# 資料編

#### 1 試料採取要領

#### 1.1 PM2.5 調査

PM2.5 採取については、「環境大気常時監視マニュアル第 6 版(平成 22 年 3 月 )」(以下、常時監視マニュアル)や「大気中微小粒子状物質 (PM2.5)成分測定マニュアル (平成 24 年 4 月 )」(以下、成分測定マニュアル)に準拠した。捕集に使用した PM2.5 サンプラー及びろ紙を表 1-1 に示した。

表 1-1 捕集に使用した PM2.5 サンプラー及びろ紙

| 報点                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |               |         | PTFE               |               |         | 石英                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---------------|---------|--------------------|---------------|---------|------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 番号 | 地点名 | サンプラー         | , , 1   | - 1111             | サンプラー         | 1       |                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |               | メーカー    |                    |               | メーカー    | 品名                     |
| 3 前橋 2025 PALL Teflo 47mm 2.0 μm 2025 PALL Model 2500 QAT-UP 47mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  | 土浦  | 2025          | Whatman |                    | 2000          | Whatman | Grade QMA 47           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2  | 真岡  | 2025D         | PALL    | Teflo 47mm 2.0 µ m | 2025D         | PALL    | Model 2500 QAT-UP 47mm |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3  | 前橋  | 2025          | PALL    | Teflo 47mm 2.0 µ m | 2025          | PALL    | Model 2500 QAT-UP 47mm |
| 日高 2025 PALL Teflo 47mm 2.0 μm 2025 PALL Model 2500 QAT-UP 47mm 2.0 μm 2025 PALL Mo | 4  | 富岡  | <b>2025</b> i | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5  | 鴻巣  | 2025          | PALL    | Teflo 47mm 2.0 µ m | 2025          | PALL    | Model 2500 QAT-UP 47mm |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6  | 日高  | 2025          | PALL    | Teflo 47mm 2.0 µ m | 2025          | PALL    | Model 2500 QAT-UP 47mm |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7  | 秩父  | 2025          | PALL    | Teflo 47mm 2.0 µ m | 2025          | PALL    | Model 2500 QAT-UP 47mm |
| 10    勝浦   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   11    佐倉   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   12    富津   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   13    干菜   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   14    綾瀬   LV-250   Whatman   PM2.5 エアモニタリング用フィルター   LV-250 PALL   Model 2500 QAT-UP 47mm   15   多摩   LV-250   Whatman   PM2.5 エアモニタリング用フィルター   LV-250 PALL   Model 2500 QAT-UP 47mm   16    大和   2025 PALL   Teflo 47mm   2.0 µm   2025 PALL   Model 2500 QAT-UP 47mm   17    横浜   MCAS-SJA PALL   Teflo 47mm   2.0 µm   MCAS-SJA PALL   Model 2500 QAT-UP 47mm   18    川崎   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   19    相模原   MCAS-SJA   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm   2 µm   MCAS-SJA PALL   Model 2500 QAT-UP 47mm   19    和棟原   MCAS-SJA   Whatman   PM2.5 エアモニタリング用フィルター   MCAS-SJA PALL   Model 2500 QAT-UP 47mm   20    甲府   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   20    甲府   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   21    東山梨   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   22    長野   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   23    富士   2025   PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   24    湖西   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   24    湖西   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   24    湖西   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   24    湖西   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25    静岡   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25    静岡   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25    静岡   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25    静岡   2025  PALL   Teflo 47mm   2.0 µm  | 8  | 城南  | 2000          | Whatman |                    | 2000          | PALL    | Model 2500 QAT-UP 47mm |
| 11   佐倉   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   12   富津   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   13   干菜   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   14   綾瀬   LV-250   Whatman   PM2.5 エアモニタリング用フィルター   LV-250   PALL   Model 2500 QAT-UP 47mm   15   多摩   LV-250   Whatman   PM2.5 エアモニタリング用フィルター   LV-250   PALL   Model 2500 QAT-UP 47mm   16   大和   2025   PALL   Teflo 47mm   2.0 μm   2025   PALL   Model 2500 QAT-UP 47mm   17   横浜   MCAS-SJA   PALL   Teflo 47mm   2.0 μm   2025   PALL   Model 2500 QAT-UP 47mm   18   川崎   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   19   相模原   MCAS-SJA   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm   2 μm   MCAS-SJA   PALL   Model 2500 QAT-UP 47mm   19   和模原   MCAS-SJA   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm   2 μm   2025  PALL   Model 2500 QAT-UP 47mm   2.0 μm   2.0 μm   2.0 μm   2.0 μm   2.0 μm      | 9  | 市原  | <b>2025</b> i | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| 12   富津   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   13   千葉   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   14   綾瀬   LV-250   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm 2 µm   LV-250   PALL   Model 2500 QAT-UP 47mm   15   多摩   LV-250   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm 2 µm   LV-250   PALL   Model 2500 QAT-UP 47mm   16   大和   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   17   横浜   MCAS-SJA   PALL   Teflo 47mm   2.0 µm   MCAS-SJA   PALL   Model 2500 QAT-UP 47mm   18   川崎   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   19   相棟原   MCAS-SJA   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm 2 µm   MCAS-SJA   PALL   Model 2500 QAT-UP 47mm   20   甲府   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   20   甲府   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   21   東山梨   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   22   長野   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   22   長野   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   23   富士   2025   PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   24   湖西   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   24   湖西   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25   静岡   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25   静岡   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25   静岡   2025  PALL   Model 2500 QAT-UP 47mm   25   静岡   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25   静岡   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25   静岡   2025  PALL   Teflo 47mm   2.0 µm   2025  PALL   Model 2500 QAT-UP 47mm   25   静岡   | 10 | 勝浦  | <b>2025</b> i | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   14   綾瀬   LV-250   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm 2 µm   LV-250   PALL   Model 2500 QAT-UP 47mm   15   多摩   LV-250   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm 2 µm   LV-250   PALL   Model 2500 QAT-UP 47mm   16   大和   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   17   横浜   MCAS-SJA   PALL   Teflo 47mm   2.0 µm   MCAS-SJA   PALL   Model 2500 QAT-UP 47mm   18   川崎   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   19   相模原   MCAS-SJA   Whatman   PM2.5 エアモニタリング用フィルター   46.2mm 2 µm   MCAS-SJA   PALL   Model 2500 QAT-UP 47mm   20 µm   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   21   東山梨   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   22   長野   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   23   富士   2025   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   23   富士   2025   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   23   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   23   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   23   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   24   湖西   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025i   PALL   Teflo 47mm   2.0 µm   2025i   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025i   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025i   PALL   Model 2500 QAT-UP 47mm   2   | 11 | 佐倉  | <b>2025</b> i | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| 14   接瀬   LV-250   Whatman   PM2.5 エアモニタリング用フィルター 46.2mm 2 μm   LV-250   PALL   Model 2500 QAT-UP 47mm   Model 2500 QAT-UP 47mm   PM2.5 エアモニタリング用フィルター 46.2mm 2 μm   LV-250   PALL   Model 2500 QAT-UP 47mm   LV-250   PALL   Model 2500 QAT-UP 47mm   MCAS-SJA PALL   Teflo 47mm 2.0 μm   MCAS-SJA PALL   Model 2500 QAT-UP 47mm   MCAS-SJA PALL   MCAS-SJA PALL   MOdel 2500 QAT-UP 47mm   MCAS-SJA PALL   MCAS-SJA PAL  | 12 | 富津  | <b>2025</b> i | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| 14   級瀬   LV-250   Whatman   Whatman   Hodel 2500 QAT-UP 47mm   Ho   | 13 | 千葉  | 2025i         | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| 15   多摩   LV-250   Whatman   46.2mm 2 µm   LV-250   PALL   Model 2500 QAT-UP 47mm   16   大和   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   17   横浜   MCAS-SJA   PALL   Teflo 47mm   2.0 µm   MCAS-SJA   PALL   Model 2500 QAT-UP 47mm   18   川崎   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   19   相模原   MCAS-SJA   Whatman   PM2.5 エアモニタリング用フィルター   MCAS-SJA   PALL   Model 2500 QAT-UP 47mm   20 µm   2025   PALL   Model 2500 QAT-UP 47mm   20 µm   2025   PALL   Model 2500 QAT-UP 47mm   21   東山梨   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   22   長野   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   23   富士   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   23   第立   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   24   湖西   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   25   静岡   2025   PALL   Teflo 47mm   2.0 µm   2025   PALL   Model 2500 QAT-UP 47mm   25   PALL   Model 2500 QAT-U  | 14 | 綾瀬  | LV-250        | Whatman |                    | LV-250        | PALL    | Model 2500 QAT-UP 47mm |
| 横浜 MCAS-SJA PALL   Teflo 47mm   2.0 μm   MCAS-SJA PALL   Model 2500 QAT-UP 47mm   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 | 多摩  | LV-250        | Whatman |                    | LV-250        | PALL    | Model 2500 QAT-UP 47mm |
| 18 川崎 2025i PALL Teflo 47mm 2.0 μm 2025i PALL Model 2500 QAT-UP 47mm  19 相模原 MCAS-SJA Whatman PM2.5 エアモニタリング用フィルター 46.2mm 2 μm MCAS-SJA PALL Model 2500 QAT-UP 47mm  20 甲府 2025i PALL Teflo 47mm 2.0 μm 2025i PALL Model 2500 QAT-UP 47mm  21 東山梨 2025i PALL Teflo 47mm 2.0 μm 2025i PALL Model 2500 QAT-UP 47mm  22 長野 MCI Whatman PM2.5 エアモニタリング用フィルター 46.2mm 2 μm MCI PALL Model 2500 QAT-UP 47mm  23 富士 2025 PALL Teflo 47mm 2.0 μm 2025 PALL Model 2500 QAT-UP 47mm  24 湖西 2025i PALL Teflo 47mm 2.0 μm 2025 PALL Model 2500 QAT-UP 47mm  25 静岡 2025i PALL Teflo 47mm 2.0 μm 2025i PALL Model 2500 QAT-UP 47mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16 | 大和  | 2025          | PALL    | Teflo 47mm 2.0 µ m | 2025          | PALL    | Model 2500 QAT-UP 47mm |
| 19 相模原 MCAS-SJA Whatman PM2.5 エアモニタリング用フィルター A6.2mm 2 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 | 横浜  | MCAS-SJA      | PALL    | Teflo 47mm 2.0 µ m | MCAS-SJA      | PALL    | Model 2500 QAT-UP 47mm |
| 19 相模原 MCAS-SJA Wnatman 46.2mm 2 μ m MCAS-SJA PALL Model 2500 QAT-UP 47mm 20 甲府 2025i PALL Teflo 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 21 東山梨 2025i PALL Teflo 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 22 長野 MCI Whatman PM2.5 エアモニタリング用フィルター MCI PALL Model 2500 QAT-UP 47mm 23 富士 2025 PALL Teflo 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 24 湖西 2025i PALL Teflo 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm 25 静岡 2025i PALL Teflo 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 | 川崎  | <b>2025</b> i | PALL    | <u>'</u>           | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| 東山梨   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   22 長野   MCI   Whatman   PM2.5 エアモニタリング用フィルター   MCI   PALL   Model 2500 QAT-UP 47mm   23 富士   2025   PALL   Teflo 47mm   2.0 μm   2025   PALL   Model 2500 QAT-UP 47mm   24 湖西   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   25 静岡   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   25 静岡   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   25 静岡   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   25 静岡   2025  PALL   Teflo 47mm   2.0 μm   2025  PALL   Model 2500 QAT-UP 47mm   25 had a second content of the content o  | 19 | 相模原 | MCAS-SJA      | Whatman |                    | MCAS-SJA      | PALL    | Model 2500 QAT-UP 47mm |
| 22 長野 MCI Whatman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 | 甲府  | <b>2025</b> i | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| 22   長野   MCI   Whatman   46.2mm 2 μ m   MCI   PALL   Model 2500 QAT-UP 47mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 | 東山梨 | 2025i         | PALL    | '                  | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| 24       湖西       2025i       PALL       Teflo 47mm       2.0 μ m       2025i       PALL       Model 2500 QAT-UP 47mm         25       静岡       2025i       PALL       Teflo 47mm       2.0 μ m       2025i       PALL       Model 2500 QAT-UP 47mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 | 長野  | MCI           | Whatman |                    | MCI           | PALL    | Model 2500 QAT-UP 47mm |
| 25 静岡 2025i PALL Teflo 47mm 2.0 μ m 2025i PALL Model 2500 QAT-UP 47mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23 | 富士  | 2025          | PALL    | Teflo 47mm 2.0 µ m | 2025          | PALL    | Model 2500 QAT-UP 47mm |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 | 湖西  | <b>2025</b> i | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
| 26 浜松 2025 PALL Teflo 47mm 2.0 μ m 2025 PALL Model 2500 QAT-UP 47mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 | 静岡  | <b>2025</b> i | PALL    | Teflo 47mm 2.0 µ m | <b>2025</b> i | PALL    | Model 2500 QAT-UP 47mm |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26 | 浜松  | 2025          | PALL    | Teflo 47mm 2.0 µ m | 2025          | PALL    | Model 2500 QAT-UP 47mm |

注) 2025:FRM 2025 吸引ガス量 16.7L/分(実) 2025i:FRM 2025i 吸引ガス量 16.7L/分(実) 2025D:2025-D(FEM) 吸引ガス量 16.7L/分(実) 2000:FRM 2000 吸引ガス量 16.7L/分(実) MCI:東京ダイレック MCI サンプラー 吸引ガス量 20L/分(標

LV-250:柴田科学 吸引ガス量 16.7L/分(標準) MCAS-SJA:ムラタ計測器 吸引ガス量 30L/分(実)

(実):実流量 (標準):標準流量

#### 1.2 フィルターパック法による調査

本調査会議のフィルターパック法による調査では、平成26年7月29日に成分測定マニュアルへ追加された「ガス成分の測定方法(暫定法)」、または、平成25年度と同様に全国環境研究所協議会酸性雨調査部会で実施している酸性雨調査のフィルターパック法を参考に試料の採取を行った。



写真 1-2-1 フィルターホルダー(4 段)

- (1) 本調査の試料採取に用いたフィルターホルダー (4 段 ) は、写真 1-2-1 のように、F0 から F3 までの 4 段構造になっている。F0 ではエアロゾル成分( $SO_4^{2-}$ 、 $NO_3$ 、CI、 $NH_4^+$ 、 $Na^+$ 、 $K^+$ 、 $Mg^{2+}$ 、 $Ca^{2+}$ )を、F1 ~ F3 ではガス成分( $SO_2$ ,  $HNO_3$ ,  $NH_3$ , HCl) を捕集する。
- (2) 準備は、ディスポーサブルのプラスチック手袋を着用して行う。まず、フィルターホルダー(4 段)を専用の組み立てキットで分解する。その後、可能であれば実験室用洗浄液に1晩浸し(省略してもよい)次いで水道水、超純水(EC:0.15mS/m以下)の順で洗浄し、乾燥後、チャック付ポリ袋に入れて保存する。
- (3) F0 のろ紙は市販品の PTFE ろ紙を、F1 のろ紙は市販品のポリアミドろ紙を用いる。 F2 はセルロースろ紙を 6%炭酸カリウム+2%グリセリン水溶液に含浸したものを用い、 F3 はセルロースろ紙を 5%リン酸+2%グリセリン水溶液に含浸したものを用いる。
- (4) フィルターホルダー組立は、ディスポーサブルのプラスチック手袋を着用して、純水で洗浄したプラスチック製ピンセットを用いて行う。フィルターホルダー(4 段)を専用の組み立てキットを用いて、フィルターホルダーの各段にろ紙を装着する。ホルダー間の漏れを防ぐために、ろ紙の装着や脱着は隙間やろ紙の破損に細心の注意を払いながら行う。ろ紙及び組立て後のフィルターを長時間保存する際にはチャック付ポリ袋に入れて密封した上で、さらにアルミ蒸着パックに入れて密封し、冷蔵保存する。
- (5) 試料の採取にあたっては、捕集装置の大気採取部が地上から 5~10m の高さになるように設置する。また、屋上に設置して、採取部が建物の上に有る場合は、床面から 3m 以上になるようにする。捕集装置の構成は、フィルターホルダー(雨よけ内、下向き)→フローメーター→乾性積算流量計→バイパス→ポンプの順に空気が流れるようにする。
- (6) 流量を 1L/min に調整し試料を採取する。専用の組み立てキットを用いて、フィルターホルダー(4 段)を分解してろ紙を取り出し、各段のろ紙をそれぞれペトリスライド(ろ紙ケース)に入れ、チャック付ポリ袋で密封し、さらにアルミ蒸着パックに入れて密封し、分析まで冷蔵保存する。なお、フィルターホルダーからろ紙を取り出す際は、ディスポーサブルのプラスチック手袋を着用して、純水で洗浄したプラスチックピンセットを用いて行う。ろ紙回収後は可能な限り早く抽出操作を実施する。

