#### 6.2 炭素成分

## 6.2.1 試料の調製方法

2台のハイボリウムエアサンプラーで大気粉塵を同時に採取した。ろ紙は石英繊維ろ紙を用いてそれぞれろ紙①、ろ紙②とした。大気捕集量は、ろ紙①が 1008.1  $m^3$ 、ろ紙②が 1008.2 $m^3$  であった(ろ紙の捕集面積 400 $cm^2$ )。それらのろ紙をカッターで $\phi$  47mm に切り抜き、ペトリスライドに入れ、検体とした。また、新品の石英繊維ろ紙も同様に切り抜き、ブランクろ紙とした。

#### 6.2.2 各機関の測定結果

測定結果(検体の値からブランクろ紙の値を差し引いた値)を表 6-3 に示す。 各機関の測定結果については、いずれの成分も平均値からのズレが 30%以上の 測定値はなかったが、CV は OC が 13%、EC が 9%、Char-EC が 9%、WSOC が 15%であり、OC 及び WSOC は若干バラツキが大きかった。

また、ろ紙の違い(ろ紙①、ろ紙②)及び測定機種の違い(S: Sunset Lavoratory、D: DRI MODEL2001A) について検証し、それぞれの平均値についても同表に示した。

各炭素成分のろ紙の違いについて、F検定*1及びt検定*2を実施したところ、いずれの成分もろ紙①とろ紙②の分散及び平均値に有意差は認められなかったため、ろ紙の違いによるバラツキは概ね無いものと考えられた。

次に OC、EC、Char-EC の測定機種の違いについて、F 検定及び t 検定を実施したところ、F 検定により EC については有意差が認められ、t 検定により OC について有意差が認められた。OC の平均値は、測定機種 D の方が若干高かった。

参考として TC(OC+EC)の値も示した。TC は OC に比べてバラツキが小さく、CV は 10%であった。

- ※1 F検定・・2標本のバラツキが等しいか否かを両者の比を取ることで分散性 を検定するもの。有意水準は5%とした。
- ※2 t 検定・・2 標本の平均値の差について検定するもの。今回は F 検定にて 等分散である場合に検定を実施している。有意水準は 5%とした。

表 6-3 各機関の精度管理試料測定結果(炭素成分)

				(単位:OC,	EC,Char-EC(1	tµg/cm²,WSC	Cはµg/枚)
機関番号	ろ紙	機種 ¹⁾	ОС	EC	Char-EC	TC(参考)	WSOC
1	1	_	-	-	-	-	110
2	1	S	12	7.5	6.1	20	110
3	1	S	9.6	7.0	5.5	17	96
4	2	S	12	7.7	5.9	20	140
5	1	S	10	6.9	5.0	17	110
6	2	S	9.2	6.7	5.3	16	_
7	2	S	11	7.4	5.5	18	-
8	2	S	9.2	6.6	5.0	16	100
9	2	S	11	7.4	5.3	18	-
10	1	D	14	7.7	5.7	22	95
11	1	D	12	6.9	5.8	19	123
12	1	D	13	6.8	5.6	20	-
13	1	D	13	7.8	6.1	21	-
14	2	D	11	5.4	4.2	16	127
15	2	D	13	7.0	5.6	20	140
平均值			11.4	7.1	5.5	18	115
標準偏差			1.5	0.6	0.5	1.9	17
CV(%)			13	9	9	10	15
ろ紙①の平均			11.9	7.2	5.7	19	107
ろ紙②の平均			10.9	6.9	5.3	18	127
機種Sの平均	<b>匀</b> 值		10.5	7.2	5.5	18	
機種Dの平均	匀值		12.7	6.9	5.5	20	

¹⁾ 機種は、WSOC以外の測定機種を示す。 S: Sunset Lavoratory D: DRI MODEL 2001A

# 6.3 無機元素成分

# 6.3.1 試料の調製方法

あらかじめ超純水 800mL と硝酸 50mL を入れた 1000mL メスフラスコに、混合標準液 4mL を分取後メスアップし、精度管理試料(無機元素成分)とした。調製濃度を表 6-4 に示す。

表 6-4 精度管理試料の調製濃度(無機元素成分)

			(単位:ng/mL)
	Na,Al,K,Ca,Fe,Zn	V,Cr,Mn,Ni,Cu,Ba,Pb	Sc,Co,As,Se,Rb,Mo Sb,Cs,La,Ce,Sm
調製濃度	40	8.0	2.0

# 6.3.2 各機関の測定結果

測定結果を表 6-5 に示す。

各機関の測定結果の平均値は、調製濃度と概ね一致した。

Na、Al、K、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、As、Rb、Sb、Cs、Ba、La、Ce、Sm、Pb は機関によるバラツキが CV で 8%以内であり、概ね良好であった。 Zn、Se、Mo は、機関によるバラツキが CV で 10%と若干大きかった。このうち Mo は、調製濃度からのズレと平均値からのズレがいずれも 30%以上の測定値を除外すると、CV で 5%となった。

Ca は、機関によるバラツキが CV で 24%と比較的大きかったが、調製濃度からのズレと平均値からのズレがいずれも 30%以上の測定値を除外すると、CV で 10%となった。

表 6-5 各機関の精度管理試料測定結果(無機元素成分)