## 2 測定方法及び検出下限・定量下限

## 2.1 粒子状物質濃度

## (1) ろ紙の秤量

常時監視マニュアル及び成分測定マニュアルに準拠し、ろ紙を一定の温度、相対湿度で 恒量化し、精密電子天秤で秤量した。秤量の条件を表2 1 に示した。

表 2-1 ろ紙の秤量に関する測定地点ごとの条件

|    | ±14. 1− 47 |      |         | 7 /rr cp (5+¥5                     | 温度         | 相対湿度   | = +        | 精密電子天秤         | 47             |
|----|------------|------|---------|------------------------------------|------------|--------|------------|----------------|----------------|
| 番号 | 地点名        |      |         | ろ紙の種類                              | ( )        | (%)    | 感度<br>(µg) | 機器<br>メーカー     | 機種             |
| 1  | 土浦         | PTFE | Whatman | PM2.5 エアモニタリング用フィルター<br>46.2mm 2μm | 21.5 ± 1.5 | 35 ± 5 | 1          | METTLER TOLEDO | MX-5           |
| 2  | 真岡         | PTFE | PALL    | Teflo 47mm 2.0 μm                  | 21.5 ± 1.5 | 35 ± 5 | 1          | METTLER TOLEDO | MX-5           |
| 3  | 前橋         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MSA2.7S-000-DF |
| 4  | 富岡         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MSA2.7S-000-DF |
| 5  | 鴻巣         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MSE6.6S-000-DF |
| 6  | 日高         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MSE6.6S-000-DF |
| 7  | 秩父         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MSE6.6S-000-DF |
| 8  | 城南         | PTFE | Whatman | PM2.5 エアモニタリング用フィルター<br>46.2mm 2μm | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | M5P-F          |
| 9  | 市原         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | エー・アンド・デー      | BM-20          |
| 10 | 勝浦         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | エー・アンド・デー      | BM-20          |
| 11 | 佐倉         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | エー・アンド・デー      | BM-20          |
| 12 | 富津         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | エー・アンド・デー      | BM-20          |
| 13 | 千葉         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | METTLER TOLEDO | XP2UV          |
| 14 | 綾瀬         | PTFE | Whatman | PM2.5 エアモニタリング用フィルター<br>46.2mm 2μm | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MC-5           |
| 15 | 多摩         | PTFE | Whatman | PM2.5 エアモニタリング用フィルター<br>46.2mm 2μm | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MC-5           |
| 16 | 大和         | PTFE | PALL    | Teflo 47mm 2.0 μ m                 | 21.5 ± 1.5 | 35 ± 5 | 0.1        | Sartorius      | SE2-F          |
| 17 | 横浜         | PTFE | PALL    | Teflo 47mm 2.0 μ m                 | 21.5 ± 1.5 | 35 ± 5 | 0.1        | Sartorius      | SE2-F          |
| 18 | 川崎         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | METTLER TOLEDO | XP6            |
| 19 | 相模原        | PTFE | Whatman | PM2.5 エアモニタリング用フィルター<br>46.2mm 2μm | 21.5 ± 1.5 | 35 ± 5 | 0.1        | Sartorius      | SE2-F          |
| 20 | 甲府         | -    | -       | -                                  | -          |        | ı          | -              | ·              |
| 21 | 東山梨        | -    | -       | -                                  | -          | -      | 1          | -              | -              |
| 22 | 長野         | PTFE | Whatman | PM2.5 エアモニタリング用フィルター<br>46.2mm 2μm | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | ME5-F          |
| 23 | 富士         | PTFE | PALL    | Teflo 47mm 2.0 μ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | ME5-F          |
| 24 | 湖西         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | ME5-F          |
| 25 | 静岡         | PTFE | PALL    | Teflo 47mm 2.0 μ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MSA2.7S-000-DF |
| 26 | 浜松         | PTFE | PALL    | Teflo 47mm 2.0 µ m                 | 21.5 ± 1.5 | 35 ± 5 | 1          | Sartorius      | MSA2.7S-000-DF |

#### (2)濃度の算出

ろ紙の秤量結果及び吸引大気量から次式により粒子状物質の濃度 (μg/m³) を求めた。

粒子状物質の濃度  $= (We - W_b - \Delta WL) \div V$ 

ただし We : 捕集後のろ紙の重量 (μg)

W<sub>b</sub> :捕集前のろ紙の重量 (μg)

WL: ラボブランク用フィルター(3枚以上)の

捕集前後の質量変化の算術平均値

V : 吸引大気量 (m³)

#### 2.2 水溶性イオン成分濃度

分析方法は、成分測定マニュアルに準拠した。ろ紙を切出し、抽出瓶に入れた。ここに超純水を加えて抽出した後、フィルタでろ過し、試験液とした。これをイオンクロマトグラフに注入し、試験液中の陽イオン 5 成分 ( $NH_4^+$ 、 $Na^+$ 、 $K^+$ 、 $Mg^{2+}$ 、 $Ca^{2+}$  )、陰イオン 3 成分 ( $CI^-$ 、 $NO_3^-$ 、 $SO_4^{2-}$ ) の濃度を測定した。分析条件を表 2 2 に示した。

表 2-2 水溶性イオン成分濃度の分析条件

| 番号 | 地点名     | ろ紙の  | 切出し量 | 親水処理    | 超純水添加量 | 抽出      | <u> </u> |                            | 前処理<br>フィルター           |                         | 17                | ナンクロマトク            | ゚ヺフ                |
|----|---------|------|------|---------|--------|---------|----------|----------------------------|------------------------|-------------------------|-------------------|--------------------|--------------------|
|    | D//// [ | 種類   | (枚)  | (エタノール) | (mL)   | 方法      | 時間(分)    | メーカー                       | 品名                     | 型式                      | メーカー              | カチオン               | アニオン               |
| 1  | 土浦      | PTFE | 1/2  | -       | 10     | 振とう+超音波 | 20       | ADVANTEC                   | DISMIC                 | 25HP020AN               | DIONEX            | ICS-2000           | ICS-2000           |
| 2  | 真岡      | 石英   | 1/2  | -       | 40     | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 25CS045AN               | Thermo Scientific | ICS-2100           | ICS-2100           |
| 3  | 前橋      | PTFE | 1/2  | -       | 20     | 振とう+超音波 | 20 + 15  | ADVANTEC                   | DISMIC                 | 25HP045AN               | DIONEX            | ICS-1100           | ICS-1100           |
| 4  | 富岡      | PTFE | 1/2  | -       | 20     | 振とう+超音波 | 20 + 15  | ADVANTEC                   | DISMIC                 | 25HP045AN               | DIONEX            | ICS-1100           | ICS-1100           |
| 5  | 鴻巣      | PTFE | 1/2  | あり      | 10     | 超音波     | 15       | ADVANTEC                   | GLクロマトディスク             | -                       | DIONEX            | ICS-2100           | ICS-2100           |
| 6  | 日高      | PTFE | 1/2  | あり      | 10     | 超音波     | 15       | ADVANTEC                   | GLクロマトディスク             | -                       | DIONEX            | ICS-2100           | ICS-2100           |
| 7  | 秩父      | PTFE | 1/2  | あり      | 10     | 超音波     | 15       | ADVANTEC                   | GLクロマトディスク             | -                       | DIONEX            | ICS-2100           | ICS-2100           |
| 8  | 城南      | 石英   | 1/4  | -       | 10     | 超音波     | 30       | GL Science                 | GLクロマトディスク             | 13AI                    | DIONEX            | ICS-1500           | ICS-2000           |
| 9  | 市原      | 石英   | 1/4  | -       | 8      | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 13HP020AN               | 東ソー               | IC-2010            | IC-2010            |
| 10 | 勝浦      | 石英   | 1/4  | -       | 8      | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 13HP020AN               | 東ソー               | IC-2010            | IC-2010            |
| 11 | 佐倉      | 石英   | 1/4  | -       | 8      | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 13HP020AN               | 東ソー               | IC-2010            | IC-2010            |
| 12 | 富津      | 石英   | 1/4  | -       | 8      | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 13HP020AN               | 東ソー               | IC-2010            | IC-2010            |
| 13 | 千葉      | 石英   | 1/4  | -       | 10     | 超音波     | 20       | Membrane Solutions Limited | MS PTFE Syringe filter | symplepure PTFE0.45 μ m | DIONEX            | DX-320             | DX-320             |
| 14 | 綾瀬      | 石英   | 1/4  | -       | 15     | 超音波     | 10       | ADVANTEC                   | DISMIC                 | 13HP                    | DIONEX            | ICS-1100           | ICS-1100           |
| 15 | 多摩      | 石英   | 1/4  | -       | 15     | 超音波     | 10       | ADVANTEC                   | DISMIC                 | 13HP                    | DIONEX            | ICS-1100           | ICS-1100           |
| 16 | 大和      | 石英   | 1/4  | -       | 8      | 超音波     | 20       | Millipore                  | Millex                 | LH 0.45                 | 東ソー               | IC-2010            | IC-2010            |
| 17 | 横浜      | 石英   | 1/4  | -       | 10     | 超音波     | 15       | Millipore                  | Millex                 | LH 0.45                 | DIONEX            | ICS-1000           | ICS-1000           |
| 18 | 川崎      | 石英   | 1/2  | -       | 10     | 超音波     | 10       | ADVANTEC                   | DISMIC                 | 25HP020AN               | DIONEX            | ICS-1600           | ICS-2100           |
| 19 | 相模原     | 石英   | 1/4  | -       | 10     | 超音波     | 15       | Millipore                  | Millex                 | Millex-HV               | DIONEX            | ICS-1000, ICS-1500 | ICS-1000, ICS-1500 |
| 20 | 甲府      | 石英   | 1/2  | -       | 20     | 超音波     | 15       | PALL                       | Acrodisc               | 13mm, 0.45 μm           | 島津製作所             | 2C-ADsp            | 2C-ADsp            |
| 21 | 東山梨     | 石英   | 1/2  | -       | 20     | 超音波     | 15       | PALL                       | Acrodisc               | 13mm, 0.46 μm           | 島津製作所             | 2C-ADsp            | 2C-ADsp            |
| 22 | 長野      | 石英   | 1/4  | -       | 10     | 超音波     | 20       | GL Science                 | GLクロマトディスク             | 25AI                    | DIONEX            | ICS-1000           | ICS-1100           |
| 23 | 富士      | 石英   | 1/4  | -       | 10     | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 13HP045CN               | DIONEX            | ICS-1100           | ICS-2100           |
| 24 | 湖西      | 石英   | 1/4  | -       | 10     | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 13HP045CN               | DIONEX            | ICS-1100           | ICS-2100           |
| 25 | 静岡      | PTFE | 1/2  | -       | 10     | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 25CS045AS               | Metrohm           | IC-850             | IC-850             |
| 26 | 浜松      | PTFE | 1/2  | -       | 10     | 超音波     | 20       | ADVANTEC                   | DISMIC                 | 13PH045AN               | Metrohm           | IC-850             | IC-850             |

#### 2.3 炭素成分

#### 2.3.1 炭素成分濃度

分析方法は、成分測定マニュアルに準拠した。試料を捕集した石英ろ紙を切出し、炭素分析装置により、IMPROVE プロトコル又は IMPROVE\_A プロトコルにより濃度を測定した。なお、分析雰囲気は、OC1 から OC4 までが He、EC1 から EC3 までが 98% He +2% O<sub>2</sub> である。

分析条件を表2 3 1に示した。

表 2-3-1 炭素成分濃度測定に関する測定地点ごとの条件

|    |     | 7 /rf | <u>→</u> 60 TE |                      | ハモ井里              |           |       |         |       |         |       |         | 分析    | 条件      |       |         |       |         |       |         |
|----|-----|-------|----------------|----------------------|-------------------|-----------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|
| 番号 | 地点名 |       | 前処理            | 切出し量                 | 分析装置              | プロトコル名    | 0     | _       |       | C2      |       | C3      | _     | C4      |       | C1      |       | C2      |       | C3      |
|    |     | 温度( ) | 時間(h)          |                      | 機種名               |           | 温度( ) | 時間(秒)   |
| 1  | 土浦  | 350   | 1              | 0.515cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 2  | 真岡  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 3  | 前橋  | 350   | 1              | 0.503cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 4  | 富岡  | 350   | 1              | 0.503cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 5  | 鴻巣  | 300   | 0.5            | 0.503cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 6  | 日高  | 300   | 0.5            | 0.503cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 7  | 秩父  | 300   | 0.5            | 0.503cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 8  | 城南  | 350   | 1              | 0.503cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 9  | 市原  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 10 | 勝浦  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 11 | 佐倉  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 12 | 富津  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 13 | 千葉  | 900   | 3              | 1.5cm <sup>2</sup>   | Sunset Laboratory | IMPROVE   | 120   | 自動昇温    | 250   | 自動昇温    | 450   | 自動昇温    | 550   | 自動昇温    | 550   | 自動昇温    | 700   | 自動昇温    | 800   | 自動昇温    |
| 14 | 綾瀬  | -     | -              | 1/4(枚)               | DRI MODEL2001A    | -         | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 15 | 多摩  | -     | -              | 1/4(枚)               | DRI MODEL2001A    | -         | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 16 | 大和  | 350   | 1              | 0.498cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 17 | 横浜  | 600   | 1              | 1/4(枚)               | DRI MODEL2001A    | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 850   | -       |
| 18 | 川崎  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE_A | 140   | 150-580 | 280   | 150-580 | 480   | 150-580 | 580   | 150-580 | 580   | 150-580 | 740   | 150-580 | 840   | 150-580 |
| 19 | 相模原 | 350   | 1              | 0.503cm <sup>2</sup> | DRI MODEL2001A    | IMPROVE   | 120   | 150-580 | 250   | 150-580 | 450   | 150-580 | 550   | 150-580 | 550   | 150-580 | 700   | 150-580 | 800   | 150-580 |
| 20 | 甲府  | 500   | 3              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 180     | 250   | 180     | 450   | 180     | 550   | 180     | 550   | 240     | 700   | 210     | 800   | 210     |
| 21 | 東山梨 | 500   | 3              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 180     | 250   | 180     | 450   | 180     | 550   | 180     | 550   | 240     | 700   | 210     | 800   | 210     |
| 22 | 長野  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 180     | 250   | 180     | 450   | 180     | 550   | 180     | 550   | 480     | 700   | 210     | 800   | 210     |
| 23 | 富士  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 24 | 湖西  | 350   | 1              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | -       | 250   | -       | 450   | -       | 550   | -       | 550   | -       | 700   | -       | 800   | -       |
| 25 | 静岡  | 500   | 3              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 180     | 250   | 180     | 450   | 180     | 550   | 180     | 550   | 240     | 700   | 210     | 800   | 210     |
| 26 | 浜松  | 500   | 3              | 1cm <sup>2</sup>     | Sunset Laboratory | IMPROVE   | 120   | 180     | 250   | 180     | 450   | 180     | 550   | 180     | 550   | 240     | 700   | 210     | 800   | 210     |

## 2.3.2 水溶性有機炭素成分濃度(WSOC)

試料を捕集したろ紙を切出し、新鮮な超純水を加えて抽出し、その抽出液をフィルタで ろ過した。燃焼酸化 - 赤外線式 TOC 分析法により TOC 装置を用いて、抽出液中の全炭素 の濃度を測定した。分析条件を表 2 3 2 に示した。

表 2-3-2 水溶性有機炭素成分濃度測定に関する測定地点ごとの条件

| 番号  | 地点名 |      | 切出し量 | 超純水添加量 | 抽出       | 1     | 前                          | が処理フィルタ                | ·_                      | 分                         | 析装置            |
|-----|-----|------|------|--------|----------|-------|----------------------------|------------------------|-------------------------|---------------------------|----------------|
| ш , | D I | 種類   | (枚)  | (mL)   | 方法       | 時間(分) | メーカー                       | 品名                     | 型式                      | メーカー                      | 機種             |
| 1   | 土浦  | PTFE | 1/2  | 10     | 振とう器+超音波 | 10+10 | ADVANTEC                   | DISMIC                 | 25HP020AN               | 島津製作所                     | TOC-V CSN      |
| 2   | 真岡  | 石英   | 1/2  | 40     | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 25CS045AN               | Analytikjena              | multi N/C 3100 |
| 3   | 前橋  | PTFE | 1/2  | 20     | 振とう器+超音波 | 20+15 | ADVANTEC                   | DISMIC                 | 25HP045AN               | 島津製作所                     | TOC-V          |
| 4   | 富岡  | PTFE | 1/2  | 20     | 振とう器+超音波 | 20+15 | ADVANTEC                   | DISMIC                 | 25HP045AN               | 島津製作所                     | TOC-V          |
| 5   | 鴻巣  | 石英   | 1/4  | 15     | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP045AN               | 島津製作所                     | TOC-V CPH      |
| 6   | 日高  | -    | -    | -      | -        | -     | -                          | -                      | -                       | -                         | -              |
| 7   | 秩父  | -    | -    | -      | -        | -     | -                          | -                      | -                       | -                         | -              |
| 8   | 城南  | 石英   | 1/4  | 15     | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP045AN               | 島津製作所                     | TOC-V CPH      |
| 9   | 市原  | 石英   | 1/4  | 8      | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP020AN               | 島津製作所                     | TOC-5000       |
| 10  | 勝浦  | 石英   | 1/4  | 8      | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP020AN               | 島津製作所                     | TOC-5000       |
| 11  | 佐倉  | 石英   | 1/4  | 8      | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP020AN               | 島津製作所                     | TOC-5000       |
| 12  | 富津  | 石英   | 1/4  | 8      | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP020AN               | 島津製作所                     | TOC-5000       |
| 13  | 千葉  | 石英   | 1/4  | 15     | 超音波      | 20    | Membrane Solutions Limited | MS PTFE Syringe filter | symplepure PTFE0.45 μ m | 島津製作所                     | TOC-V          |
| 14  | 綾瀬  | -    | -    | -      | -        | -     | -                          | -                      | -                       | -                         | -              |
| 15  | 多摩  | -    | -    | -      | -        | -     | -                          | -                      | -                       | -                         | -              |
| 16  | 大和  | 石英   | 1/4  | 10     | 超音波      | 15    | Millipore                  | マイレクス-LG               | SLLGH13NL               | Analytikjena              | multi N/C 3100 |
| 17  | 横浜  | 石英   | 1/4  | 15     | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP045AN               | 島津製作所                     | TOC-V CPH      |
| 18  | 川崎  | 石英   | 1/2  | 10     | 超音波      | 10    | ADVANTEC                   | DISMIC                 | 25HP020AN               | Analytikjena              | multi N/C 3100 |
| 19  | 相模原 | -    | -    | -      | -        | -     | -                          | -                      | -                       | -                         | -              |
| 20  | 甲府  | PTFE | 1/4  | 20     | 振とう器+超音波 | 10+10 | PALL                       | Acrodisc               | 13mm、0.45 μm            | GE Analytical Instruments | Sievers900 LAB |
| 21  | 東山梨 | PTFE | 1/4  | 20     | 振とう器+超音波 | 10+10 | PALL                       | Acrodisc               | 13mm、0.46 μm            | GE Analytical Instruments | Sievers900 LAB |
| 22  | 長野  | PTFE | 1/4  | 16     | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP045AN               | 島津製作所                     | TOC-V CPH      |
| 23  | 富士  | 石英   | 1/4  | 15     | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP045AN               | 島津製作所                     | TOC-V CPH      |
| 24  | 湖西  | 石英   | 1/4  | 15     | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 13HP045AN               | 島津製作所                     | TOC-V CPH      |
| 25  | 静岡  | 石英   | 1/2  | 20     | 超音波      | 20    | ADVANTEC                   | DISMIC                 | 25CS045AS               | 島津製作所                     | TOC-V CPH      |
| 26  | 浜松  | -    | -    | -      | -        | -     | -                          | -                      | -                       | -                         | -              |

#### 2.4 金属等の無機元素成分濃度

分析方法は成分測定マニュアルに準拠し、酸分解 / ICP-MS 法又は、エネルギー分散型 蛍光 X 線分析法により、次の無機元素の濃度を測定した。ナトリウム (Na ) マグネシウム (Mg ) アルミニウム (Al ) カリウム (K ) カルシウム (Ca ) スカンジウム (Sc ) チタン (Ti ) バナジウム (V ) クロム (Cr ) マンガン (Mn ) 鉄 (Fe ) コバルト (Co ) ニッケル (Ni ) 銅 (Cu ) 亜鉛 (Zn ) ヒ素 (As ) セレン (Se ) 臭素 (Br ) ルビジウム (Rb ) ストロンチウム (Sr ) モリブデン (Mo ) 銀 (Ag ) カドミウム (Cd ) アンチモン (Sb ) セシウム (Cs ) バリウム (Ba ) ランタン (La ) サマリウム (Sm ) ユウロピウム (Eu ) 金 (Eu ) 鉛 (Ev ) 分 (Ev ) 公 (Ev ) (Ev ) 公 (Ev ) 公 (Ev ) (Ev ) (Ev ) (Ev ) 公 (Ev ) (

#### (1) 酸分解 / ICP-MS 法

試料を捕集したろ紙を切出し、密閉容器に入れ、酸を加えて分解した。分解後の溶液を、ホットプレート上で加熱蒸発させ、希硝酸を少量加えて加熱し、全量フラスコに移して標線まで希硝酸を加えて試験液を調製した。

試料を捕集したろ紙を切出し、酸を加え、超音波を 15~20 分照射した後に、80 で 1 時間加熱した。続いて超音波を 15~20 分間照射し試験液とした。

又は により調製した試験液を、内標準物質を用いて ICP-MS で測定した。

#### (2) エネルギー分散型蛍光 X 線分析法 (EDX)

試料を捕集したろ紙を切り出さず、そのままサンプルホルダにセットし、エネルギー分散型蛍光 X 線装置で測定した。分析条件を表 2 4 に示した。

| 表 2-4 | 無機元素成分の分析条件 |
|-------|-------------|

| 番号   | 地点名       | 測定方法               | ろ紙の種類            | 切出し量 | 超純水 | 硝酸  | ふっ化水素酸 | 過酸化水素 | 分解装               | 置              | 希硝酸       | フラスコ容量 | 内標準物質              | 分析           | f装置        |
|------|-----------|--------------------|------------------|------|-----|-----|--------|-------|-------------------|----------------|-----------|--------|--------------------|--------------|------------|
| m -5 | -B/III II | MGAE/37A           | 5 MAY - 7 122 AV | (枚)  |     |     | (mL)   |       | メーカー              | 機種             | 調製濃度      | (mL)   | F3184-1034         | メーカー         | 機種         |
| 1    | 土浦        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 2      | 1     | Milestone General | ETHOS D        | 0.32mol/L | 10     | In                 | Agilent      | 8800       |
| 2    | 真岡        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 2      | 1     | Milestone General | ETHOS One      | 5+95      | 50     | In                 | Agilent      | 7500ce     |
| 3    | 前橋        | 酸分解/ICP-MS         | PTFE             | 1/4  | -   | 3   | 2      | 1     | PerkinElmer       | Multiwave 3000 | 1%        | 50     | In                 | Agilent      | 7500cx     |
| 4    | 富岡        | 酸分解/ICP-MS         | PTFE             | 1/4  | -   | 3   | 2      | 1     | PerkinElmer       | Multiwave 3000 | 1%        | 50     | In                 | Agilent      | 7500cx     |
| 5    | 鴻巣        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 1      | 1     | Milestone General | ETHOS 1600     | 2%        | 10     | In                 | Agilent      | HP7700x    |
| 6    | 旧高        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 1      | 1     | Milestone General | ETHOS 1600     | 2%        | 10     | In                 | Agilent      | HP7700x    |
| 7    | 秩父        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 1      | 1     | Milestone General | ETHOS 1600     | 2%        | 10     | In                 | Agilent      | HP7700x    |
| 8    | 城南        | 酸分解/ICP-MS         | PTFE             | 1    | -   | 3.5 | 1      | -     | Milestone General | MLS-1200MEGA   | -         | 50     | Nb,In,Pt,Bi        | Agilent      | 7500ce     |
| 9    | 市原        | 酸分解/ICP-MS、蛍光X線分析法 | PTFE             | 1/2  | -   | 5   | 1      | 1     | Milestone General | MLS-1200 MEGA  | 2+98      | 15     | In                 | Perkin Elmer | NexION300D |
| 10   | 勝浦        | 酸分解/ICP-MS、蛍光X線分析法 | PTFE             | 1/2  |     | 5   | 1      | 1     | Milestone General | MLS-1200 MEGA  | 2+98      | 15     | In                 | Perkin Elmer | NexION300D |
| 11   | 佐倉        | 酸分解/ICP-MS、蛍光X線分析法 | PTFE             | 1/2  | -   | 5   | 1      | 1     | Milestone General | MLS-1200 MEGA  | 2+98      | 15     | In                 | Perkin Elmer | NexION300D |
| 12   | 富津        | 酸分解/ICP-MS、蛍光X線分析法 | PTFE             | 1/2  |     | 5   | 1      | 1     | Milestone General | MLS-1200 MEGA  | 2+98      | 15     | In                 | Perkin Elmer | NexION300D |
| 13   | 千葉        | 酸分解/ICP-MS         | PTFE             | 1/2  |     | 5   | 1      | 1     | Milestone General | ETHOS One      | 0.3mol/L  | 25     | Rh                 | SII          | SPQ9000    |
| 14   | 綾瀬        | 酸分解/ICP-MS         | PTFE             | 1/4  | -   | -   | -      | -     | Milestone General | ETHOS One      | -         | -      | Be, Co, Ga, In, Tl | Agilent      | 7500ce     |
| 15   | 多摩        | 酸分解/ICP-MS         | PTFE             | 1/4  | -   | -   | -      | -     | Milestone General | ETHOS One      | -         | -      | Be, Co, Ga, In, Tl | Agilent      | 7500ce     |
| 16   | 大和        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 3      | -     | Milestone General | -              | 1+99      | 50     | Rh, TI             | Agilent      | 7700x      |
| 17   | 横浜        | ICP-MS/XRF法        | PTFE             | 1/2  | -   | 5   | 2      | 1     | PerkinElmer       | Multiwave 3000 | 2%        | 25     | In                 | Agilent      | 7500i      |
| 18   | 川崎        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 2.5 | 1      | 0.5   | Analytikjena      | TOPwave        | 0.3mol/L  | 20     | Y, In, TI          | Agilent      | 7700x      |
| 19   | 相模原       | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 2      | 1     | PerkinElmer       | Multiwave3000  | 2+98      | 25     | In                 | Agilent      | 7500i      |
| 20   | 甲府        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   |     | 1%硝酸1  | 0     | -                 | -              | 1%        | -      | In                 | Agilent      | 7700x      |
| 21   | 東山梨       | 酸分解/ICP-MS         | PTFE             | 1/2  | -   |     | 1%硝酸1  | 0     | -                 | -              | 1%        | -      | In                 | Agilent      | 7700x      |
| 22   | 長野        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 2      | 1     | Analitikjena      | TOPwave        | 0.3mol/L  | 15     | Be, Co, Ga, in, Ti | Agilent      | 7700x      |
| 23   | 富士        | 酸分解/ICP-MS、蛍光X線分析法 | PTFE             | 1/4  | 2.5 | 2.5 | -      | 1     | PerkinElmer       | Multiwave3000  | 1.3mol/L  | 25     | Y, In, TI          | Agilent      | 7500a      |
| 24   | 湖西        | 酸分解/ICP-MS、蛍光X線分析法 | PTFE             | 1/4  | 2.5 | 2.5 | -      | 1     | PerkinElmer       | Multiwave3000  | 1.3mol/L  | 25     | Y, In, TI          | Agilent      | 7500a      |
| 25   | 静岡        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   |     | 1%硝酸1  | 0     | -                 | -              | 1%        | -      | In                 | Agilent      | 7700x      |
| 26   | 浜松        | 酸分解/ICP-MS         | PTFE             | 1/2  | -   | 5   | 2      | 1     | AntonPaar         | Multiwave PRO  | 1mol/L    | 15     | Li,ln,Y            | Perkin Elmer | NexION300x |

## 2.5 フィルターパック法によるガス成分、エアロゾル成分の濃度

遠沈管の中に各ろ紙を入れた後、F0、F1、F2、及びF3 にそれぞれ超純水や0.05% (v/v) 過酸化水素水等を加え、振とう器又は超音波洗浄機を用いて抽出を行った。これらの抽出液をフィルタでろ過した後、イオンクロマトグラフで各成分濃度を測定した。分析条件を表 2 5 に示した。

表 2-5 ガス成分、エアロゾル成分の分析条件

|    | u   | 切出し量 |     | 抽出溶媒 |     |      |             |      |     |      | 抽出      | ı     |                     | 前処理フィルタ          | _         |         | 分析装置     |          |
|----|-----|------|-----|------|-----|------|-------------|------|-----|------|---------|-------|---------------------|------------------|-----------|---------|----------|----------|
| 番号 | 地点名 | (枚)  | F0  | (mL) | F1  | (mL) | F2          | (mL) | F3  | (mL) | 方法      | 時間(分) | メーカー                | 品名               | 型式        | メーカー    | カチオン     | アニオン     |
| 1  | 土浦  | 1    | 超純水 | 10   | 超純水 | 10   | 0.05%過酸化水素水 | 10   | 超純水 | 10   | 振とう+超音波 | 10+10 | ADVANTEC            | DISMIC           | 25HP020AN | Metrohm | IC-850   | IC-850   |
| 2  | 真岡  | -    | -   | -    | -   | -    | -           |      | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 3  | 前橋  | 1    | 超純水 | 10   | 超純水 | 10   | 0.05%過酸化水素水 | 10   | 超純水 | 10   | 振とう+超音波 | 20+15 | MILLIPORE           | Millex           | SLLHH13NL | DIONEX  | ICS-1100 | ICS-1100 |
| 4  | 富岡  | -    | -   |      | -   | -    | -           | -    | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 5  | 鴻巣  | 1    | 超純水 | 10   | 超純水 | 10   | 超純水         | 10   | 超純水 | 10   | 超音波     | 20    | National Scientific | F2513-17         | -         | DIONEX  | IC-20    | IC-20    |
| 6  | 旧高  | ,    | ,   | -    | -   | -    | -           | ,    | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 7  | 秩父  | -    | -   | -    | -   | -    | -           |      | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 8  | 城南  | -    | -   | -    | -   | -    | -           |      | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 9  | 市原  | 1    | 超純水 | 10   | 超純水 | 10   | 0.05%過酸化水素水 | 10   | 超純水 | 10   | 振とう     | 30    | -                   | -                | =         | 東ソー     | IC-2010  | IC-2010  |
| 10 | 勝浦  | -    | -   | -    | -   | -    | -           |      | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 11 | 佐倉  | 1    | 1   | ,    | •   | -    | ·           | ,    | ,   | 1    | -       | -     | -                   | -                | =         | -       | 1        | -        |
| 12 | 富津  | -    | -   | -    | -   | -    | -           | ,    | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 13 | 千葉  | 1    | 1   | ,    | -   | -    | -           | ,    | -   | ,    | i       | -     | -                   |                  | -         | -       | •        | -        |
| 14 | 綾瀬  | 1    | 超純水 | 10   | 超純水 | 10   | 0.05%過酸化水素水 | 10   | 超純水 | 10   | 超音波     | 20    | ADVANTEC            | DISMIC           | 13HP045CN | DIONEX  | ISC-5000 | ISC-5000 |
| 15 | 多摩  | -    | -   | -    | -   | -    | -           | ,    | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 16 | 大和  | ,    | ,   | -    | -   | -    | -           | ,    | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 17 | 横浜  | ,    | ,   | -    | -   | -    | -           | ,    | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 18 | 川崎  | 1    | 超純水 | 20   | 超純水 | 20   | 0.05%過酸化水素水 | 20   | 超純水 | 20   | 超音波     | 20    | ADVANTEC            | DISMIC           | 25HP020AN | DIONEX  | ICS-1600 | ICS-2100 |
| 19 | 相模原 | ,    | ,   | -    | -   | -    | -           | ,    | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 20 | 甲府  | 1    | 超純水 | 20   | 超純水 | 20   | 0.05%過酸化水素水 | 20   | 超純水 | 20   | 振とう     | 20    | Merck Millipore     | Membrane Filters | HAWP04700 | 島津製作所   | 2C-ADsp  | 2C-ADsp  |
| 21 | 東山梨 | ,    | ,   | -    | ,   | -    | •           | ,    | -   | -    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 22 | 長野  | 1    | 超純水 | 20   | 超純水 | 20   | 0.05%過酸化水素水 | 20   | 超純水 | 20   | 振とう     | 20    | GL Science          | GLクロマトディスク       | 25Al      | DIONEX  | ICS-1000 | ICS-1100 |
| 23 | 富士  | 1    | 超純水 | 20   | 超純水 | 20   | 0.05%過酸化水素水 | 20   | 超純水 | 20   | 超音波     | 20    | ADVANTEC            | DISMIC           | 13HP045CN | DIONEX  | ICS-1100 | ICS-2100 |
| 24 | 湖西  | •    | ,   | •    | -   | -    | -           | ,    | -   | ,    | •       | -     | -                   | -                | -         | -       | -        | -        |
| 25 | 静岡  | ,    | ,   | ,    | -   | -    | -           | ,    | -   | ,    | -       | -     | -                   | -                | -         | -       | -        | -        |
| 26 | 浜松  | 1    |     | -    | -   | -    | -           |      | -   |      | -       | -     | -                   | -                | -         | -       | -        | -        |