(単位:ng/m	۱L,	)
----------	-----	---

											(+12	. IIg/ IIIL/
機関番号	Na	Al	K	Ca	Sc	٧	Cr	Mn	Fe	Со	Ni	Cu
1	39	41	42	37	2.0	7.9	8.0	8.2	39	2.0	8.0	8.0
2	39	39	36	38	2.1	8.1	8.0	7.8	38	1.9	7.7	7.6
3	41	41	43	43	2.2	8.9	8.8	8.8	43	2.2	8.3	8.1
4	34	41	38	38	2.1	8.3	8.3	8.3	40	2.0	8.1	8.1
5	41	41	40	39	2.1	8.4	8.2	8.1	41	2.0	8.1	8.2
6	42	40	39	41	2.0	8.0	7.7	7.9	41	2.0	7.8	7.9
7	41	40	39	37	2.0	8.4	8.2	8.0	40	2.0	7.9	8.0
8	41	41	40	38	2.1	8.5	8.2	8.1	41	2.0	8.1	8.1
9	40	39	39	39	2.1	7.7	7.8	7.6	37	2.0	7.6	7.8
10	-	37	-	_	1.9	7.9	7.8	8.0	38	1.9	7.8	7.3
11	37	39	41	41	2.0	7.9	7.8	8.0	39	1.9	7.7	7.7
12	43	39	39	<u>9.3</u> *	2.1	8.3	8.4	8.5	42	2.2	8.3	9.2
13	43	42	42	45	2.0	8.1	8.0	8.0	41	2.0	7.9	8.9
14	32	33	37	28	2.1	8.2	8.5	8.6	44	2.1	8.3	6.2
15	41	41	41	40	2.0	8.0	7.9	8.0	40	2.0	7.9	8.0
平均值	40	40	40	37	2.1	8.2	8.1	8.1	40	2.0	8.0	7.9
標準偏差	3.2	2.2	2.0	8.8	0.07	0.30	0.31	0.31	1.9	0.09	0.23	0.67
CV(%)	8	6	5	24 (10)**	4	4	4	4	5	5	3	8
調製濃度	40	40	40	40	2.0	8.0	8.0	8.0	40	2.0	8.0	8.0

											(単位	:ng/ml
機関番号	Zn	As	Se	Rb	Мо	Sb	Cs	Ва	La	Се	Sm	Pb
1	41	1.9	1.8	2.1	1.9	2.0	2.0	8.0	2.0	2.0	2.0	8.0
2	30	1.8	1.5	2.0	1.9	1.9	2.0	7.9	1.9	2.0	2.0	7.8
3	35	2.3	1.7	2.5	<u>2.7</u> *	2.0	2.4	9.7	2.2	2.2	2.3	9.6
4	38	2.0	1.8	2.1	2.0	2.0	2.1	8.3	2.1	2.1	2.1	8.3
5	32	2.2	2.0	2.1	2.0	2.1	2.0	8.1	2.1	2.0	2.2	8.0
6	37	2.0	1.8	2.1	2.0	2.0	2.0	8.1	2.0	2.0	2.1	8.2
7	31	2.1	2.0	2.1	2.0	2.1	2.0	8.0	2.1	2.0	2.1	7.9
8	32	2.1	2.0	2.1	2.0	2.1	2.0	8.1	2.1	2.0	2.2	8.1
9	39	2.0	2.0	2.0	2.3	2.0	1.9	7.8	2.0	2.0	2.0	7.9
10	35	1.8	2.0	_	2.0	1.9	1.9	7.9	2.0	2.0	2.0	8.1
11	34	1.7	1.7	2.0	2.0	1.8	2.0	8.1	2.0	2.0	2.1	8.0
12	37	2.0	2.3	2.2	1.9	2.0	2.1	7.4	2.1	2.1	2.1	7.9
13	42	2.1	1.8	2.0	2.1	2.0	2.0	7.7	1.9	2.0	2.0	8.3
14	35	2.0	1.8	2.2	2.1	2.0	2.1	8.5	2.0	2.0	2.2	7.9
15	40	2.1	2.0	2.1	2.0	2.1	2.0	8.0	2.1	2.0	2.1	8.0
平均値	36	2.0	1.9	2.1	2.1	2.0	2.0	8.1	2.0	2.0	2.1	8.1
標準偏差	3.7	0.16	0.19	0.13	0.20	80.0	0.12	0.51	80.0	0.06	0.09	0.43
CV(%)	10	8	10	6	10 (5)**	4	6	6	4	3	4	5
調製濃度	40	2.0	2.0	2.0	2.0	2.0	2.0	8.0	2.0	2.0	2.0	8.0

^{*} 調製濃度からのズレと平均値からのズレがいずれも30%以上の測定値を<u>下線</u>で示す

^{**} 括弧内は*の測定値を除外した値を示す

# 7. 本編第4章の解析地点

表 7 年間高濃度事象解析の対象地点(一般局)

都県	測定局名	地点数	都県	測定局名	地点数
茨城県	北日常水大笠鉾鹿神波石土江取筑古茨立陸戸宮間田島栖崎岡浦戸手西河城市那石野市保宮消太杉保崎市保守年保市保宮消太杉保崎市保市の所断 田 所民所所 館 解 原	16	<i>₩</i>	熊秩本東春羽鴻深戸入久八坂幸日小谷父庄松日生巣谷田間喜潮戸手高川	
栃木県	栃木市役所 鹿沼市役所 日光市今市小学校 小山市役所 真岡市役所 大田原市総合文化会館 矢板市役所 那須塩原市黒磯保健センター 益子町役場 県南那須庁舎 県安蘇庁舎 雀宮中学校	12	· 埼玉県	東野居宮ささされていいいがいいいがいいいがいいがいいがあるされていたがいがある。 東野居代かいたかでは、本市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	32
群馬県	衛生環境研究所 富岡市立富岡小学校 東吾妻町立東吾妻中学校 嬬恋村運動公園 桐生市立東小学校 館林市民センター 太田市立中央小学校 沼田市立沼田小学校	8	千葉県	日 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	20

表 7 (つづき) 年間高濃度事象解析の対象地点(一般局)

都県	測定局名	地点数	都県	測定局名	地点数	
東京都	千代田区神田司町 板橋区本町 足立区綾瀬 江戸川区南葛西 立川市泉町 武蔵野市関前 青梅市東青梅 多摩市愛宕	8	長野県	環境保全研究所 松本 諏訪 伊那 佐久 木曽	6	
神奈川県	磯子区総合庁舎 栄区上郷小庁舎 泉区総合庁舎 泉区総合庁舎 鬼田漁川崎(川崎田島) 生活文松公園(麻生) 祖棋原市公園(麻生) 相模原市世紀 本和市役所 小田原市でとンター 人里浜行政センター 横須町市山小学校	15	静岡県	裾野市民文化センター 熱無治でき 下田をが 教無市役所 教急田市大東支所 湖西郡公園 千代田南中学校 長田・中学校 日本・学校 長田・中学校 日本・学校 大田・中学校 大田・中学校 大田・中学校 大田・中学校 大田・中学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大東・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学校 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田・大学 大田 大学 大田 br>大田 大学 大学 大学 大学 大学 大学 大学 大学 大学 大学 大学 大学 大学 大	18	
山梨県	甲府富士見 大月 東山梨 吉田	4		浜松中央測定局 北部測定局 三ヶ日測定局		
	合計地点数		139			