## 2.6 各成分の定量下限値

# 2.6.1 水溶性イオン成分

表 2-6-1 水溶性イオン成分濃度の検出下限値と定量下限値

|     | UL <b>-</b> - |          | Na⁺             | NH <sub>4</sub> <sup>+</sup> | K⁺                     | Mg <sup>2+</sup> | Ca <sup>2+</sup> | CI <sup>-</sup>  | NO <sub>3</sub> | SO <sub>4</sub> <sup>2-</sup> |
|-----|---------------|----------|-----------------|------------------------------|------------------------|------------------|------------------|------------------|-----------------|-------------------------------|
| 番号  | 地点名           |          | $(\mu g/m^3)$   | (µg/m <sup>3</sup> )         | ( µ g/m <sup>3</sup> ) | $(\mu g/m^3)$    | $(\mu g/m^3)$    | (µg/m³)          | (µg/m³)         | ( µ g/m <sup>3</sup> )        |
|     | 1.345         | 検出       | 0.0058          | 0.0054                       | 0.0059                 | 0.0082           | 0.0063           | 0.013            | 0.012           | 0.012                         |
| 1   | 土浦            | 定量       | 0.019           | 0.018                        | 0.02                   | 0.027            | 0.021            | 0.042            | 0.039           | 0.041                         |
| _   | 去四            | 検出       | 0.058           | 0.013                        | 0.0076                 | 0.0046           | 0.018            | 0.048            | 0.1             | 0.075                         |
| 2   | 真岡            | 定量       | 0.19            | 0.043                        | 0.025                  | 0.015            | 0.061            | 0.16             | 0.34            | 0.25                          |
| 3   | 前橋            | 検出       | 0.067           | 0.082                        | 0.035                  | 0.042            | 0.061            | 0.055            | 0.08            | 0.027                         |
| 3   | 日リ1同          | 定量       | 0.22            | 0.27                         | 0.12                   | 0.14             | 0.2              | 0.18             | 0.27            | 0.09                          |
| 4   | 富岡            | 検出       | 0.067           | 0.082                        | 0.035                  | 0.042            | 0.061            | 0.055            | 0.08            | 0.027                         |
| 7   | 田凹            | 定量       | 0.22            | 0.27                         | 0.12                   | 0.14             | 0.2              | 0.18             | 0.27            | 0.09                          |
| 5   | 鴻巣            | 検出       | 0.00027         | 0.00047                      | 0.00023                | 0.0012           | 0.0003           | 0.054            | 0.01            | 0.018                         |
|     | 7 10010       | 定量       | 0.00088         | 0.0016                       | 0.00078                | 0.0039           | 0.00099          | 0.18             | 0.034           | 0.06                          |
| 6   | 日高            | 検出       | 0.00027         | 0.00047                      | 0.00023                | 0.0012           | 0.0003           | 0.054            | 0.01            | 0.018                         |
|     |               | 定量       | 0.00088         | 0.0016                       | 0.00078                | 0.0039           | 0.00099          | 0.18             | 0.034           | 0.06                          |
| 7   | 秩父            | 検出       | 0.00027         | 0.00047                      | 0.00023                | 0.0012           | 0.0003           | 0.054            | 0.01            | 0.018                         |
|     |               | 定量       | 0.00088         | 0.0016                       | 0.00078                | 0.0039           | 0.00099          | 0.18             | 0.034           | 0.06                          |
| 8   | 城南            | 検出       | 0.014           | 0.011                        | 0.0026                 | 0.0012           | 0.0086           | 0.0052           | 0.014           | 0.011                         |
|     |               | 定量       | 0.046           | 0.037                        | 0.0088                 | 0.0039           | 0.029            | 0.017            | 0.045           | 0.036                         |
| 9   | 市原            | 検出<br>定量 | 0.0088<br>0.029 | 0.00082<br>0.0027            | 0.01<br>0.035          | 0.0006<br>0.002  | 0.0021<br>0.007  | 0.027<br>0.091   | 0.0033<br>0.011 | 0.0027<br>0.0089              |
|     |               | 検出       | 0.029           | 0.0027                       | 0.033                  | 0.002            | 0.007            | 0.091            | 0.0033          | 0.0089                        |
| 10  | 勝浦            | 定量       | 0.0088          | 0.00082                      | 0.035                  | 0.000            | 0.0021           | 0.027            | 0.0033          | 0.0027                        |
|     |               | 検出       | 0.023           | 0.00027                      | 0.033                  | 0.002            | 0.007            | 0.031            | 0.0033          | 0.0003                        |
| 11  | 佐倉            | 定量       | 0.000           | 0.00002                      | 0.035                  | 0.000            | 0.0021           | 0.027            | 0.0033          | 0.0027                        |
|     |               | 検出       | 0.0088          | 0.00082                      | 0.01                   | 0.0006           | 0.0021           | 0.027            | 0.0033          | 0.0027                        |
| 12  | 富津            | 定量       | 0.029           | 0.0027                       | 0.035                  | 0.002            | 0.007            | 0.091            | 0.011           | 0.0089                        |
|     |               | 検出       | 0.009           | 0.014                        | 0.0053                 | 0.021            | 0.028            | 0.0045           | 0.017           | 0.0076                        |
| 13  | 千葉            | 定量       | 0.03            | 0.048                        | 0.018                  | 0.069            | 0.094            | 0.015            | 0.056           | 0.025                         |
| 4.4 | /± :±5        | 検出       | 0.02            | 0.004                        | 0.02                   | 0.005            | 0.02             | 0.07             | 0.07            | 0.05                          |
| 14  | 綾瀬            | 定量       | 0.05            | 0.01                         | 0.06                   | 0.02             | 0.06             | 0.2              | 0.2             | 0.2                           |
| 15  | 多摩            | 検出       | 0.02            | 0.004                        | 0.02                   | 0.005            | 0.02             | 0.07             | 0.07            | 0.05                          |
| 13  | 夕庤            | 定量       | 0.05            | 0.01                         | 0.06                   | 0.02             | 0.06             | 0.2              | 0.2             | 0.2                           |
| 16  | 大和            | 検出       | 0.23            | 0.19                         | 0.034                  | 0.087            | 0.28             | 0.058            | 0.18            | 0.084                         |
|     | /\1H          | 定量       | 0.78            | 0.64                         | 0.11                   | 0.29             | 0.93             | 0.19             | 0.59            | 0.28                          |
| 17  | 横浜            | 検出       | 0.01            | 0.01                         | 0.01                   | 0.01             | 0.02             | 0.02             | 0.01            | 0.01                          |
|     | 1277          | 定量       | 0.04            | 0.03                         | 0.04                   | 0.01             | 0.05             | 0.04             | 0.01            | 0.01                          |
| 18  | 川崎            | 検出       | 0.11            | 0.028                        | 0.0033                 | 0.0012           | 0.0066           | 0.0091           | 0.025           | 0.006                         |
|     |               | 定量       | 0.37            | 0.092                        | 0.011                  | 0.0041           | 0.022            | 0.03             | 0.084           | 0.02                          |
| 19  | 相模原           | 検出       | 0.02            | 0.02                         | 0.02                   | 0.01             | 0.1              | 0.02             | 0.01            | 0.01                          |
|     |               | 定量       | 0.06            | 0.04                         | 0.07                   | 0.02             | 0.2              | 0.07             | 0.02            | 0.01                          |
| 20  | 甲府            | 検出 定量    | 0.02            | 0.016                        | 0.24<br>0.8            | 0.15<br>0.5      | 0.16             | 0.0022<br>0.0075 | 0.042<br>0.14   | 0.036<br>0.12                 |
|     |               |          | 0.068           | 0.055                        |                        |                  | 0.53             |                  |                 |                               |
| 21  | 東山梨           | 検出 定量    | 0.02<br>0.068   | 0.016<br>0.055               | 0.24<br>0.8            | 0.15<br>0.5      | 0.16<br>0.53     | 0.0022<br>0.0075 | 0.042<br>0.14   | 0.036<br>0.12                 |
|     |               | 検出       | 0.005           | 0.0062                       | 0.035                  | 0.0069           | 0.064            | 0.0073           | 0.14            | 0.12                          |
| 22  | 長野            | 定量       | 0.013           | 0.0002                       | 0.033                  | 0.0003           | 0.004            | 0.011            | 0.13            | 0.03                          |
|     |               | 検出       | 0.040           | 0.025                        | 0.0078                 | 0.0058           | 0.11             | 0.014            | 0.0076          | 0.019                         |
| 23  | 富士            | 定量       | 0.13            | 0.084                        | 0.026                  | 0.019            | 0.38             | 0.047            | 0.026           | 0.063                         |
|     | \4n           | 検出       | 0.04            | 0.025                        | 0.0078                 | 0.0058           | 0.11             | 0.014            | 0.0076          | 0.019                         |
| 24  | 湖西            | 定量       | 0.13            | 0.084                        | 0.026                  | 0.019            | 0.38             | 0.047            | 0.026           | 0.063                         |
| 0.5 | <b>主4</b> [元] | 検出       | 0.015           | 0.0092                       | 0.017                  | 0.0037           | 0.026            | 0.02             | 0.1             | 0.072                         |
| 25  | 静岡            | 定量       | 0.051           | 0.032                        | 0.056                  | 0.012            | 0.083            | 0.066            | 0.34            | 0.24                          |
| 26  | ;F±\\         | 検出       | 0.023           | 0.0082                       | 0.0063                 | 0.0033           | 0.04             | 0.00062          | 0.05            | 0.074                         |
| 26  | 浜松            | 定量       | 0.078           | 0.028                        | 0.021                  | 0.011            | 0.13             | 0.0021           | 0.17            | 0.25                          |

# 2.6.2 炭素成分

# 表 2-6-2 炭素成分濃度の検出下限値と定量下限値

| 番号       | 地点名         |           | OC1           | OC2            | OC3           | OC4           | Ocpyro                 | EC1                    | EC2           | EC3                    | OC 3    | EC            | WSOC          |
|----------|-------------|-----------|---------------|----------------|---------------|---------------|------------------------|------------------------|---------------|------------------------|---------|---------------|---------------|
|          | <i>-</i>    |           | $(\mu g/m^3)$ | $(\mu g/m^3)$  | $(\mu g/m^3)$ | $(\mu g/m^3)$ | ( µ g/m <sup>3</sup> ) | ( µ g/m <sup>3</sup> ) | $(\mu g/m^3)$ | ( µ g/m <sup>3</sup> ) | (µg/m³) | $(\mu g/m^3)$ | $(\mu g/m^3)$ |
| 1        | 土浦          | 検出        | 0             | 0.026          | 0.059         | 0.02          | 0                      | 0.013                  | 0             | 0                      | -       | -             | -             |
| <u> </u> | /m          | 定量        | 0             | 0.087          | 0.2           | 0.067         | 0                      | 0.044                  | 0             | 0                      | -       | -             | -             |
| 2        | 真岡          | 検出        | 0.028         | 0.029          | 0.11          | 0.065         | 0.12                   | 0.069                  | 0.04          | 0.038                  | -       | -             | 0.56          |
| _        | 2213        | 定量        | 0.093         | 0.095          | 0.36          | 0.22          | 0.41                   | 0.23                   | 0.13          | 0.13                   | -       | -             | 1.9           |
| 3        | 前橋          | 検出        | 0.05          | 0.06           | 0.07          | 0.01          | 0                      | 0.01                   | 0             | 0                      | -       | -             | 0.32          |
|          |             | 定量        | 0.17          | 0.2            | 0.23          | 0.033         | 0                      | 0.033                  | 0             | 0                      | -       | -             | 1.1           |
| 4        | 富岡          | 検出        | 0.05          | 0.06           | 0.07          | 0.01          | 0                      | 0.01                   | 0             | 0                      | -       | -             | 0.32          |
| <u> </u> |             | 定量        | 0.17          | 0.2            | 0.23          | 0.033         | 0                      | 0.033                  | 0.0007        | 0                      | -       | -             | 1.1           |
| 5        | 鴻巣          | 検出 定量     | 0             | 0.037<br>0.045 | 0.013         | 0             | 0                      | 0                      | 0.0067        | 0                      | -       | -             | 0.15<br>0.51  |
|          |             |           | 0             |                |               | 0             | 0                      | 0                      | 0.0067        | 0                      | -       |               | 0.51          |
| 6        | 日高          | 検出 定量     | 0             | 0.037          | 0.013<br>0.13 | 0             | 0                      | 0                      | 0.0067        | 0                      | -       | -             | -             |
|          |             |           | 0             | 0.045<br>0.037 |               | 0             | 0                      | 0                      | 0.0067        |                        | -       | -             | <b>-</b>      |
| 7        | 秩父          | 検出 定量     | 0             | 0.037          | 0.013<br>0.13 | 0             | 0                      | 0                      | 0.0067        | 0                      | -       | -             | -             |
|          |             | 検出        | 0             | 0.045          | 0.13          | 0.011         | 0                      | 0                      | 0.25          | 0.14                   | -       | -             | 0.15          |
| 8        | 城南          | 定量        | 0             | 0.064          | 0.41          | 0.011         | 0                      | 0                      | 0.25          | 0.14                   | -       | -             | 0.15          |
| <b>-</b> |             | 検出        | 0.046         | 0.064          | 0.41          | 0.011         | 0.062                  | 0.052                  | 0.25          | 0.14                   | -       | -             | 0.51          |
| 9        | 市原          | 定量        | 0.046         | 1.2            | 0.16          | 0.017         | 0.062                  | 0.052                  | 0.017         | 0                      | -       | -             | 0.11          |
| <b>-</b> |             | 検出        | 0.13          | 0.37           | 0.33          | 0.038         | 0.062                  | 0.052                  | 0.038         | 0                      |         | -             | 0.37          |
| 10       | 勝浦          | 定量        | 0.040         | 1.2            | 0.10          | 0.017         | 0.002                  | 0.032                  | 0.017         | 0                      |         |               | 0.11          |
|          |             | 検出        | 0.046         | 0.37           | 0.16          | 0.017         | 0.062                  | 0.052                  | 0.017         | 0                      | _       | -             | 0.11          |
| 11       | 佐倉          | 定量        | 0.040         | 1.2            | 0.53          | 0.058         | 0.002                  | 0.032                  | 0.058         | 0                      | _       | _             | 0.37          |
|          |             | 検出        | 0.046         | 0.37           | 0.16          | 0.017         | 0.062                  | 0.052                  | 0.017         | 0                      | _       | -             | 0.11          |
| 12       | 富津          | 定量        | 0.040         | 1.2            | 0.53          | 0.058         | 0.002                  | 0.032                  | 0.058         | 0                      | _       |               | 0.37          |
|          |             | 検出        | 0.10          | 0.094          | 0.11          | 0.0039        | 0.11                   | 0.055                  | 0.049         | 0.017                  | _       | -             | 0.16          |
| 13       | 千葉          | 定量        | 0.33          | 0.31           | 0.35          | 0.013         | 0.37                   | 0.18                   | 0.16          | 0.057                  | _       | -             | 0.53          |
|          |             | 検出        | 0.4           | 0.4            | 0.4           | 0.4           | 0.007                  | 0.007                  | 0.007         | 0.007                  | -       | -             | -             |
| 14       | 綾瀬          | 定量        | 1             | 1              | 1             | 1             | 0.02                   | 0.02                   | 0.02          | 0.02                   | -       | -             | -             |
| T        | <b>4</b> ## | 検出        | 0.4           | 0.4            | 0.4           | 0.4           | 0.007                  | 0.007                  | 0.007         | 0.007                  | -       | -             | -             |
| 15       | 多摩          | 定量        | 1             | 1              | 1             | 1             | 0.02                   | 0.02                   | 0.02          | 0.02                   | -       | -             | -             |
| 4.0      | 大和          | 検出        | 0.042         | 0.12           | 0.27          | 0.036         | 0                      | 0.026                  | 0             | 0                      | -       | -             | 0.16          |
| 16       | 八仙          | 定量        | 0.14          | 0.4            | 0.9           | 0.12          | 0                      | 0.085                  | 0             | 0                      | -       | -             | 0.54          |
| 17       | 横浜          | 検出        | 0             | 0.05           | 0.03          | 0             | 0                      | 0                      | 0             | 0                      | 0       | 0             | 0.15          |
| L''      | 1供/六        | 定量        | 0             | 0.14           | 0.09          | 0             | 0                      | 0                      | 0             | 0                      | 0       | 0             | 0.51          |
| 18       | 川崎          | 検出        | 0.08          | 0.15           | 0.088         | 0.034         | 0.1                    | 0.043                  | 0.036         | 0.026                  | -       | -             | 1.4           |
|          | / i   W-Dj  | 定量        | 0.27          | 0.51           | 0.29          | 0.11          | 0.34                   | 0.14                   | 0.12          | 0.088                  | -       | -             | 4.1           |
| 19       | 相模原         | 検出        | 0.01          | 0.01           | 0.02          | 0             | 0                      | 0                      | 0             | 0                      | -       | -             | -             |
|          | 1417/3/     | 定量        | 0.02          | 0.03           | 0.06          | 0             | 0                      | 0                      | 0             | 0                      | -       | -             | -             |
| 20       | 甲府          | 検出        | 0.007         | 0.034          | 0.21          | 0.037         | 0.14                   | 0.18                   | 0.042         | 0.028                  | -       | -             | 0.15          |
|          | . 713       | 定量        | 0.023         | 0.11           | 0.7           | 0.12          | 0.48                   | 0.6                    | 0.14          | 0.095                  | -       | -             | 0.49          |
| 21       | 東山梨         | 検出        | 0.021         | 0.045          | 0.055         | 0.049         | 0.14                   | 0.029                  | 0.06          | 0.028                  | -       | -             | 0.15          |
|          |             | 定量        | 0.07          | 0.15           | 0.18          | 0.16          | 0.48                   | 0.1                    | 0.19          | 0.095                  | -       | -             | 0.49          |
| 22       | 長野          | 検出        | 0.039         | 0.033          | 0.071         | 0.033         | 0.068                  | 0.065                  | 0.025         | 0.025                  | -       | -             | 0.15          |
|          |             | 定量        | 0.13          | 0.11           | 0.24          | 0.11          | 0.23                   | 0.22                   | 0.082         | 0.082                  | -       | -             | 0.51          |
| 23       | 富士          | 検出<br>定量  | 0.08          | 0.07           | 0.2           | 0.1           | 0.06                   | 0.06                   | 0.06          | 0.06                   | -       | -             | 0.15          |
|          |             |           | 0.26<br>0.04  | 0.23<br>0.01   | 0.8           | 0.4<br>0.05   | 0.18<br>0.06           | 0.18<br>0.06           | 0.18<br>0.06  | 0.18                   | -       | -             | 0.51<br>0.15  |
| 24       | 湖西          | 検出 定量     | 0.04          | 0.01           | 0.2           | 0.05          | 0.06                   | 0.06                   | 0.06          | 0.009                  | -       | -             | 0.15          |
|          |             | 検出        | 0.13          | 0.04           | 0.026         | 0.17          | 0.16                   | 0.18                   | 0.18          | 0.031                  |         | -             | 0.014         |
| 25       | 静岡          | 定量        | 0.027         | 0.037          | 0.026         | 0.026         | 0.14                   | 0.036                  | 0.012         | 0.028                  | -       | -             | 0.014         |
|          |             | 検出        | 0.09          | 0.12           | 0.09          | 0.09          | 0.46                   | 0.12                   | 0.039         | 0.093                  |         | Hi            | - 0.047       |
| 26       | 浜松          | 定量        | 0.023         | 0.018          | 0.33          | 0.041         | 0.14                   | 0.08                   | 0.021         | 0.028                  |         |               |               |
| L        |             | <b>企里</b> | 0.075         | 0.06           | 0.33          | 0.14          | 0.46                   | 0.27                   | 0.07          | 0.095                  | -       |               |               |