# 8 調査結果の発表及び投稿一覧

- 芳住 邦雄(東京都公害研究所):南関東における大気エアロゾルのキャラクタリゼーション, 第 25 回大気汚染学会講演要旨集, 348(1984)
- 芳住 邦雄, 朝来野国彦(東京都環境科学研究所):南関東における大気エアロゾルのキャラクタリゼーション(第2報), 第26回大気汚染学会講演要旨集, 594(1985)
- 小山 恒人(神奈川県公害センター):南関東における大気エアロゾルのキャラクタリゼーション(第3報),第27回大気汚染学会講演要旨集,305(1986)
- 小山 恒人(神奈川県公害センター):南関東における大気エアロゾルのキャラクタリゼーション(第4報),第30回大気汚染学会講演要旨集,204(1989)
- 小山 恒人(神奈川県公害センター):南関東における大気エアロゾルのキャラクタリゼーション(第6報),第31回大気汚染学会講演要旨集,254(1990)
- 小山恒人(神奈川県公害センター),新井 久雄,太田 正雄(横浜市環境科学研究所):南関東における冬期の微小粒子組成について,第 32 回大気汚染学会講演要旨集,203(1991)
- 内藤 季和(千葉県公害研究所),新井 久雄(横浜市環境科学研究所):南関東における大 気エアロゾルのキャラクタリゼーション(第7報),第32回大気汚染学会講演要 旨集,499(1991)
- 新井 久雄,太田 正雄(横浜市環境科学研究所),井上 康明(川崎市公害研究所),小山恒人(神奈川県環境科学センター):南関東における大気エアロゾルのキャラクタリゼーション(第8報),第33回大気汚染学会講演要旨集,243(1992)
- 渡邊 武春(東京都環境科学研究所),内藤 季和(千葉県環境科学研究所),井上 康明 (川崎市公害研究所):南関東における大気エアロゾルのキャラクタリゼーション(第9報),第33回大気汚染学会講演要旨集,244(1992)
- 小山 恒人(神奈川県環境科学センター),新井 久雄,太田正雄(横浜市環境科学研究所):南関東における冬期の微小粒子組成について(第2報),第33回大気汚染学会講演要旨集,250(1992)
- 内藤 季和(千葉県環境研究所):南関東における大気エアロゾルのキャラクタリゼーション(第10報),第34回大気汚染学会講演要旨集,325(1993)
- 新井 久雄,太田 正雄,白砂裕一郎(横浜市環境科学研究所):南関東地域での年末年始 時における浮遊粒子状物質の高濃度出現事例,第 34 回大気汚染学会講演要旨集, 327(1993)
- 太田 正雄(横浜市環境科学研究所):横浜市および南関東における PAHs 濃度の挙動, 第34 回大気汚染学会講演要旨集, 324(1993)
- 小山 恒人(神奈川県環境科学センター): 南関東地域の正月前後時における大気エアロゾル の特徴,第 35 回大気環境学会講演要旨集,497(1994)
- 福田 真道,町田 繁(埼玉県公害センター):南関東における大気エアロゾルのキャラクタ リゼーション(第11報),第35回大気環境学会講演要旨集,265(1994)
- 秋山 薫,鎌滝 裕輝,渡辺 武春(東京都環境科学研究所):南関東における大気エアロゾル のキャラクタリゼーション(第 12 報),第 36 回大気環境学会講演要旨集,

256 (1995)

- 小山 恒人(神奈川県環境科学センター): 南関東における大気エアロゾルのキャラクタリゼーション(第13報),第37回大気環境学会講演要旨集,377(1996)
- 清水 源治, 高橋 照美:山梨県大月における浮遊粒子状物質のキャラクタリゼーション, 第 38 回大気環境学会講演要旨集, 618(1997)
- 鎌滝 裕輝(東京都環境科学研究所):南関東における大気エアロゾルのキャラクタリゼーション(第14報)、第38回大気環境学会講演要旨集、619(1997)
- 清水 源治(山梨県衛生公害研究所): 南関東における大気エアロゾルのキャラクタリゼーション(第 15 報), 第 39 回大気環境学会講演要旨集, 387(1998)
- 小山 恒人(神奈川県環境科学センター),吉岡 秀俊(東京都環境科学研究所):関東地域の正月前後時における炭素系微小粒子の動向,第 40 回大気環境学会講演要旨集,438(1999)
- 松尾 清孝, 岩淵 美香(川崎市公害研究所):関東における大気エアロゾルのキャラクタリゼーション(第16報), 第40回大気環境学会講演要旨集,444(1999)
- 押尾 敏夫(千葉県環境研究所):関東における大気エアロゾルのキャラクタリゼーション (第 17 報) 平成 10 年度調査結果の概要,第 41 回大気環境学会講演要旨集, 290(2000)
- 石井康一郎(東京都環境科学研究所):関東における大気エアロゾルのキャラクタリゼーション(第 18 報) 平成 11 年度調査結果の概要,第 42 回大気環境学会講演要旨集, 249(2001)
- 米持 真一(埼玉県環境科学国際センター):関東における大気エアロゾルのキャラクタリゼーション(第19報)平成12年度調査結果の概要,第43回大気環境学会講演要旨集,381(2002)
- 小山 恒人(神奈川県環境科学センター):関東における大気エアロゾルのキャラクタリゼーション(第 20 報)平成 13 年度調査結果の概要,第 44 回大気環境学会講演要旨集,340(2003)
- 内藤 季和(千葉県環境研究センター):関東における大気エアロゾルのキャラクタリゼーション(第 21 報) 平成 14 年度調査結果の概要,第 45 回大気環境学会講演要旨集, 309(2004)
- 小山 恒人(神奈川県環境科学センター):関東における大気エアロゾルのキャラクタリゼーション(第22報) 道路沿道 PM2.5 調査結果について,第45回大気環境学会講演要旨集,309(2004)
- 篠原英二郎(静岡県環境衛生科学研究所): 関東における大気エアロゾルのキャラクタリゼーション(第 23 報) 平成 15 年度調査結果の概要,第 46 回大気環境学会講演要旨集,564(2005)
- 小山 恒人(神奈川県環境科学センター):関東における大気エアロゾルのキャラクタリゼーション(第 24 報) 道路沿道 PM2.5 調査結果について(2), 第 46 回大気環境学会 講演要旨集, 567(2005)
- 清水 源治(山梨県衛生公害研究所):関東における大気エアロゾルのキャラクタリゼーショ