## 2.6.3 金属等の無機元素成分

表 2-6-3-1 金属等の無機元素成分濃度の検出下限値と定量下限値

|          | UL E 47  |                 | Na                   | Al                   | Si                   | K                    | Ca                   | Sc                   | Ti                   | V             |
|----------|----------|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------|
| 番号       | 地点名      |                 | (ng/m <sup>3</sup> ) | (ng/m³)       |
| 1        | 土浦       | 検出              | -                    | 6.7                  | -                    | -                    | -                    | 0.01                 | 1                    | 0.073         |
| ļ        | 上畑       | 定量              | -                    | 22                   | -                    | -                    | -                    | 0.035                | 3.5                  | 0.24          |
| 2        | 真岡       | 検出              | 39                   | 32                   | -                    | 28                   | 54                   | 0.71                 | 9.6                  | 0.086         |
|          | ~13      | 定量              | 130                  | 110                  | -                    | 93                   | 180                  | 2.4                  | 32                   | 0.29          |
| 3        | 前橋       | 検出              | 5.4                  | 33                   | -                    | 11                   | 87                   | 0.011                | 28                   | 0.07          |
|          |          | 定量              | 18                   | 110                  | -                    | 35                   | 290                  | 0.036                | 92                   | 0.22          |
| 4        | 富岡       | 検出              | 5.4                  | 33                   | -                    | 11                   | 87                   | 0.011                | 28                   | 0.07          |
|          |          | 定量 検出           | 18                   | 110<br>0.43          | -                    | 35<br>9.2            | 290<br>1.2           | 0.036<br>0.044       | 92<br>1.4            | 0.22<br>0.032 |
| 5        | 鴻巣       | 定量              | 6.5<br>22            | 1.4                  | -                    | 31                   | 4                    | 0.044                | 4.6                  | 0.032         |
|          |          | 検出              | 6.5                  | 0.43                 |                      | 9.2                  | 1.2                  | 0.13                 | 1.4                  | 0.11          |
| 6        | 日高       | 定量              | 22                   | 1.4                  | -                    | 31                   | 4                    | 0.044                | 4.6                  | 0.032         |
|          |          | 検出              | 6.5                  | 0.43                 | -                    | 9.2                  | 1.2                  | 0.13                 | 1.4                  | 0.032         |
| 7        | 秩父       | 定量              | 22                   | 1.4                  | _                    | 31                   | 4                    | 0.15                 | 4.6                  | 0.002         |
|          |          | 検出              | 12                   | 240                  | 7.6                  | 13                   | 460                  | 0.33                 | 6.2                  | 0.091         |
| 8        | 城南       | 定量              | 41                   | 820                  | 25                   | 43                   | 1500                 | 1.1                  | 21                   | 0.3           |
| ^        | 士匠       | 検出              | 5.2                  | 7.9                  | 2.1                  | 8.9                  | 25                   | 0.073                | 1.7                  | 0.045         |
| 9        | 市原       | 定量              | 17                   | 26                   | 7.1                  | 30                   | 82                   | 0.24                 | 5.6                  | 0.15          |
| 10       | 勝浦       | 検出              | 5.2                  | 7.9                  | 2.1                  | 8.9                  | 25                   | 0.073                | 1.7                  | 0.045         |
| 10       | 別分/用     | 定量              | 17                   | 26                   | 7.1                  | 30                   | 82                   | 0.24                 | 5.6                  | 0.15          |
| 11       | 佐倉       | 検出              | 5.2                  | 7.9                  | 2.1                  | 8.9                  | 25                   | 0.073                | 1.7                  | 0.045         |
|          | 江后       | 定量              | 17                   | 26                   | 7.1                  | 30                   | 82                   | 0.24                 | 5.6                  | 0.15          |
| 12       | 富津       | 検出              | 5.2                  | 7.9                  | 2.1                  | 8.9                  | 25                   | 0.073                | 1.7                  | 0.045         |
|          | ш/т      | 定量              | 17                   | 26                   | 7.1                  | 30                   | 82                   | 0.24                 | 5.6                  | 0.15          |
| 13       | 千葉       | 検出              | 0.51                 | 2.9                  | 7.2                  | 3.5                  | 2.8                  | 0.91                 | 4.2                  | 0.4           |
|          |          | 定量              | 1.7                  | 9.7                  | 24                   | 12                   | 9.4                  | 3                    | 14                   | 1.3           |
| 14       | 綾瀬       | 検出              | 6                    | 9                    | 9                    | 20                   | 6                    | 0.05                 | 2                    | 0.1           |
|          |          | 定量              | 20                   | 30                   | 30                   | 50                   | 20                   | 0.2                  | 6                    | 0.4           |
| 15       | 多摩       | 検出 定量           | 6<br>20              | 9<br>30              | 9<br>30              | 20<br>50             | 6<br>20              | 0.05<br>0.2          | 2<br>6               | 0.1<br>0.4    |
|          |          | 検出              | 13                   | 15                   | - 30                 | 29                   | 11                   | 0.79                 | 1.8                  | 0.4           |
| 16       | 大和       | 定量              | 43                   | 51                   | -                    | 96                   | 38                   | 2.6                  | 6                    | 0.68          |
|          |          | 検出              | 13                   | 17                   | 7.6                  | 7.3                  | 7.6                  | 0.11                 | 0.94                 | 0.72          |
| 17       | 横浜       | 定量              | 13                   | 17                   | 7.6                  | 7.3                  | 7.6                  | 0.38                 | 0.94                 | 0.72          |
| 40       | 11144    | 検出              | 11                   | 5.5                  | -                    | 2.4                  | 9.1                  | 0.023                | 1.2                  | 0.1           |
| 18       | 川崎       | 定量              | 35                   | 18                   | -                    | 8.1                  | 30                   | 0.075                | 4                    | 0.34          |
| 10       | 相模原      | 検出              | 6                    | 0.9                  | *                    | 7                    | 1.8                  | 0.07                 | 0.6                  | 0.03          |
| 19       | 们以以      | 定量              | 19                   | 3.1                  | *                    | 25                   | 5.9                  | 0.23                 | 1.9                  | 0.11          |
| 20       | 甲府       | 検出              | 17                   | 18                   | 12                   | 17                   | 49                   | 0.022                | 0.073                | 0.12          |
| 20       | רוע ידי  | 定量              | 56                   | 59                   | 39                   | 55                   | 170                  | 0.072                | 0.24                 | 0.38          |
| 21       | 東山梨      | 検出              | 26                   | 18                   | 12                   | 52                   | 110                  | 0.017                | 0.12                 | 0.074         |
|          | 八山八      | 定量              | 83                   | 59                   | 39                   | 180                  | 360                  | 0.057                | 0.39                 | 0.25          |
| 22       | 長野       | 検出              | 11                   | 0.71                 | -                    | 3                    | 1.9                  | 0.005                | 0.85                 | 0.043         |
| <u> </u> |          | 定量              | 35                   | 2.4                  | -                    | 10                   | 6.5                  | 0.017                | 2.8                  | 0.14          |
| 23       | 富士       | 検出              | 4                    | 1                    | 30                   | 10                   | 7                    | 0.2                  | 0.2                  | 0.2           |
|          |          | 定量              | 12                   | 5                    | 110                  | 30                   | 23                   | 0.8                  | 0.7                  | 0.8           |
| 24       | 湖西       | 検出 定量           | 2                    | 1<br>5               | 30                   | 10<br>30             | 8<br>25              | 0.2                  | 2<br>7               | 0.2           |
|          |          | <u>疋里</u><br>検出 | 6<br>3.2             | 5<br>18              | 110<br>15            | 12                   | 25<br>46             | 0.8<br>0.019         | 0.1                  | 0.8<br>0.016  |
| 25       | 静岡       | 定量              | 3.∠<br>11            | 59                   | 52                   | 42                   | 150                  | 0.019                | 0.1                  | 0.018         |
|          | <b>.</b> | 検出              | 13                   | 4.2                  | - 52                 | 9.2                  | 20                   | 1.1                  | 0.33                 | 0.053         |
| 26       | 浜松       | 定量              | 44                   | 14                   | -                    | 31                   | 66                   | 3.8                  | 3.1                  | 0.00          |
|          |          | 化里              | 44                   | 14                   | -                    | 31                   | 00                   | 3.0                  | ا . ۱                | 0.2           |

# \* Siの検出下限値及び定量下限値について(相模原市)

蛍光X線にて測定時にサンプルごとにブランクフィルターとのバックグラウンド補正を行っているため、検出下限値及び定量下限値が以下の表2-6-3-1-1に示すとおり、サンプルごとに算出されている。

表2-6-3-1-1 Si検出下限値及び定量下限値(相模原)

| 期間          | 検出下限値(ng/m³) | 定量下限値(ng/m³) |
|-------------|--------------|--------------|
| 7/23 ~ 7/24 | 7            | 7            |
| 7/24 ~ 7/24 | 6.5          | 6.5          |
| 7/25 ~ 7/25 | 8.1          | 8.1          |
| 7/26 ~ 7/26 | 6.8          | 6.8          |
| 7/26 ~ 7/27 | 5.6          | 5.6          |
| 7/28 ~ 7/29 | 4.4          | 4.4          |
| 7/29 ~ 7/30 | 4.7          | 4.7          |
| 7/30 ~ 7/31 | 4.7          | 4.7          |
| 7/31 ~ 8/1  | 5.3          | 5.3          |
| 8/1 ~ 8/2   | 4.9          | 4.9          |
| 8/2~8/3     | 5.4          | 5.4          |
| 8/3 ~ 8/4   | 4.9          | 4.9          |
| 8/4 ~ 8/5   | 5            | 5            |
| 8/5~8/6     | 6.1          | 6.1          |

表 2-6-3-2 金属等の無機元素成分濃度の検出下限値と定量下限値

|     | 11k F 47   |            | Cr         | Mn            | Fe                   | Co            | Ni                   | Cu          | Zn         | As             |
|-----|------------|------------|------------|---------------|----------------------|---------------|----------------------|-------------|------------|----------------|
| 番号  | 地点名        | A          |            | (ng/m³)       | (ng/m <sup>3</sup> ) | (ng/m³)       | (ng/m <sup>3</sup> ) | (ng/m³)     | (ng/m³)    | (ng/m³)        |
| 1   | 土浦         | (ng/m³)    |            | 0.17          | 5.1                  | 0.0069        | 0.22                 | 1.2         | 2.8        | 0.057          |
| ı   | 上/用        |            | 1.3        | 0.56          | 17                   | 0.023         | 0.72                 | 3.9         | 9.4        | 0.19           |
| 2   | 直岡         | 検出         | 0.6        | 0.42          | 21                   | 0.12          | 4                    | 2.3         | 20         | 0.11           |
|     | 共岡         |            | 2          | 1.4           | 69                   | 0.39          | 13                   | 7.6         | 68         | 0.38           |
| 3   | 前煙         |            | 0.37       | 0.014         | 0.42                 | 0.06          | 0.25                 | 2.4         | 4.1        | 0.014          |
|     | PULLE      |            |            | 0.045         | 1.4                  | 0.2           | 0.83                 | 8.1         | 14         | 0.046          |
| 4   | 宮岡         |            |            | 0.014         | 0.42                 | 0.06          | 0.25                 | 2.4         | 4.1        | 0.014          |
|     | ш.         |            |            | 0.045         | 1.4                  | 0.2           | 0.83                 | 8.1         | 14         | 0.046          |
| 5   | 鴻巣         |            |            | 1.6           | 2.8                  | 0.027         | 0.12                 | 0.2         | 1.1        | 0.091          |
|     | 7 119 210  |            |            | 5.3           | 9.2                  | 0.089         | 0.4                  | 0.66        | 3.8        | 0.03           |
| 6   | 日高         |            |            | 1.6           | 2.8                  | 0.027         | 0.12                 | 0.2         | 1.1        | 0.091          |
|     |            |            |            | 5.3           | 9.2                  | 0.089         | 0.4                  | 0.66        | 3.8        | 0.03           |
| 7   | 秩父         |            |            | 1.6           | 2.8                  | 0.027         | 0.12                 | 0.2         | 1.1        | 0.091          |
|     |            |            |            | 5.3           | 9.2                  | 0.089         | 0.4                  | 0.66        | 3.8        | 0.03           |
| 8   | 城南         |            |            | 0.1           | 14                   | 0.034         | 0.4                  | 0.05        | 33         | 0.014          |
|     |            |            |            | 0.34          | 48                   | 0.11          | 1.3                  | 0.17        | 110        | 0.045          |
| 9   | 市原         |            |            | 0.16<br>0.55  | 14<br>45             | 0.05<br>0.17  | 0.39<br>1.3          | 1.4<br>4.6  | 2.5<br>8.4 | 0.052<br>0.17  |
|     |            |            |            | 0.55          | 14                   | 0.17          | 0.39                 | 1.4         | 2.5        | 0.17           |
| 10  | 勝浦         |            |            | 0.16          | 45                   | 0.03          | 1.3                  | 4.6         | 8.4        |                |
|     |            |            |            | 0.55          | 14                   | 0.17          | 0.39                 | 1.4         | 2.5        | 0.17<br>0.052  |
| 11  | 佐倉         |            |            | 0.16          | 45                   | 0.03          | 1.3                  | 4.6         | 8.4        | 0.032          |
|     |            |            |            | 0.16          | 14                   | 0.17          | 0.39                 | 1.4         | 2.5        | 0.052          |
| 12  | 富津         |            |            | 0.10          | 45                   | 0.03          | 1.3                  | 4.6         | 8.4        | 0.032          |
|     |            |            |            | 0.3           | 1.3                  | 0.17          | 1.3                  | 0.69        | 0.97       | 0.38           |
| 13  | 千葉         | 定量         |            | 0.99          | 4.4                  | 0.48          | 4.2                  | 2.3         | 3.2        | 1.3            |
|     |            |            |            | 0.1           | 5                    | 0.08          | 0.1                  | 0.05        | 2          | 0.1            |
| 14  | 綾瀬         |            |            | 0.3           | 20                   | 0.3           | 0.4                  | 0.2         | 7          | 0.4            |
| 45  | 夕莊         |            |            | 0.1           | 5                    | 0.08          | 0.1                  | 0.05        | 2          | 0.1            |
| 15  | 多庠         |            |            | 0.3           | 20                   | 0.3           | 0.4                  | 0.2         | 7          | 0.4            |
| 4.0 | <b></b> 10 | 検出         | 0.3        | 0.095         | 5.7                  | 0.082         | 0.34                 | 11          | 17         | 0.48           |
| 16  | 入和         | 定量         | 1          | 0.32          | 19                   | 0.27          | 1.1                  | 38          | 58         | 1.6            |
| 17  | 描记         |            | 0.38       | 1.4           | 4.9                  | 0.83          | 0.77                 | 4.4         | 1.9        | 0.8            |
| 17  | (世/八       | 定量         | 0.38       | 1.4           | 4.9                  | 0.83          | 0.77                 | 4.4         | 1.9        | 0.8            |
| 18  | 川崎         |            | 0.15       | 0.13          | 3                    | 0.018         | 0.38                 | 0.68        | 1.3        | 0.024          |
| 10  | / I   WPJ  |            | 0.5        | 0.43          | 10                   | 0.058         | 1.3                  | 2.3         | 4.3        | 0.078          |
| 19  | 相模原        |            |            | 0.07          | 5                    | 0.06          | 0.13                 | 0.9         | 0.4        | 0.04           |
|     |            |            |            | 0.22          | 15                   | 0.19          | 0.43                 | 2.9         | 1.2        | 0.13           |
| 20  | 甲府         |            |            | 0.11          | 2                    | 0.025         | 0.073                | 0.11        | 5.2        | 0.072          |
|     | 1 /13      |            |            | 0.36          | 6.8                  | 0.083         | 0.24                 | 0.37        | 18         | 0.24           |
| 21  | 東山梨        |            |            | 0.12          | 2                    | 0.0028        | 0.21                 | 0.78        | 41         | 0.0092         |
|     |            |            |            | 0.38          | 6.8                  | 0.0092        | 0.7                  | 2.6         | 130        | 0.031          |
| 22  | 長野         | 検出         |            | 0.027         | 0.77                 | -             | 0.01                 | 0.05        | 0.35       | 0.0078         |
|     |            |            |            | 0.091         | 2.6                  | -             | 0.034                | 0.17        | 1.2        | 0.026          |
| 23  | 富士         |            |            | 0.04          | 1                    | 0.02          | 0.4                  | 0.02        | 2          | 0.7            |
| -   |            | 定量         | 0.6        | 0.13          | 5                    | 0.07          | 1.4                  | 0.06        | 6          | 2.3            |
| 24  | 湖西         | 検出         | 0.2        | 0.06          | 4                    | 0.2           | 0.4                  | 0.2         | 2          | 0.7            |
|     |            | 定量         | 0.6        | 0.21<br>0.047 | 12                   | 0.6<br>0.0076 | 1.4                  | 0.8<br>0.11 | 6          | 2.3            |
| 25  | 静岡         | 検出 定量      | 1.5<br>5.1 | 0.047         | 2.1                  | 0.0076        | 0.033<br>0.11        | 0.11        | 28<br>92   | 0.019          |
|     |            | 検出         | 0.11       | 0.16          | 6.9<br>0.53          | 0.025         | 0.11                 | 0.36        | 2.4        | 0.062<br>0.042 |
| 26  | 浜松         | 定量         | 0.11       | 0.039         | 1.8                  | 0.039         | 0.15                 | 0.16        | 7.9        | 0.042          |
| Ļ   |            | <b>止</b> 重 | 0.37       | 0.13          | 1.8                  | 0.13          | 0.5                  | 0.55        | 7.9        | 0.14           |