- ン(第 25 報) 平成 17 年度調査結果の概要, 第 47 回大気環境学会講演要旨集, 2E0948 (2006)
- 岡田 和則(茨城県霞ケ浦環境科学センター):関東における大気エアロゾルのキャラクタリゼーション(第 26 報) 平成 17 年度調査結果の概要,第 48 回大気環境学会講演要旨集,563(2007)
- 内藤 季和(千葉県環境研究センター): 浮遊粒子状物質のトレンド解析と発生源寄与の推定〜関東 SPM 共同調査の夏期・冬期調査の結果から〜, 第 48 回大気環境学会講演要旨集, 386 (2007)
- 飯島 明宏, 冨岡 淳(群馬県衛生環境研究所):関東における大気エアロゾルのキャラクタ リゼーション(第 27 報) 平成 18 年度調査結果の概要, 第 49 回大気環境学会講 演要旨集, 280(2008)
- 清水 源治(山梨県衛生公害研究所):関東における大気エアロゾルのキャラクタリゼーション(第 28 報) これまでの調査結果から見た 18 年度の結果について, 第 46 回大気環境学会講演要旨集, 281(2008)
- 中込 和徳, 佐々木一敏(長野県環境保全研究所):関東における大気エアロゾルのキャラクタリゼーション(第29報) 平成元年から19年までの調査結果の概要,第50回大気環境学会講演要旨集,465(2009)
- 飯島 明宏, 小沢 邦壽(群馬県衛生環境研究所), 清水 源治(山梨県衛生公害研究所): 関東に おける大気エアロゾルのキャラクタリゼーション(第30報) PMF 法による総合解 析, 第50回大気環境学会講演要旨集, 466(2009)
- 小平智之, 石原島栄二(栃木県保健環境センター), 関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議: 関東における PM2.5 のキャラクタリゼーション (第1報) 平成20年度調査結果の概要-, 第51回大気環境学会講演要旨集, 296 (2010)
- 熊谷貴美代(群馬県衛生環境研究所): 関東北部における微小粒子中有機成分の特徴,第 51 回大気環境学会講演要旨集, 166(2010)
- 秋山 薫((財)東京都環境整備公社東京都環境科学研究所), 関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議, 関東における PM2.5 のキャラクタリゼーション (第2報), 第52 回大気環境学会講演要旨集, 408(2011)
- 米持真一(埼玉県環境科学国際センター),関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議,関東甲信静におけるPM2.5のキャラクタリゼーション(第3報),第53回大気環境学会講演要旨集,498(2012)
- 米持真一(埼玉県環境科学国際センター),関東甲信静における合同調査から見た最近の PM2.5の状況,第53回大気環境学会講演要旨集,70-71(2012)
- 山田大介(川崎市環境局環境対策部環境対策課),関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議,PMF モデルを用いた関東広域のPM2.5 の発生源解析(2008~2010),第53回大気環境学会講演要旨集,499(2012)
- 小松宏昭(神奈川県環境科学センター),関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議,関東甲信静における PM2.5 のキャラクタリゼーション(第4報),第54 回大気環境学会講演要旨集,218(2013)
- 内藤季和 (千葉県環境研究センター), 関東地方大気環境対策推進連絡会浮遊粒子状物質調

- 査会議, 関東甲信静における PM2.5 のキャラクタリゼーション (第5報), 第55 回大気環境学会講演要旨集,381 (2014)
- 三宅健司(静岡県環境衛生科学研究所),関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議,関東甲信静における PM2.5 のキャラクタリゼーション(第6報),第56回大気環境学会講演要旨集,217(2015)
- 柳 尚仁 (静岡県くらし・環境部環境局生活環境課),関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議,関東甲信静における PM2.5 のキャラクタリゼーション (平成25 年度のまとめ),全国大気汚染防止連絡協議会第61回全国大会(2015)
- 大橋泰浩 (山梨県衛生環境研究所),関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議,関東甲信静における PM2.5 のキャラクタリゼーション (第7報),第57回大気環境学会講演要旨集,467(2016)

# 平成27年度浮遊粒子状物質合同調査報告書(第2稿)に対する意見

意見まとめ

区分	内容	執筆主担当自治体	意見		
<b>卢</b> 万			自治体	内容	
		-	茨城県	・図表のタイトルが明朝体になっている箇所が複数あります。作成要領に従い、MSPゴシックでお願いします。 ・本編4章の質量濃度分布の図に単位の記入がない箇所が複数あります。	
	全体		千葉市	「『報告書の作成要領について』では、『図(表)章-節-通し番号』と図表番号が3連の数字で表記されることになっています。しかし、この要領では、例えば『4.3.3』における図の場合、『図4-3-通し番号』とするのか、『図4-3-通し番号』とするのか、はっきりしません。 (3章以外では前者、3章では後者にならって番号を振っています。)どちらかに統一する必要があるかと思います。」	
			浜松市	[原稿全体を通して]本文中の日付の表記の仕方や図表タイトルのフォントを統一した方がよいかと思います。	
			群馬県	P.1 下から2行目のカッコがこの箇所だけ半角	
	1 はじめに(目的)	茨城県	千葉県	まえがき:6行目 改善しました。⇒改善しましたが、依然として低い水準でした。 18行目「関東SPM検討会」にて⇒「」として はじめに:23年度までは2日ないし3日の採取期間で24年度からは24時間採取で大きく違いますので、説明した方がいい のでは?	
			千葉市	・調査会議担当者の部分で、「千葉市環境保全部環境規制課」に「浅野 雄紀」を追加し、「千葉市環境保健研究所」の「坂本 宏成」を「坂元 宏成」に修正願います。 ・各章のタイトルが変更となっている部分がありますので、目次に反映願います。	
			川崎市	・担当者 川崎市環境総合研究所「田中 佑典」を追加してください。	
	2 調査方法	茨城県	群馬県	P.4「25年度までに成分分析を行うことになっており」という文脈は→「25年度までに・・・開始することになっており、」または「・・・体制を整備することになっており」としたほうがよいのではないか	
			千葉県	2.1 原則10時と書かれていますが、期間の方もトラブルなどで延長等あるようなので、期間も原則かと思います	
			栃木県	3.〇.2(1) ①コア期間の日付を明記するか、否か統一したほうが良いと思う。	
	全体	全体 		気象概況の冒頭部分に、観測値の集計方法の記述が四季それぞれにありますが、春季のみに記載すればよいと思います。	
		相模原市,東京都	茨城県	・冒頭に章の題名「3 各季節の概況」(12 ポイント MS ゴシック)の記入をお願いします。	
			栃木県	3.1.3 「全体的に点在」という言い回しはあまり一般的でないと思う。 「~吉田では4 mg/m3未満となった。」としてはどうか。	
	3.1 春季		群馬県	・p.5の最後の行は、特に書かなくてもよいと思います。(もし書くのであればなぜ入れていないのか理由が必要と思います。) ・p.6下から3行目 「半分以上」 →この後に、"長野、前橋は他よりも低く5割程度"と表現があり、差があるのか分かりにくいので、差別化するよう「6?7?割程度」と表現した方がよいのでは? ・P.11 「5/11に大和でCuが突出して高くなった」ことについて、他の金属で同じように突出した成分があったかどうか(図を見るとNi、Alも高い?)や、もし考えられる原因があるなら補足した方がよいと思います。	
			千葉県	「3.1 春季調査」という見出しを入れる。 「表3-1-1-1に調査期間中の観測値を示す。」という一文を入れる。 図3-1-4-1はECとOCというタイトルだが、実際はECとOx	

表文及が国産のPMASの253分類を集ますが、12年 12年 12年 12年 12年 12年 12年 12年 12年 12年					・3.2.3から3.2.5の図の一部が縦に並んでいるので、横に2つずつ並ぶように配置の調整をお願いします。
図3-2-4-3左が正の相関というのがわかるような近似曲絡を追加した方が良いと思う。		3.2 夏季	相模原市,埼玉県	茨城県	・図3-2-2-3で静岡と富士の位置が入れ替わっているので、修正願います。
・				栃木県	
千葉県				群馬県	・気象)PM2.5の解析データは各県1地点ではなく複数地点あるので、OX注意報発令状況を気象観測所周辺に限る必要性があるのか疑問に思います。(気象地点に限らず全体の情報を掲載した方がよいのではないでしょうか?)・気象)「※光化学オキシダント測定地点」の表については、どのような表なのか分かるような表タイトル(or説明)が必要と思います。 ・P.11のSO2に関する記述のところ、前出の図3-2-3-1(常監SO2)と同じ分布傾向であればそのことを述べてもよいかと
横浜市   「図3-2-2-3 PM2.5平均濃度(地図)とPM2.5主要成分組成(円グラフ)」で静岡と富士の位置が逆転している。   図3-3-2-3に湖西の成分組成がないので文中で比較する必要はないと思う。   3.3 3及び3.3.4 かりつムとのCWSOCの比較は、				千葉県	「表3-2-1-1に調査期間中の観測値を示す。」という一文を入れる。 PM2.5の2.5が下付き文字となっているので通常大きさの半角へ 図3-2-2-1と図3-2-2-2のキャプションを前頁に持って行く 図3-2-2-3の色のパターンが他の季節と異なる
3.3 各季節の概況    あっと   図3-3-2-3に湖西の成分組成がないので文中で比較する必要はないと思う。				千葉市	図3-2-3-1及び3-2-3-2等、横並びで配置されると思われる図が縦になってしまっている箇所がいくつかあります。
3.3.3 及び3.3.4 カリウムとOC、WSOCの比較は、ハイオマス燃焼が示唆されるためあってよいと思う。「以下、参考図部分」以降は不要に思う。 「以下、参考図部分」以降は不要に思う。 「以下、参考図部分」以降は、アイカにの意味、消巣・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				横浜市	「図3-2-2-3 PM2.5平均濃度(地図)とPM2.5主要成分組成(円グラフ)」で静岡と富士の位置が逆転している。
<ul> <li>講となっており、・・・」と表現した方が読みやすい気がしました。         <ul> <li>・P.3 炭素成分: OC濃度が高かった4地点はPM2.5濃度も高かった地点であることに触れたらどうでしょうか。</li></ul></li></ul>	3 各季節の概況	3.3 秋季	相模原市,長野県	栃木県	3.3.3及び3.3.4 カリウムとOC,WSOCの比較は、 バイオマス燃焼が示唆されるためあってよいと思う。
「表3-3-1-1に調査期間中の観測値を示す。」という一文を入れる。  千葉県 3.3.3 K+の記述は入れてもよい 3.3.4 下から4行目:光学二次生成 最終図:char-ECの図は明らかに相関があるが、文章がない  千葉市 3.3.3の本文中の下から4行目、「図3-3-3-3」となる部分が「図3-2-3-3」となっています。				群馬県	満となっており、・・・」と表現した方が読みやすい気がしました。 ・P.3 炭素成分: OC濃度が高かった4地点はPM2.5濃度も高かった地点であることに触れたらどうでしょうか。 ・P.6 Vが高いことについて、「船舶等の影響である」と述べていますが、「石油燃焼起源(例えば船舶)」くらいの表現の
				千葉県	「表3-3-1-1に調査期間中の観測値を示す。」という一文を入れる。 3.3.3 K+の記述は入れてもよい 3.3.4 下から4行目:光学二次生成⇒光化学二次生成
				千葉市	3.3.3の本文中の下から4行目、「図3-3-3-3」となる部分が「図3-2-3-3」となっています。
茨城県  ・図3-4-4-3のタイトルが別ページになっています。			_	茨城県	・図3-4-4-3のタイトルが別ページになっています。
栃木県 図3-4-4-5(右)が正の相関とわかる近似曲線を追加した方が良いと思う。				栃木県	図3-4-4-5(右)が正の相関とわかる近似曲線を追加した方が良いと思う。