表 2-6-3-3 金属等の無機元素成分濃度の検出下限値と定量下限値

|          | 11k F 47      |            | Se                                                       | Rb                   | Мо                   | Sb                   | Cs                   | Ва            | La      | Ce      |
|----------|---------------|------------|----------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|---------------|---------|---------|
| 番号       | 地点名           |            | (ng/m <sup>3</sup> )                                     | (ng/m <sup>3</sup> ) | (ng/m <sup>3</sup> ) | (ng/m <sup>3</sup> ) | (ng/m <sup>3</sup> ) | (ng/m³)       | (ng/m³) | (ng/m³) |
|          | 上注            | 検出         | (ng/m³) (ng/ng/ng/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg |                      | 0.039                | 0.024                | 0.0041               | 0.1           | 0.005   | 0.0099  |
| 1        | 土浦            | 定量         | 0.16                                                     | -                    | 0.13                 | 0.081                | 0.014                | 0.34          | 0.017   | 0.033   |
| 2        | 真岡            | 検出         | 0.35                                                     | 0.084                | 2.3                  | 0.62                 | 0.034                | 1.6           | 0.11    | 0.079   |
|          | 共門            | 定量         | 1.2                                                      | 0.28                 | 7.6                  | 2.1                  | 0.11                 | 5.2           | 0.36    | 0.26    |
| 3        | 前橋            | 検出         | 0.11                                                     | 0.029                | 0.009                | 3.2                  | 0.0049               | 0.49          | 0.001   | 0.0013  |
| <u> </u> | 间。            |            | 0.37                                                     | 0.1                  | 0.032                | 11                   | 0.016                | 1.6           | 0.0034  | 0.0044  |
| 4        | 富岡            | 検出         |                                                          | 0.029                | 0.009                | 3.2                  | 0.0049               | 0.49          | 0.001   | 0.0013  |
|          | 田円            | 定量         | 0.37                                                     | 0.1                  | 0.032                | 11                   | 0.016                | 1.6           | 0.0034  | 0.0044  |
| 5        | 鴻巣            | 検出         |                                                          | 0.031                | 0.081                | 0.037                | 0.017                | 0.85          | 0.043   | 0.023   |
| <u> </u> | 冷木            |            | 1.6                                                      | 0.1                  | 0.27                 | 0.12                 | 0.056                | 2.8           | 0.14    | 0.076   |
| 6        | 日高            | 検出         | 0.49                                                     | 0.031                | 0.081                | 0.037                | 0.017                | 0.85          | 0.043   | 0.023   |
| 0        | 니미            | 定量         | 1.6                                                      | 0.1                  | 0.27                 | 0.12                 | 0.056                | 2.8           | 0.14    | 0.076   |
| 7        | 秩父            | 検出         | 0.49                                                     | 0.031                | 0.081                | 0.037                | 0.017                | 0.85          | 0.043   | 0.023   |
| '        | 17.7          | 定量         | 1.6                                                      | 0.1                  | 0.27                 | 0.12                 | 0.056                | 2.8           | 0.14    | 0.076   |
| 8        | 城南            | 検出         |                                                          | 0.74                 | 0.021                | 0.0063               | 0.0083               | 0.6           | 0.034   | 0.15    |
| ٥        | かり円           | 定量         | 0.34                                                     | 2.5                  | 0.069                | 0.021                | 0.028                | 2             | 0.11    | 0.49    |
| 9        | 市原            | 検出         | 1                                                        | 0.042                | 0.066                | 0.024                | 0.02                 | 0.13          | 0.021   | 0.023   |
| 9        | 지내            | 定量         | 3.4                                                      | 0.14                 | 0.22                 | 0.08                 | 0.067                | 0.45          | 0.072   | 0.078   |
| 10       | 勝浦            | 検出         | 1                                                        | 0.042                | 0.066                | 0.024                | 0.02                 | 0.13          | 0.021   | 0.023   |
| 10       | 13万 /田        | 定量         | 3.4                                                      | 0.14                 | 0.22                 | 0.08                 | 0.067                | 0.45          | 0.072   | 0.078   |
| 11       | 佐倉            | 検出         | 1                                                        | 0.042                | 0.066                | 0.024                | 0.02                 | 0.13          | 0.021   | 0.023   |
|          | 江石            | 定量         | 3.4                                                      | 0.14                 | 0.22                 | 0.08                 | 0.067                | 0.45          | 0.072   | 0.078   |
| 12       | 富津            | 検出         | 1                                                        | 0.042                | 0.066                | 0.024                | 0.02                 | 0.13          | 0.021   | 0.023   |
| 12       | 田/干           | 定量         | 3.4                                                      | 0.14                 | 0.22                 | 0.08                 | 0.067                | 0.45          | 0.072   | 0.078   |
| 13       | 千葉            | 検出         |                                                          | 0.055                | 0.16                 | 0.13                 | 0.067                | 0.17          | 0.39    | 0.34    |
| 10       | 1 🛧           |            |                                                          | 0.18                 | 0.55                 | 0.43                 | 0.22                 | 0.58          | 1.3     | 1.1     |
| 14       | 綾瀬            |            | 0.3                                                      | 0.09                 | 0.5                  | 0.05                 | 0.05                 | 0.09          | 0.03    | 0.04    |
|          | <b>小文7</b> 4只 |            | -                                                        | 0.3                  | 2                    | 0.2                  | 0.2                  | 0.3           | 0.09    | 0.1     |
| 15       | 多摩            |            | 0.3                                                      | 0.09                 | 0.5                  | 0.05                 | 0.05                 | 0.09          | 0.03    | 0.04    |
|          | - /-          |            |                                                          | 0.3                  | 2                    | 0.2                  | 0.2                  | 0.3           | 0.09    | 0.1     |
| 16       | 大和            |            |                                                          | 0.29                 | 0.21                 | 0.29                 | 0.13                 | 0.53          | 0.37    | 0.32    |
|          | 7 (14         |            |                                                          | 0.98                 | 0.68                 | 0.97                 | 0.42                 | 1.8           | 1.2     | 1.1     |
| 17       | 横浜            |            |                                                          | 1.1                  | 1.3                  | 6.3                  | 9.1                  | 10            | 11      | 13      |
|          | 15077         |            |                                                          | 1.1                  | 1.3                  | 6.3                  | 9.1                  | 10            | 11      | 13      |
| 18       | 川崎            |            |                                                          | 0.017                | 0.076                | 0.01                 | 0.014                | 1.3           | 0.021   | 0.025   |
| <u> </u> |               |            |                                                          | 0.057                | 0.25                 | 0.035                | 0.046                | 4.2           | 0.069   | 0.084   |
| 19       | 相模原           |            |                                                          | 0.06                 | 0.09                 | 0.04                 | 0.06                 | 0.1           | 0.05    | 0.06    |
|          |               |            |                                                          | 0.19                 | 0.29                 | 0.13                 | 0.21                 | 0.33          | 0.17    | 0.19    |
| 20       | 甲府            |            |                                                          | 0.039                | 0.023                | 0.06                 | 0.024                | 0.092         | 0.027   | 0.022   |
|          |               |            |                                                          | 0.13                 | 0.078                | 0.2                  | 0.079                | 0.31          | 0.092   | 0.075   |
| 21       | 東山梨           |            |                                                          | 0.038                | 0.014                | 0.012                | 0.0011               | 0.1           | 0.0028  | 0.004   |
|          |               | 疋重         |                                                          | 0.12                 | 0.048                | 0.039                | 0.0036               | 0.32          | 0.0092  | 0.013   |
| 22       | 長野            |            |                                                          | 0.0017               | 0.0092               | 0.0073               | -                    | -             | 0.0049  | -       |
|          |               |            |                                                          | 0.0056               | 0.031                | 0.024                | - 0.1                |               | 0.016   | -       |
| 23       | 富士            | (<br>定量    |                                                          | 0.03                 | 0.6                  | 0.3                  | 0.1                  | 0.5           | 0.07    | 0.08    |
|          | $\vdash$      |            | 1.1                                                      | 0.1                  | 2                    | 1.1                  | 0.3                  | 1.6           | 0.23    | 0.26    |
| 24       | 湖西            | 検出 定量      | 1                                                        | 0.1                  | 0.6                  | 0.3                  | 0.1                  | 0.01          | 0.07    | 0.08    |
|          |               |            | 0.010                                                    | 0.4                  | 0.013                | 1.1                  | 0.3                  | 0.04<br>0.074 | 0.23    | 0.26    |
| 25       | 静岡            | 検出         | 0.019                                                    | 0.027                | 0.013<br>0.046       | 0.0016               | 0.0048               |               | 0.01    | 0.0092  |
|          | $\vdash$      | 定量         | 0.063                                                    | 0.092                |                      | 0.0052               | 0.016                | 0.25          | 0.032   | 0.03    |
| 26       | 浜松            | 検出<br>定量   | 0.13                                                     | 0.034                | 0.74                 | 0.032                | 0.029                | 0.24          | 0.025   | 0.0082  |
| <u></u>  | <u> </u>      | <b>止</b> 重 | 0.42                                                     | 0.11                 | 2.5                  | 0.11                 | 0.097                | 0.79          | 0.084   | 0.027   |

表 2-6-3-4 金属等の無機元素成分濃度の検出下限値と定量下限値

|          |            |                 | Sm                   | Hf                   | W                    | Ta                   | Th                   | Pb                   | Be         | Sr                   |
|----------|------------|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------|----------------------|
| 番号       | 地点名        |                 | (ng/m <sup>3</sup> ) | $(ng/m^3)$ | (ng/m <sup>3</sup> ) |
|          |            | 検出              | 0.0095               | (Hg/HI)              | 0.1                  | (119/111)            | 0.0074               | 0.13                 | (Hg/HI)    | (11g/111 )           |
| 1        | 土浦         | 定量              | 0.0033               |                      | 0.33                 | _                    | 0.0074               | 0.13                 |            |                      |
|          |            | 検出              | 0.002                | 0.19                 | 0.31                 | 0.23                 | 0.22                 | 1                    | 0.18       | _                    |
| 2        | 真岡         | 定量              | 0.51                 | 0.65                 | 1                    | 0.78                 | 0.74                 | 3.4                  | 0.61       | -                    |
|          | 26.55      | 検出              | 0.0005               | 0.012                | 0.012                | 0.0031               | 0.02                 | 0.45                 | -          | -                    |
| 3        | 前橋         | 定量              | 0.0018               | 0.04                 | 0.041                | 0.01                 | 0.07                 | 1.5                  | -          | -                    |
| 4        | 늘띠         | 検出              | 0.0005               | 0.012                | 0.012                | 0.0031               | 0.02                 | 0.45                 | -          | -                    |
| 4        | 富岡         | 定量              | 0.0018               | 0.04                 | 0.041                | 0.01                 | 0.07                 | 1.5                  | -          | -                    |
| _        | 油出         | 検出              | 0.027                | 0.048                | 0.015                | 0.045                | 0.029                | 0.057                | -          | -                    |
| 5        | 鴻巣         | 定量              | 0.091                | 0.16                 | 0.051                | 0.15                 | 0.098                | 0.19                 | -          | -                    |
| 6        | 日高         | 検出              | 0.027                | 0.048                | 0.015                | 0.045                | 0.029                | 0.057                | -          | -                    |
| 0        |            | 定量              | 0.091                | 0.16                 | 0.051                | 0.15                 | 0.098                | 0.19                 | -          | -                    |
| 7        | 秩父         | 検出              | 0.027                | 0.048                | 0.015                | 0.045                | 0.029                | 0.057                | -          | -                    |
|          | 100        | 定量              | 0.091                | 0.16                 | 0.051                | 0.15                 | 0.098                | 0.19                 | -          | -                    |
| 8        | 城南         | 検出              | 0.013                | 0.0066               | 0.0083               | 0.0022               | 0.0082               | 0.044                | -          | -                    |
|          | 790113     | 定量              | 0.044                | 0.022                | 0.028                | 0.0074               | 0.027                | 0.15                 | -          | -                    |
| 9        | 市原         | 検出              | 0.021                | 0.059                | 0.037                | 0.02                 | 0.016                | 0.14                 | 0.015      | -                    |
|          | .  - 1/3 ( | 定量              | 0.069                | 0.2                  | 0.12                 | 0.068                | 0.054                | 0.46                 | 0.051      | -                    |
| 10       | 勝浦         | 検出              | 0.021                | 0.059                | 0.037                | 0.02                 | 0.016                | 0.14                 | 0.015      | -                    |
|          |            | 定量              | 0.069                | 0.2                  | 0.12                 | 0.068                | 0.054                | 0.46                 | 0.051      | -                    |
| 11       | 佐倉         | 検出              | 0.021                | 0.059                | 0.037                | 0.02                 | 0.016                | 0.14                 | 0.015      | -                    |
|          |            | 定量              | 0.069                | 0.2                  | 0.12                 | 0.068                | 0.054                | 0.46                 | 0.051      | -                    |
| 12       | 富津         | 検出 定量           | 0.021                | 0.059                | 0.037                | 0.02                 | 0.016                | 0.14                 | 0.015      | -                    |
|          |            | <u>走軍</u><br>検出 | 0.069<br>0.062       | 0.2<br>0.41          | 0.12<br>0.38         | 0.068                | 0.054<br>0.21        | 0.46<br>0.072        | 0.051<br>- | -                    |
| 13       | 千葉         | 定量              | 0.062                | 1.4                  | 1.3                  | 0.99                 | 0.21                 | 0.072                |            | -                    |
|          |            | 検出              | 0.21                 | 0.08                 | 0.06                 | 0.99                 | 0.09                 | 0.24                 | -          | -                    |
| 14       | 綾瀬         | 定量              | 0.1                  | 0.00                 | 0.00                 | 0.07                 | 0.2                  | 0.04                 |            |                      |
|          |            | 検出              | 0.4                  | 0.08                 | 0.06                 | 0.07                 | 0.7                  | 0.04                 | _          | _                    |
| 15       | 多摩         | 定量              | 0.4                  | 0.3                  | 0.2                  | 0.2                  | 0.7                  | 0.1                  | _          | _                    |
|          |            | 検出              | 0.56                 | -                    | 0.055                | -                    | -                    | 0.14                 | -          | -                    |
| 16       | 大和         | 定量              | 1.9                  | -                    | 0.18                 | -                    | _                    | 0.47                 | _          | -                    |
| 47       | #*         | 検出              | 19                   | 0.018                | 0.04                 | 0.019                | 3.4                  | 2.1                  | -          | -                    |
| 17       | 横浜         | 定量              | 19                   | 0.06                 | 0.12                 | 0.062                | 3.4                  | 2.1                  | -          | -                    |
| 4.0      | 口山山大       | 検出              | 0.015                | 0.04                 | 0.013                | 0.014                | 0.014                | 0.13                 | -          | -                    |
| 18       | 川崎         | 定量              | 0.049                | 0.13                 | 0.042                | 0.045                | 0.048                | 0.43                 | -          | -                    |
| 19       | 相模原        | 検出              | 0.08                 | 0.03                 | 0.04                 | 0.022                | 0.07                 | 0.06                 | -          | -                    |
| 13       | 们以         | 定量              | 0.27                 | 0.11                 | 0.12                 | 0.074                | 0.24                 | 0.21                 | -          | -                    |
| 20       | 甲府         | 検出              | 0.028                | 0.059                | 0.054                | 0.0051               | 0.021                | 0.43                 | -          | -                    |
|          | -т. Ил     | 定量              | 0.092                | 0.2                  | 0.18                 |                      | 0.069                | 1.4                  | -          | -                    |
| 21       | 東山梨        | 検出              | 0.0022               | 0.00092              | 0.0023               |                      | 0.00069              | 0.28                 | -          | -                    |
| <u> </u> | ~~~        | 定量              | 0.0072               | 0.003                | 0.0079               | 0.039                | 0.00069              | 0.92                 | -          | -                    |
| 22       | 長野         | 検出              | -                    | -                    | -                    | -                    | -                    | 0.018                | -          | -                    |
|          |            | 定量              | -                    | -                    |                      | -                    | -                    | 0.06                 | -          | -                    |
| 23       | 富士         | 検出              | 0.2                  | 0.2                  | 0.5                  | 0.7                  | 0.1                  | 1                    | -          | -                    |
|          |            | 定量              | 0.6                  | 0.7                  | 1.7                  | 2.2                  | 0.3                  | 5                    | -          | -                    |
| 24       | 湖西         | 検出              | 0.2                  | 0.2                  | 0.7                  | 0.5                  | 0.1                  | 0.02                 | -          | -                    |
|          |            | 定量              | 0.6                  | 0.7                  | 2.4                  | 1.7                  | 0.3                  | 0.05                 | -          | -                    |
| 25       | 静岡         | 検出 定量           | 0.0083               | 0.0012               | 0.011                |                      | 0.0076               | 0.022<br>0.072       | -          | -                    |
|          |            | <u>走軍</u><br>検出 | 0.028                | 0.0038               | 0.038                | 0.00075              | 0.025                |                      |            |                      |
| 26       | 浜松         |                 | 0.034                | 0.49                 | 0.054                |                      | 0.078                | 0.048                | -          | -                    |
| <u> </u> |            | 定量              | 0.11                 | 1.6                  | 0.18                 | 2.1                  | 0.26                 | 0.16                 |            | -                    |

表 2-6-3-5 金属等の無機元素成分濃度の検出下限値と定量下限値

|     |             | 业的               |                      |                      |         |
|-----|-------------|------------------|----------------------|----------------------|---------|
| 番号  | 地点名         |                  | Υ                    | Cd                   | TI      |
| шЭ  | יטיים י     |                  | (ng/m <sup>3</sup> ) | (ng/m <sup>3</sup> ) | (ng/m³) |
|     | 1 3-13      | 検出               | -                    | _                    | -       |
| 1   | 土浦          | 定量               | _                    | _                    | _       |
|     |             | 検出               |                      | 0.19                 |         |
| 2   | 真岡          |                  | -                    |                      | -       |
|     |             | 定量               | -                    | 0.62                 | -       |
| 3   | 前橋          | 検出               | -                    | -                    | -       |
|     | 13.3 11-9   | 定量               | -                    | -                    | -       |
| 4   | 富岡          | 検出               | -                    | -                    | -       |
| 4   | 田凹          | 定量               | -                    | -                    | -       |
| _   | /-t- >>4    | 検出               | -                    | -                    | -       |
| 5   | 鴻巣          | 定量               | -                    | _                    | _       |
|     |             | 検出               | _                    | _                    | _       |
| 6   | 日高          |                  | _                    | _                    | _       |
|     |             | 定量               | -                    | -                    | -       |
| 7   | 秩父          | 検出               | -                    | -                    | -       |
| _   |             | 定量               | -                    | -                    | -       |
| 8   | 城南          | 検出               | -                    | -                    | -       |
| 0   | が以刊         | 定量               |                      |                      |         |
| ^   | <b>→</b> == | 検出               | -                    | 0.063                | -       |
| 9   | 市原          | 定量               | _                    | 0.21                 | _       |
|     |             | 検出               | -                    | 0.063                | _       |
| 10  | 勝浦          | 定量               |                      | 0.003                | -       |
|     |             |                  |                      |                      | -       |
| 11  | 佐倉          | 検出               | -                    | 0.063                | -       |
|     | .—,         | 定量               | -                    | 0.21                 | -       |
| 12  | 富津          | 検出               | -                    | 0.063                | -       |
| 12  | 田/干         | 定量               | -                    | 0.21                 | -       |
| 40  | + #         | 検出               | -                    | -                    | -       |
| 13  | 千葉          | 定量               | -                    | _                    | _       |
|     |             | 検出               | _                    | _                    | _       |
| 14  | 綾瀬          | 定量               | _                    | _                    | _       |
|     |             |                  | -                    | -                    | -       |
| 15  | 多摩          | 検出               | -                    | -                    | -       |
|     | _ ,,        | 定量               | -                    | -                    | -       |
| 16  | 大和          | 検出               | -                    | -                    | -       |
| 10  | 八和          | 定量               | -                    | -                    | -       |
| 47  | +# >C       | 検出               | -                    | -                    | -       |
| 17  | 横浜          | 定量               | _                    | _                    | _       |
|     |             | 検出               | _                    | _                    | _       |
| 18  | 川崎          | 定量               |                      |                      | -       |
|     |             |                  | -                    | -                    | -       |
| 19  | 相模原         | 検出               | -                    | -                    | -       |
|     |             | 定量               | -                    | -                    | -       |
| 20  | 甲府          | 検出               | -                    | -                    | -       |
| 20  | תוא די      | 定量               | -                    | -                    | -       |
| 24  | ᆂᆡᆁ         | 検出               | -                    | -                    | -       |
| 21  | 東山梨         | 定量               | -                    | -                    | -       |
|     | _           | 検出               | -                    | 0.0092               | -       |
| 22  | 長野          | <u>1X出</u><br>定量 | -                    | 0.032                | -       |
|     |             |                  |                      |                      |         |
| 23  | 富士          | 検出               | -                    | 0.05                 | -       |
| -   |             | 定量               | -                    | 0.16                 | -       |
| 24  | 湖西          | 検出               | -                    | 0.2                  | -       |
| 24  | /47 LT      | 定量               | -                    | 0.6                  | -       |
| 0.5 | ±4 [□]      | 検出               | -                    | -                    | -       |
| 25  | 静岡          | 定量               | _                    | _                    | -       |
|     |             | 検出               | -                    | _                    |         |
| 26  | 浜松          |                  |                      | -                    | -       |
|     |             | 定量               | -                    | -                    | -       |