	相模原市,静岡県	群馬県	・%のフォントがそろっていません。 ・p.4 NMHCとOCの関係性について、NMHCはOCの一部ではないので修正が必要です。 ・P.6 大和のCuの高い値についてのコメントは、春と同様です。春にも同様の現象が見られたと記述してもよいと思います。
3.4 冬季		千葉県	3.4 気象データの説明はカット 「表3-4-1-1に調査期間中の観測値を示す。」という一文を入れる。 3.4.2(2)「関東中東部」という言い方は一般的でないのでわかりにくいのでは? 図3-4-4-3のキャプションを前頁に持って行く
		長野県	「NMHCがOCの構成成分として」⇒「NMHCがOCの前駆物質として、あるいはNMHCとともに発生する一次有機粒子が」だと思います。
		千葉市	図3-4-4-3の図とそのタイトル(図3-4-4-3 WSOC/OC(左)およびOC/TC(右)の平均分布)が別のページとなっています。
	埼玉県	茨城県	<ul><li>・本文及び図表のPM2.5の「2.5」を標準サイズに修正願います。</li><li>・句読点の修正(, →、. →。)。</li></ul>
3.5 四季の比較		群馬県	・下から12行目以降:NMHCとOCが弱い相関がみられた・・・と記述した後に、「特に鴻巣や館林・・・ではOCが高いがNMHCがさほど高くない・・・」の記述は、前後のつながりが不明瞭で修正が必要と思います。 ・下から7行目: 3.5節では鴻巣などの地点について「植物燃焼の寄与」と述べていますが、5.4節のCMB解析結果では鴻巣や幸手では寄与がほとんど無いので、整合性がとれるようどちらかの章に補足説明が必要と思います。・・最終段落の金属について、大和(Cuなど)でどの季節においても特徴的な値になっていたことに触れても良いのではないかと思います。ご検討下さい。・・句読点が違っています。
		千葉県	句読点を他と統一する。
全体		栃木県	高濃度が発生したという記載が多くみられるが、高濃度事象が発生、もしくは高濃度化したではないか?「高濃度」が発生したを使用するならば「高濃度」を定義する必要があると思う。夏季は(日平均値35 g/m3超を「高濃度日」とする)の文言があるが春季は(日平均値35 g/m3超を「高濃度」とする)となっており統一すべきだと思う。
41 年間のPM25高濃度発生状況	群馬県	千葉県	図表の番号付けが異なるが、個人的にはこの方がいい 図4-1-6 Y軸「超過率」→「発生率」
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		川崎市	・地図の種類を他の章と合わせてはどうでしょう。他の章では「基盤地図」を使っています。
	横浜市	茨城県	・4ページ目見出し 気象及を→気象を ・4ページ目第6段落(18時は…) NMHCが0.03ppmC→0.30ppmCでは?(バックデータと矛盾します。)
		栃木県	4.2.4(2) 本事例現象は「事例」と「現象」が重複していると思う。「本事象」としてはどうか。
4.2 PM2.5高濃度事象の詳細解析 春季		千葉県	4.2.4(2)掛川市、立川、浦安、諏訪、佐久、神栖という選定地点以外の地名が出てくるがわかりにくい。 項のフォントが明朝体になっている(4.2.2,4.2.4)、また4.2.4(2)はゴシック体ですが目は他の章では明朝体なので合わせる。 図4-2-4-2 図番号の順番が? 行間を他と統一する。
		横浜市	「図4-2-2 PM2.5質量濃度分布」など単位が記載されていない図がある。
		川崎市	・4.2.4(2)で記載されている「神栖」を「神栖消防」として、7章の表記と合わせるとよいと思います。
		栃木県	8月1日12時の風向から東京東部から埼玉南部にかけて収束域があるように見える。 図4-3-7に係る最後の分で、「この期間は~たが」までは不要に思う。
	全体 4.1 年間のPM2.5高濃度発生状況 4.2 PM2.5高濃度事象の詳細解析	3.5 四季の比較 埼玉県 全体 4.1 年間のPM2.5高濃度発生状況 群馬県 4.2 PM2.5高濃度事象の詳細解析 株派市	3.4 冬季   相模原市、静岡県   千葉県   長野県   千葉市   茨城県

	4.3 PM2.5高濃度事象の詳細解析 夏季	神奈川県	群馬県	・p.1 事例S2の段落の1行目「7月31日に高濃度日が発生したのは」→「・・・高濃度となったのは」 ・「二酸化硫黄」は3章と合わせて「SO2」の表記でよいと思います。P.9のイオン成分も同様 ・p.9 「有機炭素成分の多くはガス状物質として存在し・・・」→根拠があるなら別ですが、"多く"とまでは言えないと思います。また、この考察はそのような可能性が考えられる程度にした方が適切と思います。S1の後方流跡線がないので何とも言えませんが、S1とS2では汚染気塊の質が違うということは考えられないのでしょうか?
			千葉県	図4-3-3 記号と凡例が大きい 4.3.3(1)全国○○地点とあるが、アメダス局のことでしょうか?関東甲信の40地点は?総数は? 図4-3-5と図4-3-6のTempは常時監視測定局? 4.3.3(2)②「高い濃度が維持されて」⇒「高い濃度が継続して」 4.3.3(3)8行目: ずれ⇒ズレ
			横浜市	「図4-3-1 PM2.5質量濃度分布」など単位が記載されていない図がある。
4 年間を通じた 高濃度出現状況	4.4 PM2.5高濃度事象の詳細解析 秋季	千葉市	群馬県	・p.3 後ろから2番目の段落:広域汚染と地域汚染の範囲があいまいで、その根拠が明確でありません。硝酸、有機粒子を地域汚染の指標とするなら、この広域汚染はどんな粒子が主因と考えられるのでしょうか?一般的には硫酸粒子と思われますが、段落の最後でその影響は小さいとなっており、解釈が困難です。 ・P.3下から6行目:Ox濃度が高くないからSO4の影響はないと考えるのは、越境汚染のようにOx濃度が高くなくてもSO4濃度が上がることがあるので、もう少し検討が必要と思います。Ⅱ型で解析しており、西日本では越境汚染の影響が確認されています(2016年大気環境学会年会、ポスター、中島ら)
			埼玉県	参考ですが、この時期の成分分析データについては、4.5で引用されている文献3)に簡単ですが記述されています。また、環境科学国際センター報にも加須におけるデータが載っています。 http://www.pref.saitama.lg.jp/cess/center/kokusai/annual-report-h27all.html (110ページ参照) ピークの前半あるいはその前にSO42-の上昇もみられていますので、前半は広域的な汚染の影響もあったかもしれません。(35µg/m3超過にはOCや硝酸塩が効いたのだと思いますが)
			千葉県	冬期ではRH(相対湿度)を考慮していますが、秋季は必要ないのでしょうか?
			横浜市	「図4-4-1 PM2.5質量濃度分布」など単位が記載されていない図がある。
	4.5 PM2.5高濃度事象の詳細解析 冬季	川崎市	栃木県	4.5.2及び4.5.3の記載で未明や夕方などの表記があるが他にそろえて時刻で表記した方が良いと思う。 文中の図4-5-6は誤記ではないか。 図4-5-5のデータの配置が他の期間と異なるためそろえるべき。 図中でRHを用いるならば本文中で定義、もしくは図を湿度とすべき。 正午頃から~という文中の記載があるが正午のデータは示さないのか。
			群馬県	・P.3 (2)の4段落目: NO2濃度が上昇したことに触れていますが、NO2データが示されていないため、分かりにくいと思います。またNO2がPM2.5の高濃度にどのように関わったのかが書かれていないため、書き方に工夫が必要と思います。 ・P.4 1行目:「高濃度の生成は」→「高濃度は」 ・全体: 数字が明朝体
			千葉県	4.5.3(2)3行目:「~4-5-6」図がないので削除 4.5.3(2)13行目:「NO2濃度が上昇した」図4-5-5ではNO×が示されているのでNO2としての動向が読み取れません。また「上昇した」と言い切るのは表現として少し強すぎる気がします。 4.5.3(2)14~22行目:文章の説明では図4-5-5③と記述していますが、内容としては図4-5-2もしくは資料編を見なければわからない部分があります。少し整理が必要と思われます。
			長野県	12月10日24時のPM2.5の濃度分布図要確認(長野の値は4だが50以上の色になっている、佐久と伊那も濃度と色が違うなど)