# 3 調査期間中の常時監視データ

3.1 常時監視各項目の日平均値 それぞれの期間の午前11時から翌日の午前10時までの算術平均値を記載しており、- は「欠測」、斜線は「未測定」をあらわす。

表3-1-1 SO<sub>2</sub>, NO, NO<sub>2</sub>

|                 | 30 <sub>2</sub> , NO, NO <sub>2</sub> | 茨城県 | 栃木県 | 群馬県 | 群馬県 | 埼玉県 | 埼玉県 | 埼玉県 | さいたま市 | 千葉県 | 千葉県 | 千葉県 | 千葉県 | 千葉市 | 東京都 | 東京都 | 神奈川県 | 横浜市 | 川崎市 | 相模原市 | 山梨県 | 山梨県 | 長野県 | 静岡県 | 静岡県 | 静岡市 | 浜松市 |
|-----------------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| 項目名             | 期間                                    | 土浦  | 真岡  | 前橋  | 富岡  | 鴻巣  | 日高  | 秩父  | 城南    | 市原  | 勝浦  | 佐倉  | 富津  | 千葉  | 綾瀬  | 多摩  | 大和   | 横浜  | 川崎  | 相模原  |     | 東山梨 | 長野  | 富士  | 湖西  | 静岡  | 浜松  |
|                 | 7月23~24日                              | 2   | 1   | 0   |     | 3   | 1   | 1   | 3     | 10  |     | 2   | 3   | 3   |     | 1   | 1    | 3   | 6   | 4    | 2   |     | 4   | 3   | 3   |     | 1   |
|                 | 7月24~25日                              | 1   | 1   | 0   |     | 2   | 2   | 1   | 2     | 9   |     | 4   | 7   | 1   |     | 2   | 3    | 8   | 5   | 5    | 2   |     | 3   | 3   | 2   |     | 1   |
|                 | 7月25~26日                              | 1   | 3   | 1   |     | 2   | 2   | 1   | 2     | 2   |     | 1   | 4   | 2   |     | 2   | 4    | 5   | 4   | 4    | 3   |     | 4   | 4   | 2   |     | 1   |
|                 | 7月26~27日                              | 2   | 2   | 1   |     | 2   | 1   | 1   | 2     | 7   |     | 4   | 2   | 3   |     | 1   | 3    | 2   | 4   | 4    | 2   |     | 5   | 3   | 2   |     | 1   |
|                 | 7月27~28日                              | 1   | 0   | 0   |     | 1   | 0   | 1   | 1     | 5   |     | 2   | 2   | 1   |     | 1   | 3    | 3   | 3   | 4    | 2   |     | 3   | 2   | 2   |     | 1   |
| SO <sub>2</sub> | 7月28~29日                              | 1   | 0   | 1   |     | 1   | 1   | 1   | 1     | 1   |     | 1   | 0   | 1   |     | 1   | 3    | 3   | 3   | 4    | 2   |     | 4   | 1   | 2   |     | 1   |
|                 | 7月29~30日                              | 1   | 1   | 1   |     | 1   | 1   | 1   | 1     | 1   |     | 1   | 1   | 2   |     | 1   | 2    | 2   | 2   | 3    | 3   |     | 5   | 2   | 2   |     | 2   |
| 単位              | 7月30~31日                              | 1   | 1   | 1   |     | 2   | 1   | 1   | 2     | 3   |     | 1   | 1   | 4   |     | 1   | 2    | 1   | 3   | 4    | 4   |     | 6   | 7   | 2   |     | 1   |
| ppb             | 7月31~8月1日                             | 2   | 1   | 1   |     | 2   | 1   | 1   | 2     | 6   |     | 2   | 1   | 4   |     | 1   | 2    | 1   | 4   | 4    | 2   |     | 5   | 3   | 2   |     | 0   |
|                 | 8月1~2日                                | 1   | 0   | 1   |     | 1   | 1   | 1   | 1     | 6   |     | 2   | 1   | 5   |     | 1   | 2    | 1   | 3   | 4    | 2   |     | 4   | 2   | 2   |     | 0   |
|                 | 8月2~3日                                | 1   | 0   | 1   |     | 1   | 1   | 1   | 2     | 9   |     | 3   | 2   | 6   |     | 1   | 2    | 1   | 4   | 4    | 2   |     | 4   | 2   | 2   |     | 0   |
|                 | 8月3~4日                                | 2   | 0   | 2   |     | 1   | 1   | 1   | 1     | 11  |     | 4   | 1   | 4   |     | 0   | 2    | 0   | 1   | 3    | 2   |     | 4   | 2   | 1   |     | 0   |
|                 | 8月4~5日                                | 1   | 1   | 2   |     | 1   | 0   | 1   | 0     | 8   |     | 2   | 1   | 4   |     | 1   | 2    | 0   | 1   | 3    | 2   |     | 4   | 2   | 1   |     | 0   |
|                 | 8月5~6日                                | 1   | 1   | 2   |     | 1   | 0   | 1   | 0     | 7   |     | 2   | 1   | 2   |     | 1   | 1    | 0   | 1   | 3    | 2   |     | 4   | 2   | 2   |     | 0   |
|                 | 7月23~24日                              | 1   | 1   | 0   | 1   | 1   | 0   | 0   | 4     | 6   | 0   | 1   | 1   | 1   | 9   | 1   | 7    | 4   | 10  | 2    | 1   | 2   | 1   | 10  | 1   | 4   | 3   |
|                 | 7月24~25日                              | 0   | 1   | 1   | 1   | 1   | 1   | 0   | 1     | 4   | 0   | 0   | 2   | 1   | 1   | 1   | 1    | 5   | 2   | 1    | 1   | 2   | 1   | 12  | 1   | 3   | 4   |
|                 | 7月25~26日                              | 1   | 1   | 1   | 1   | 1   | 0   | 0   | 2     | 2   | 0   | 0   | 1   | 0   | 2   | 0   | 2    | 3   | 3   | 1    | 0   | 1   | 1   | 7   | 1   | 2   | 2   |
|                 | 7月26~27日                              | 1   | 3   | 0   | 1   | 2   | 0   | 0   | 1     | 2   | 0   | 1   | 2   | 1   | 2   | 1   | 1    | 2   | 3   | 1    | 0   | 1   | 1   | 5   | 1   | 2   | 1   |
|                 | 7月27~28日                              | 0   | 1   | 0   | 1   | 0   | 1   | 2   | 0     | 1   | 0   | 0   | 1   | 1   | 1   | 0   | 1    | 3   | 3   | 1    | 0   | 1   | 0   | 3   | 1   | 1   | 1   |
| NO              | 7月28~29日                              | 1   | 0   | 0   | 1   | 1   | 1   | 0   | 3     | 2   | 1   | 1   | 0   | 1   | 3   | 1   | 8    | 4   | 2   | 1    | 1   | 2   | 0   | 5   | 1   | 1   | 1   |
|                 | 7月29~30日                              | 1   | 1   | 0   | 1   | 1   | 0   | 1   | 1     | 1   | 0   | 0   | 1   | 2   | 1   | 1   | 2    | 4   | 1   | 1    | 1   | 1   | 0   | 7   | 1   | 2   | 1   |
| 単位              | 7月30~31日                              | 1   | 1   | 0   | 1   | 1   | 1   | 1   | 2     | 5   | 0   | 1   | 2   | 3   | 1   | 2   | 2    | 4   | 4   | 1    | 1   | 1   | 1   | 8   | 1   | 3   | 2   |
| ppb             | 7月31~8月1日                             | 2   | 2   | 0   | 1   | 5   | 3   | 1   | 6     | 7   | 0   | 1   | 3   | 4   | 7   | 1   | 6    | 5   | 5   | 3    | 1   | 2   | 1   | 13  | 1   | 2   | 5   |
|                 | 8月1~2日                                | 1   | 1   | 0   | -   | 1   | 1   | 1   | 2     | 7   | 0   | 2   | 3   | 1   | 5   | 0   | 2    | 5   | 7   | 1    | 1   | 1   | 1   | 10  | 1   | 1   | 5   |
|                 | 8月2~3日                                | 1   | 1   | 0   | -   | 1   | 0   | 0   | 3     | 4   | 0   | 1   | 2   | 6   | 5   | 1   | 2    | 3   | 4   | 1    | 1   | 1   | 1   | 6   | 1   | 2   | 1   |
|                 | 8月3~4日                                | 3   | 0   | 0   | 2   | 2   | 1   | 2   | 4     | 12  | 0   | 2   | 3   | 4   | 3   | 2   | 6    | 3   | 3   | 3    | 1   | 2   | 1   | 11  | 2   | 4   | 2   |
|                 | 8月4~5日                                | 3   | 0   | 1   | 2   | 5   | 1   | 2   | 2     | 11  | 0   | 2   | 4   | 4   | 4   | 2   | 8    | 3   | 4   | 3    | 3   | 4   | 1   | 22  | 2   | 5   | 6   |
|                 | 8月5~6日                                | 3   | 1   | 2   | 3   | 4   | 2   | 1   | 2     | 8   | 0   | 2   | 3   | 1   | 3   | 2   | 6    | 2   | 3   | 2    | 2   | 3   | 2   | 10  | 1   | 3   | 2   |
|                 | 7月23~24日                              | 12  | 7   | 10  | 7   | 18  | 11  | 9   | 24    | 22  | 4   | 10  | 12  | 10  | 30  | 18  | 26   | 17  | 33  | 19   | 8   | 6   | 4   | 18  | 14  | 9   | 9   |
|                 | 7月24~25日                              | 9   | 6   | 7   | 6   | 11  | 8   | 7   | 13    | 26  | 3   | 8   | 18  | 6   | 18  | 16  | 19   | 27  | 34  | 19   | 9   | 6   | 5   | 32  | 6   | 12  | 9   |
|                 | 7月25~26日                              | 7   | 8   | 10  | 9   | 13  | 11  | 7   | 13    | 9   | 2   | 5   | 13  | 6   | 21  | 13  | 22   | 14  | 25  | 13   | 8   | 7   | 3   | 30  | 10  | 10  | 8   |
|                 | 7月26~27日                              | 8   | 8   | 9   | 5   | 13  | 7   | 7   | 11    | 10  | 2   | 8   | 8   | 8   | 16  | 8   | 9    | 6   | 14  | 7    | 5   | 4   | 3   | 10  | 5   | 5   | 3   |
|                 | 7月27~28日                              | 5   | 3   | 3   | 3   | 5   | 6   | 9   | 7     | 10  | 2   | 6   | 8   | 6   | 10  | 7   | 15   | 11  | 18  | 10   | 4   | 4   | 2   | 11  | 5   | 6   | 3   |
| NO <sub>2</sub> | 7月28~29日                              | 10  | 3   | 8   | 8   | 11  | 7   | 7   | 14    | 8   | 2   | 7   | 3   | 5   | 19  | 13  | 22   | 15  | 17  | 12   | 9   | 6   | 2   | 17  | 6   | 8   | 6   |
| - 2             | 7月29~30日                              | 7   | 6   | 8   | 7   | 10  | 7   | 10  | 11    | 8   | 2   | 5   | 3   | 6   | 15  | 9   | 16   | 13  | 15  | 9    | 8   | 4   | 3   | 14  | 6   | 6   | 5   |
| 単位              | 7月30~31日                              | 7   | 7   | 9   | 7   | 9   | 8   | 9   | 12    | 11  | 2   | 5   | 4   | 10  | 18  | 10  | 13   | 11  | 19  | 9    | 8   | 5   | 3   | 14  | 7   | 7   | 7   |
| ppb             | 7月31~8月1日                             | 9   | 8   | 10  | 9   | 14  | 10  | 10  | 16    | 11  | 2   | 8   | 6   | 14  | 23  | 12  | 16   | 11  | 20  | 12   | 7   | 4   | 3   | 13  | 6   | 6   | 7   |
|                 | 8月1~2日                                | 11  | 7   | 7   | -   | 10  | 8   | 7   | 16    | 14  | 2   | 10  | 6   | 13  | 21  | 10  | 14   | 14  | 20  | 8    | 6   | 5   | 3   | 11  | 6   | 7   | 5   |
|                 | 8月2~3日                                | 8   | 5   | 7   | -   | 9   | 7   | 6   | 16    | 17  | 2   | 10  | 10  | 11  | 23  | 12  | 14   | 10  | 25  | 8    | 7   | 3   | 3   | 10  | 6   | 5   | 4   |
|                 | 8月3~4日                                | 8   | 5   | 7   | 3   | 10  | 6   | 9   | 11    | 12  | 2   | 8   | 6   | 7   | 12  | 8   | 8    | 3   | 9   | 6    | 5   | 4   | 3   | 9   | 4   | 3   | 3   |
|                 | 8月4~5日                                | 10  | 5   | 9   | 6   | 12  | 7   | 8   | 8     | 10  | 1   | 6   | 6   | 8   | 10  | 8   | 9    | 3   | 8   | 6    | 7   | 5   | 2   | 11  | 6   | 3   | 5   |
| ı               | 8月5~6日                                | 8   | 7   | 12  | 5   | 10  | 7   | 7   | 7     | 12  | 1   | 6   | 7   | 4   | 10  | 7   | 9    | 3   | 8   | 5    | 5   | 4   | 4   | 9   | 4   | 4   | 3   |