			横浜市	「4.5.1 高濃度の発生状況」関東平野中央部(茨城県南西部、〜神奈川県東部)とあるが、千葉県西部[東京湾]と神奈川県東部は関東平野中央部に入らないのではないか。 「図4-5-1 PM2.5質量濃度分布」など単位が記載されていない図がある。
		栃木県	茨城県	・本文2ページ目第2段落 H27年度→平成27年度
			栃木県	タイトルを高濃度イベントのまとめに修正します。その他修正・意見等よろしくおねがいします。
	4.6 高濃度イベントのまとめ		千葉県	18行目:「燃焼に〜影響があり」初稿では記述がありましたが、2稿では記述されていないので整合をとる必要があります。 24行目以降:夏季については四季の中で唯一成分データがあるので、何かしら触れた方がよいと思います。 表4-6-1:夏季S1では風の収束域について本文の記述があるので、表にも加えた方がよいと思います。
		+	栃木県	5.1の中に「従来からの変更点」という小節を設けて記載した方が良いのではないかと思う。 P9の図5-7-2の説明において「石油燃焼は~」と「内陸では~」とで文章の構成順が入れ替わっており違和感を感じる。
			群馬県	3.5節では鴻巣などの地点について「植物燃焼の寄与」と述べていますが、5.4節のCMB解析結果では鴻巣や幸手では寄与がほとんど無いので、整合性がとれるようどちらかの章に補足説明が必要と思います。
	5 発生源寄与の推定	千葉県, 山梨県, さいたま市	埼玉県	○5.1:「今後はEPA-CMB8.2 により、発生源寄与の推定を行うこととなった。・・・・表5-1-1 の8 発生源×20 項目の発生源データを用いて計算を行った。フィッティング(最小二乗の適合計算)に用いたのはSO42-、NO3-、CI-、NH4+、OC を除いた15 項目である。」→この文脈ですと、「フィッティング」がCMB計算のことを指していることがわかりづらく、20項目のデータをCMBに用いたように受け取られることもあろうかと思いますので、表現を整理して明示的に記した方がよいと思います。 ○5.1:「係数を1.4 から1.6 としたのは、3 章との整合を取るためである。」→そのとおりなのですが、報告書の記述としては、3章と同様に1.6とした。というような表現の方がよいと思います。 ○5.1:計算過程をフローチャートの形で合わせて示すとわかりやすいかもしれません。 ○表5-1-1:(できればですが、「E-O4」といった表記を「×10-4」といった表記にしていただけるとよいと思います)。 ○5.7:「寄与量」というのは、寄与濃度のことでしょうか?定義の説明を加えていただければと思います。 ○表5-7-1:季節別のところは、春夏秋冬の順にして色の濃淡で表すと一覧性が上がり、わかりやすいかもしれません。 ○5.72:「閉らかに」△△の方が高い、といった記述が数か所ありますが、あえて「明らかに」と強調せず、単に高い、あるいは高い傾向がみられる、などの表現でよいのではないかと思います。 ○5.7.2:沿岸と内陸の対比で特徴がみられる点については、3章での考察も踏まえつつ、発生源の分布や地理的位置・気象条件から推測される要因の考察を加えた方がよいのではないかと思います。 ○5.8:「二次粒子の計算方法としては、こちらの方が簡単である」→文脈からわかりますが、「こちら」を明示的に記述した方がよいと思います。 ○図5-8-1.2:軸ラベルの表現をもう少しわかりやすいものにした方がよいと思います。(CMBによる計算値、当量関係に基づく測定値、など)また、単位を明示した方がよいと思います。
	6 今後の課題	茨城県	栃木県	第三段落目の文章がわかりにくいと感じる。
	- / BX 97 BINNE		千葉県	統一精度管理⇒不要
	1 試料採取要領	茨城県	千葉県	表1-1さいたまのPTFEの品名が石英の品名になっています。
			栃木県	栃木の分析手法についてデータ提供ミスがございました。分析条件について別添のとおり訂正させていただきます。 ※別添については、個別に静岡市あて送付済。
			千葉県	表2-2鴻巣、幸手:前処理フィルターのメーカーと品名の組み合わせが間違っています。 表2-2、表2-3-2市原、勝浦、富津:前処理フィルターの型式「13HP020AN」を追加 2.4 (1)①でホットプレートとあるが、千葉県ではマイルストーンで濃縮している。そういう所が多いのではないか? (2)「分析条件を表2-4に示した。」→改行、1行空けして(1)と(2)の共通の表である説明にする。 表2-4市原、勝浦、富津:測定方法に「蛍光X線分析法」を追加。横浜:希硝酸調製濃度に単位をつける。 表2-5市原、勝浦、富津:前処理フィルターのメーカー、品名を削除(使用せず)。

	2 測定方法及び検出下限・定量下限	静岡市	山梨県	P3 表2-2「水溶性イオン成分濃度の分析条件」の、山梨県で使用しているイオンクロマトグラフについて、修正をお願いします。 【修正前】島津製作所 2C-ADsp 2C-Adsp ⇒【修正後】島津製作所 HIC-SP HIC-SP
			長野県	無機元素成分の検出下限値と定量下限値の表のSr,Y,TIの欄は不要だと思います。長野県の春季のWSOCの下限値を削除(未測定)
			千葉市	図2-6-2-1から図2-6-2-4について、検出下限・定量下限の一部が提供データより値が丸められている箇所がいくつかあります。
資料編			川崎市	・IMPROVE プロトコル又はIMPROVE_A プロトコルにより濃度を測定した。→「又はIMPROVE_A」を削除してください。 ・無機元素分析条件の内標準のうち、川崎市の「Ce」を削除してください。 ・表2-6-3-5で同一内容が複数記載されています。
	3 調査期間の常時監視データ	茨城県		
	4 成分濃度測定結果	茨城県	山梨県	表4-1-59について、大和のデータが欠測になっていますが、HP上に修正データがあるので、更新が必要。 それに伴い、表4-1-60の平均値についても修正が必要と考えられます。
			群馬県	館林の説明の修正(別添ファイル参照)
	5 調査地点の概況	茨城県	川崎市	・用途地域の書き方を全体で統一してはどうでしょう。以前は「住居地域」「商業地域」のような書き方と事務局からの指定がありました。
	6 精度管理結果	浜松市		
	7 年間高濃度事象解析の対象地点	群馬県	群馬県	群馬県の測定地点名の修正
	8 調査結果の発表及び投稿一覧	茨城県		

# 平成 29 年度 浮遊粒子状物質調査会議事業計画 (案)

#### 1 方針

大気汚染防止法に基づく常時監視に関する事務の処理基準に、PM2.5の成分分析(以下「常時監視の成分分析」という。)が加わったことを受け、本調査会議の構成自治体は、常時監視の一環として成分分析を開始した。そのため、平成24年度以降の調査は、各自治体における常時監視の成分分析をできるだけ期間を合わせて実施し、その結果を持ち寄って解析することとしている。

今年度は、原則として環境省から示された成分分析調査期間に合わせて試料を採取・ 分析するとともに、平成28年度測定結果を用いた解析を行うこととする。解析に当た っては、四季の全ての成分分析調査期間を対象とし、季節的な特徴に重点を置いて実施 する。

また、広範囲の地域でPM2.5 が高濃度となった事象については、その期間の状況を解析し、構成自治体間での情報の共有を図る。

さらに、常時監視の成分分析は、自治体ごとに実施されるため、共通標準試料を用いたデータ精度管理も併せて行うこととする。

### 2 調査概要

#### (1) 試料採取期間

<常時監視の成分分析の推奨期間>

春季: 平成29年5月10日(水)~5月24日(水)

[コア期間:5月15日(月)~5月22日(月)]

夏季:平成29年7月20日(木)~8月3日(木)

[コア期間:7月24日(月)~7月31日(月)]

秋季: 平成29年10月19日(木)~11月2日(木)

[コア期間:10月23日(月)~10月30日(月)]

冬季: 平成30年1月18日(木)~2月1日(木)

[コア期間:1月22日(月)~1月29日(月)]

#### (2) 実施機関(1都9県7市)

茨城県、栃木県、群馬県、埼玉県、千葉県、東京都、神奈川県、山梨県、長野県、 静岡県、さいたま市、千葉市、横浜市、川崎市、相模原市、静岡市、浜松市

#### (3) 試料採取地点

常時監視の成分分析を実施する大気常時監視測定局

# (4) 調査内容

# ア PM2.5 解析

平成 28 年度の常時監視の成分分析結果を持ち寄り、関東甲信静の広域的な濃度 分布の把握、地域間の汚染形態の比較、一次排出・二次生成の寄与、高濃度時の濃 度分布や特徴の解析等を行う。

また、自動測定機による PM2.5 質量濃度の測定データを用いて、平成28年度の年間を通じた濃度状況を解析し、高濃度となっている期間について、越境汚染の可能性も含めた解析を行い、解析期間が成分分析期間と重なった場合は、成分分析結果も踏まえた解析を実施する。

#### イ 分析値の精度管理

精度管理用標準試料を各自治体に配布し、分析を行い、結果を評価する。

#### 3 運営方法

#### (1) 今年度調査の実施

本事業計画に従い各自治体で分担して、解析、分析及び精度管理を行う。

# (2) 調査報告書の作成

調査内容により解析した結果を取りまとめ、調査報告書を作成し、調査会議の構成 自治体へ配付する。

## (3) 成果公表と情報交換

調査結果は学会等に発表する。また、最新の知見を得るため、3月に講演会を企画する。さらに、本調査会議のホームページを運営し、構成自治体間における報告書及び関連データの情報共有を図るとともに、一般にも広く公開し情報発信を行う。

# (4) 会議の開催

円滑に遂行するため、次のとおり会議を開催する。

- · 第1回 (平成29年6月頃)
- · 第2回(平成29年9月頃)
- · 第3回(平成29年12月頃)
- · 第4回 (平成30年2月頃)

平成28年度関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議 講演会について(大気環境学会関東支部粒子状物質部会共催)

## 1 日 時

平成29年3月17日(金) 午後1時30分から午後4時00分まで

# 2 場 所

茨城県県南生涯学習センター 中講座室 2 茨城県土浦市大和町 9 - 1 ウララビル

# 3 内容

- (1) 微小粒子状物質 (PM2.5) の現状と今後の取組について 環境省水・大気環境局 大気環境課 船越 吾朗 氏
- (2) PM2.5の有機マーカー多成分測定~都市・郊外・森林地点の特徴~ 群馬県健康福祉部 衛生環境研究所 熊谷 貴美代 氏
- (3) 有機マーカーを用いたリセプターモデリングによるPM2.5の発生源寄与解析 高崎経済大学 地域政策学部 地域づくり学科 飯島 明宏 氏
- (4) 関東甲信静におけるPM2.5のキャラクタリゼーション
  - -関東SPM合同調査 平成27年度のまとめ-茨城県生活環境部 霞ケ浦環境科学センター 前田 良彦

<会場案内図(会場:ウララビル 中講座室2は6階 )> ペデストリアンデッキで駅西口から直結