表3-1-2 NO<sub>v</sub>, O<sub>v</sub>, SPM

| 表3-1-2 | $NO_{X}$ , $O_{X}$ , SPM |     |     |     |     |     |     |     |       |     |     |     |     |     |     |     |      |     |     |      |     |     |     |     |     |     |     |
|--------|--------------------------|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
| 項目名    | 期間                       | 茨城県 | 栃木県 | 群馬県 | 群馬県 | 埼玉県 | 埼玉県 | 埼玉県 | さいたま市 | 千葉県 | 千葉県 | 千葉県 | 千葉県 | 千葉市 | 東京都 | 東京都 | 神奈川県 | 横浜市 | 川崎市 | 相模原市 | 山梨県 | 山梨県 | 長野県 | 静岡県 | 静岡県 | 静岡市 | 浜松市 |
| 坝日石    | 刊间                       | 土浦  | 真岡  | 前橋  | 富岡  | 鴻巣  | 日高  | 秩父  | 城南    | 市原  | 勝浦  | 佐倉  | 富津  | 千葉  | 綾瀬  | 多摩  | 大和   | 横浜  | 川崎  | 相模原  | 甲府  | 東山梨 | 長野  | 富士  | 湖西  | 静岡  | 浜松  |
|        | 7月23~24日                 | 13  | 8   | 10  | 9   | 20  | 12  | 9   | 28    | 28  | 4   | 11  | 13  | 11  | 39  | 19  | 33   | 21  | 43  | 21   | 9   | 8   | 5   | 28  | 15  | 13  | 12  |
|        | 7月24~25日                 | 9   | 7   | 8   | 8   | 13  | 9   | 8   | 14    | 30  | 3   | 8   | 20  | 7   | 18  | 16  | 20   | 31  | 35  | 20   | 10  | 7   | 6   | 44  | 7   | 14  | 13  |
|        | 7月25~26日                 | 7   | 9   | 11  | 10  | 14  | 11  | 7   | 15    | 11  | 2   | 6   | 14  | 6   | 23  | 13  | 24   | 17  | 27  | 14   | 8   | 8   | 4   | 37  | 11  | 12  | 10  |
|        | 7月26~27日                 | 9   | 11  | 9   | 6   | 14  | 7   | 7   | 12    | 13  | 2   | 9   | 11  | 8   | 18  | 9   | 10   | 8   | 16  | 8    | 5   | 5   | 3   | 15  | 6   | 7   | 4   |
|        | 7月27~28日                 | 5   | 4   | 3   | 4   | 6   | 7   | 11  | 8     | 11  | 2   | 6   | 8   | 7   | 11  | 7   | 16   | 13  | 21  | 11   | 4   | 5   | 2   | 13  | 6   | 7   | 4   |
| NOx    | 7月28~29日                 | 11  | 3   | 8   | 9   | 12  | 8   | 8   | 17    | 10  | 3   | 9   | 3   | 6   | 21  | 13  | 30   | 20  | 19  | 13   | 9   | 8   | 3   | 22  | 7   | 9   | 7   |
| - 7    | 7月29~30日                 | 8   | 6   | 8   | 9   | 11  | 7   | 11  | 12    | 9   | 2   | 5   | 4   | 8   | 16  | 9   | 18   | 16  | 16  | 9    | 9   | 5   | 4   | 21  | 7   | 8   | 6   |
| 単位     | 7月30~31日                 | 7   | 9   | 9   | 8   | 10  | 9   | 10  | 13    | 16  | 2   | 7   | 6   | 13  | 19  | 12  | 15   | 16  | 23  | 10   | 8   | 6   | 4   | 22  | 8   | 9   | 10  |
| ppb    | 7月31~8月1日                | 11  | 10  | 10  | 11  | 18  | 13  | 10  | 22    | 18  | 2   | 9   | 9   | 18  | 30  | 14  | 22   | 15  | 25  | 15   | 8   | 5   | 4   | 25  | 7   | 8   | 11  |
|        | 8月1~2日                   | 13  | 9   | 7   | -   | 10  | 9   | 9   | 18    | 21  | 2   | 12  | 9   | 14  | 26  | 10  | 16   | 18  | 27  | 9    | 7   | 6   | 4   | 21  | 7   | 9   | 9   |
|        | 8月2~3日                   | 9   | 6   | 7   | -   | 10  | 7   | 6   | 19    | 20  | 2   | 12  | 13  | 17  | 28  | 12  | 15   | 13  | 29  | 8    | 8   | 5   | 4   | 16  | 7   | 7   | 6   |
|        | 8月3~4日                   | 11  | 5   | 7   | 5   | 12  | 6   | 11  | 15    | 24  | 2   | 10  | 9   | 11  | 15  | 10  | 14   | 6   | 12  | 8    | 6   | 6   | 4   | 20  | 6   | 7   | 6   |
|        | 8月4~5日                   | 13  | 6   | 10  | 8   | 16  | 8   | 10  | 10    | 21  | 1   | 8   | 10  | 12  | 13  | 10  | 17   | 6   | 12  | 9    | 9   | 8   | 3   | 33  | 7   | 8   | 11  |
|        | 8月5~6日                   | 11  | 8   | 14  | 8   | 15  | 9   | 8   | 8     | 20  | 1   | 7   | 10  | 6   | 13  | 9   | 14   | 5   | 12  | 7    | 7   | 6   | 5   | 19  | 5   | 7   | 4   |
|        | 7月23~24日                 | 48  | 56  | 61  | 51  | 59  | 75  | 57  | 48    | 40  | 31  | 41  | 32  | 45  |     | 63  | 44   | 38  | 35  | 54   | 48  | 43  | 32  | 30  | 29  | 41  | 29  |
|        | 7月24~25日                 | 52  | 45  | 32  | 23  | 59  | 66  | 42  | 61    | 51  | 45  | 57  | 47  | 32  |     | 72  | 58   | 50  | 60  | 67   | 40  | 43  | 21  | 31  | 34  | 38  | 28  |
|        | 7月25~26日                 | 40  | 53  | 45  | 45  | 45  | 64  | 50  | 44    | 33  | 25  | 31  | 42  | 36  |     | 71  | 54   | 54  | 49  | 69   | 65  | 53  | 32  | 59  | 51  | 52  | 49  |
|        | 7月26~27日                 | 36  | 49  | 73  | 65  | 51  | 54  | 51  | 45    | 30  | 26  | 33  | 23  | 37  |     | 36  | 29   | 25  | 25  | 33   | 39  | 41  | 38  | 22  | 24  | 27  | 23  |
|        | 7月27~28日                 | 37  | 46  | 46  | 43  | 43  | 31  | 30  | 40    | 39  | 38  | 40  | 34  | 34  |     | 37  | 26   | 34  | 33  | 29   | 39  | 34  | 46  | 36  | 51  | 39  | 49  |
| Ox     | 7月28~29日                 | 38  | 46  | 42  | 43  | 43  | 42  | 46  | 38    | 36  | 26  | 34  | 36  | 36  |     | 38  | 26   | 34  | 36  | 36   | 48  | 45  | 37  | 33  | 52  | 38  | 42  |
| Ox     | 7月29~30日                 | 42  | 53  | 52  | 47  | 45  | 41  | 35  | 44    | 40  | 28  | 36  | 37  | 30  |     | 36  | 28   | 33  | 37  | 34   | 45  | 45  | 54  | 32  | 44  | 33  | 37  |
| 単位     | 7月30~31日                 | 40  | 53  | 52  | 50  | 44  | 37  | 40  | 37    | 26  | 25  | 29  | 26  | 21  |     | 30  | 24   | 25  | 22  | 29   | 42  | 43  | 56  | 26  | 30  | 26  | 27  |
| ppb    | 7月31~8月1日                | 31  | 44  | 56  | 61  | 43  | 40  | 51  | 35    | 16  | 15  | 19  | 16  | 21  |     | 28  | 17   | 17  | 17  | 25   | 34  | 34  | 39  | 16  | 19  | 23  | 18  |
|        | 8月1~2日                   | 36  | 32  | 50  | -   | 55  | 50  | 50  | 40    | 15  | 12  | 27  | 12  | 38  |     | 37  | 25   | 20  | 22  | 33   | 37  | 37  | 31  | 17  | 9   | 22  | 9   |
|        | 8月2~3日                   | 46  | 47  | 49  | -   | 55  | 52  | 33  | 48    | 27  | 20  | 38  | 14  | 17  |     | 46  | 30   | 29  | 29  | 41   | 30  | 27  | 27  | 16  | 10  | 18  | 12  |
|        | 8月3~4日                   | 23  | 33  | 38  | 21  | 43  | 42  | 17  | 27    | 11  | 11  | 20  | 8   | 9   |     | 20  | 11   | 13  | 13  | 16   | 16  | 20  | 16  | 10  | 10  | 8   | 9   |
|        | 8月4~5日                   | 13  | 41  | 32  | 23  | 23  | 26  | 32  | 14    | 7   | 9   | 9   | 6   | 11  |     | 10  | 8    | 11  | 9   | 10   | 12  | 16  | 16  | 6   | 7   | 6   | 7   |
|        | 8月5~6日                   | 15  | 24  | 21  | 20  | 22  | 26  | 36  | 17    | 9   | 15  | 11  | 11  | 19  |     | 13  | 11   | 14  | 12  | 12   | 13  | 16  | 15  | 11  | 14  | 10  | 13  |
|        | 7月23~24日                 | 68  | 63  | 42  | 47  | 80  | 64  | 63  | 68    | 52  | 46  | 48  | 44  | 82  | 50  | 60  | 54   | 69  | 46  | 62   | 61  | 47  | 41  | 58  | 46  | 56  | 38  |
|        | 7月24~25日                 | 59  | 54  | 27  | 21  | 69  | 55  | 54  | 77    | 65  | 54  | 58  | 56  | 59  | 53  | 56  |      | 69  | 55  | 54   | 45  | 38  | 20  | 77  | 25  | 49  | 23  |
|        | 7月25~26日                 | 43  | 43  | 29  | 37  | 45  | 46  | 45  | 49    | 45  | 42  | 36  | 47  | 61  | 42  | 47  | 51   | 58  | 39  | 54   | 58  | 43  | 23  | 83  | 53  | 52  | 44  |
|        | 7月26~27日                 | 49  | 108 | 55  | 58  | 66  | 55  | 74  | 54    | 43  | 48  | 40  | 47  | 43  | 39  | 44  | 41   | 47  | 32  | 46   | 66  | 61  | 40  | 60  | 47  | 40  | 40  |
|        | 7月27~28日                 | 31  | 24  | 9   | 42  | 17  |     |     | 20    | 32  | 35  | 20  | 42  | 25  | 21  | 15  | 25   | 31  | 20  | 24   | 26  | 21  | 9   | 54  | 38  | 26  | 21  |
| SPM    | 7月28~29日                 | 23  | 21  | 12  | 17  | 21  | 18  | 20  | 21    | 13  | 23  | 14  | 24  | 41  | 18  | 15  | 21   | 22  | 13  | 22   | 25  | 20  | 21  | 35  | 31  | 11  | 18  |
| 0.11   | 7月29~30日                 | 38  | 36  | 26  | 31  | 34  | 29  | 33  | 30    | 26  | 35  | 25  | 34  | 38  | 30  | 27  | 32   | 34  | 25  | 33   | 32  | 22  | 28  | 39  | 32  | 21  | 28  |
| 単位     | 7月30~31日                 | 36  |     |     | 37  | 32  |     |     |       | 24  | 27  | 25  | 31  | 27  | 30  | 28  |      | 35  | 24  | 33   | 45  | 34  | 36  |     |     | 28  | 29  |
|        | 7月31~8月1日                | 36  |     |     |     | 32  |     | 43  |       | 18  | 22  | 18  | 26  | 27  | 23  | 25  |      | 24  | 17  | 32   | 33  | 30  | 25  |     | 26  | 19  | 21  |
| 1.2    | 8月1~2日                   | 35  | 26  |     | -   | 27  | 22  | 27  |       | 19  | 22  | 22  | 25  | 31  | 23  | 21  | 23   | 27  | 18  | 24   | 24  | 18  | 17  |     |     | 14  | 17  |
|        | 8月2~3日                   | 41  | 25  |     | -   | 34  | 28  |     |       | 20  | 21  | 19  | 20  | 29  | 23  | 27  | 26   | 25  | 20  | 27   | 28  | 15  |     |     | 22  | 8   | 9   |
|        | 8月3~4日                   | 25  | 27  |     | 17  | 30  | 27  |     |       | 14  | 19  | 15  | 20  | 29  | 14  | 15  |      | 14  | 7   | 18   | 20  | 15  | 11  |     | 26  | 6   | 13  |
|        | 8月4~5日                   | 22  | 45  |     | 15  | 20  |     | 26  |       | 14  | 20  | 13  | 31  | 34  | 11  | 9   | 14   | 15  | 7   | 16   | 15  | 7   | 10  |     | 25  | 6   | 12  |
| 1      |                          |     |     |     |     |     |     |     |       |     | 28  |     |     |     |     |     |      |     |     |      |     |     |     |     |     | -   | 23  |

表3-1-3 PM2.5、NMHC、CH4

|                      | PM2.5, NMHC, C        | 茨城県  | 栃木県          | 群馬県  | 群馬県           | 埼玉県          | 埼玉県  | 埼玉県           | さいたま市        | 千葉県  | 千葉県  | 千葉県  | 千葉県  | 千葉市  | 東京都           | 東京都  | 神奈川県 | 横浜市  | 川崎市  | 相模原市 | 山梨県  | 山梨県           | 長野県  | 静岡県  | 静岡県                                              | 静岡市  | 浜松市  |
|----------------------|-----------------------|------|--------------|------|---------------|--------------|------|---------------|--------------|------|------|------|------|------|---------------|------|------|------|------|------|------|---------------|------|------|--------------------------------------------------|------|------|
| 項目名                  | 期間                    | 土浦   | 真岡           | 前橋   | 富岡            | 鴻巣           | 日高   | 秩父            | 城南           | 市原   | 勝浦   | 佐倉   | 富津   | 千葉   | 綾瀬            | 多摩   | 大和   | 横浜   | 川崎   | 相模原  | 甲府   | 東山梨           | 長野   | 富士   | 湖西                                               | 静岡   | 浜松   |
|                      | 7月23~24日              | 41.5 | 39.1         | 40.1 | 32.9          | 45.8         | 47.9 | 41.5          | 40.8         | 34.3 | 26.9 | 33.6 | 29.9 | 41.8 | 38.8          | 41.9 | 40.9 | 37.5 | 33.1 | 50.3 | 36.3 | 34.0          | 30.2 | 25.3 | 24.3                                             | 41.6 | 22.0 |
|                      | 7月24~25日              | 38.3 | 27.3         | 22.2 | 12.0          | 38.6         | 35.1 | 28.3          | 36.0         | 42.5 | 34.8 | 40.1 | 41.4 | 25.0 | 43.2          | 37.0 | 40.3 | 46.6 | 38.6 | 46.1 | 26.8 | 26.3          | 12.5 | 35.7 | 9.5                                              | 36.7 | 13.1 |
|                      | 7月25~26日              | 26.6 | 22.5         | 26.0 | 23.3          | 26.5         | 31.8 | 30.8          | 26.7         | 23.5 | 23.5 | 20.4 | 32.8 | 27.3 | 33.5          | 34.6 | 36.3 | 33.9 | 28.3 | 42.1 | 35.0 | 31.0          | 15.3 | 38.3 | 24.0                                             | 39.2 | 25.3 |
|                      | 7月26~27日              | 28.0 | 61.8         | 47.9 | 42.2          | 37.0         | 38.3 | 41.7          | 33.2         | 23.8 | 28.3 | 25.2 | 29.5 | 19.4 | 30.3          | 30.8 | 27.2 | 24.8 | 23.2 | 34.7 | 37.9 | 34.3          | 25.1 | 24.4 | 17.5                                             | 23.3 | 18.5 |
|                      | 7月27~28日              | 14.0 | 11.1         | 10.7 | 9.6           | 5.0          | 9.2  | 11.6          | 12.9         | 17.3 | 20.9 | 12.6 | 22.7 | 11.9 | 17.5          | 13.4 | 14.0 | 17.2 | 13.7 | 15.7 | 11.5 | 14.6          | 7.5  | 25.2 | 14.2                                             | 21.8 | 15.1 |
| PM2.5                | 7月28~29日              | 13.3 | 12.4         | 15.5 | 12.2          | 10.6         | 10.4 | 12.5          | 14.3         | 10.6 | 13.4 | 12.3 | 14.0 | 26.3 | 17.5          | 12.7 | 12.1 | 13.7 | 9.6  | 13.5 | 10.6 | 13.9          | 10.4 | 6.3  | 10.2                                             | 11.1 | 13.9 |
|                      | 7月29~30日              | 29.5 | 26.9         | 31.3 | 25.1          | 24.6         | 23.5 | 25.2          | 22.6         | 23.3 | 25.2 | 24.2 | 26.8 | 20.0 | 28.0          | 21.5 | 25.1 | 22.3 | 18.1 | 23.0 | 17.2 | 17.5          |      | 24.4 | 17.0                                             |      |      |
| 単位。                  | 7月30~31日              | 24.4 | 25.6         | 32.4 | 27.3          | 23.3         | 22.7 | 28.9          | 23.5         | 17.6 | 14.5 | 19.3 | 18.2 | 15.7 | 24.8          | 21.2 | 25.5 | 20.4 | 16.5 | 26.3 | 27.6 | 27.5          | 25.4 | 20.5 | 15.5                                             | 22.8 | 18.5 |
| μg/m³                | 7月31~8月1日             | 20.5 | 20.2         | 34.8 | 31.3          | 17.9         | 21.3 | 31.5          | 17.8         | 10.8 | 9.5  | 11.8 | 13.2 | 17.8 | 19.9          | 17.9 | 18.2 | 12.7 | 11.5 | 21.3 | 17.5 | 22.1          | 14.8 | 13.2 | 7.3                                              |      |      |
|                      | 8月1~2日                | 19.2 | 13.5         | 22.9 | -             | 15.1         | 14.3 | 15.0          | 16.3         | 10.8 | 10.0 | 15.3 | 15.7 | 15.8 | 20.3          | 14.3 | 17.3 | 14.4 | 12.9 | 13.4 | 10.6 | 12.8          |      | 6.3  |                                                  |      |      |
|                      | 8月2~3日                | 22.4 | 13.6         | 22.3 | -             | 24.8         | 21.7 | 21.3          | 20.8         | 12.1 | 10.3 | 12.6 | 14.9 | 10.4 | 21.7          | 21.0 | 22.3 | 14.2 | 15.2 | 19.4 | 11.9 | 11.2          | 10.1 | 12.9 | <del>                                     </del> |      |      |
|                      | 8月3~4日                | 14.2 | 16.6         | 24.1 | 11.8          | 16.8         | 18.6 | 14.9          | 12.3         | 7.1  | 7.1  | 8.5  |      | 8.4  | 13.7          | 10.9 | 8.1  | 4.8  | 4.5  | 8.8  | 6.8  | 9.1           | 6.1  | 4.5  |                                                  |      | _    |
|                      | 8月4~5日                | 8.8  | 24.2         | 17.0 | 8.3           | 9.5          | 13.0 | 17.5          | 5.5          | 5.1  | 7.5  | 6.4  | 14.5 | 12.2 | 11.9          | 8.0  | 8.9  | 5.0  | 4.3  | 4.8  | 3.6  | 5.8           |      | 9.4  |                                                  | _    | 1    |
|                      | 8月5~6日                | 14.3 | 13.0         | 12.6 | 7.5           | 9.9          | 13.9 | 16.1          | 9.5          | 10.0 | 11.4 | 9.0  | 23.8 | 9.0  | 14.5          | 12.5 | 14.6 | 10.3 | 7.4  | 10.4 | 6.3  | 7.6           | _    | 19.8 |                                                  | 7.2  |      |
|                      | 7月23~24日              |      | 0.11         | 0.19 |               | 0.27         |      |               | 0.18         | -    | 0.11 | 0.07 | 0.09 |      |               | 0.22 | 0.37 |      | 0.24 | 0.29 | 0.10 | _             | 0.12 | 0.16 |                                                  |      | 0.07 |
|                      | 7月24~25日              |      | 0.10         | 0.15 |               | 0.19         |      |               | 0.17         | -    | 0.14 | 0.09 | 0.16 |      | -             | 0.22 | 0.40 |      | 0.29 | 0.29 | 0.11 |               | 0.13 | 0.36 |                                                  |      | 0.07 |
|                      | 7月25~26日              |      | 0.10         | 0.17 |               | 0.19         |      |               | 0.17         | 0.08 | 0.11 | 0.04 | 0.11 |      | -             | 0.17 | 0.34 |      | 0.22 | 0.29 | 0.11 |               | 0.14 | 0.23 |                                                  |      | 0.10 |
|                      | 7月26~27日              |      | 0.10         | 0.20 | -             | 0.20         |      |               | 0.17         | 0.13 | 0.09 | 0.06 | 0.08 |      | -             | 0.14 | 0.22 |      | 0.11 | 0.32 | 0.06 | _             | 0.17 | 0.13 |                                                  |      | 0.07 |
|                      | 7月27~28日              |      | 0.07         | 0.10 | -             | 0.10         |      |               | 0.15         | 0.11 | 0.11 | 0.06 |      |      | -             | 0.13 | 0.25 |      | 0.21 | 0.19 | 0.06 | _             | 0.09 | -    |                                                  |      | 0.06 |
| NMHC                 | 7月28~29日              |      | 0.07         | 0.12 | -             | 0.15         |      | $\overline{}$ | 0.16         | 0.06 | 0.11 | 0.05 | 0.09 |      | -             | 0.15 | 0.25 |      | 0.17 | 0.19 | 0.09 | -             | 0.11 | -    |                                                  |      | 0.08 |
| 334 / <del>3</del> - | 7月29~30日              |      | 0.08<br>0.08 | 0.13 | -             | 0.13<br>0.15 |      | -             | 0.16         | 0.06 | 0.11 | 0.04 | 0.08 |      | -             | 0.14 | 0.22 |      | 0.10 | 0.18 | 0.11 | -             | 0.13 | 0.27 |                                                  |      | 0.07 |
| 単位<br>ppmC           | 7月30~31日<br>7月31~8月1日 |      | 0.08         | 0.15 | -             | 0.15         |      | -             | 0.17<br>0.17 | 0.14 | 0.09 | 0.05 | 0.07 |      | -             | 0.17 | 0.25 |      | 0.13 | 0.18 | 0.12 | -             | 0.13 | 0.27 |                                                  |      | 0.08 |
| рршо                 | 8月1~2日                |      | 0.06         | 0.17 | -             | 0.20         |      | $\overline{}$ | 0.17         | 0.10 | 0.09 | 0.03 | 0.07 |      | -             | 0.19 | 0.27 |      | 0.13 | 0.21 | 0.11 | -             | 0.12 | 0.20 |                                                  |      | 0.07 |
|                      | 8月2~3日                |      | 0.07         | 0.15 | -             | 0.16         |      | -             | 0.17         | 0.20 | 0.03 | 0.09 | 0.08 |      |               | 0.10 | 0.27 |      | 0.24 | 0.21 | 0.10 | -             | 0.10 | 0.21 |                                                  |      | 0.06 |
|                      | 8月3~4日                |      | 0.06         | 0.15 | -             | 0.10         |      | $\overline{}$ | 0.16         | 0.32 | 0.09 | 0.06 |      | -    | -             | 0.20 | 0.27 |      | 0.24 | 0.23 | 0.09 | -             | 0.11 | 0.19 |                                                  |      | 0.07 |
|                      | 8月4~5日                |      | 0.07         | 0.16 | -             | 0.17         |      | $\overline{}$ | 0.15         | 0.15 | 0.09 | 0.05 | 0.06 |      | -             | 0.17 | 0.20 |      | 0.08 | 0.17 | 0.09 | -             | 0.10 | 0.14 |                                                  |      | 0.08 |
|                      | 8月5~6日                |      | 0.05         | 0.19 | $\overline{}$ | 0.16         |      | $\overline{}$ | 0.15         | 0.23 | 0.09 | 0.05 | 0.05 |      |               | 0.13 | 0.19 |      | 0.09 | 0.17 | 0.07 | $\overline{}$ | 0.13 | 0.14 |                                                  |      | 0.07 |
|                      | 7月23~24日              |      | 2.03         | 2.14 |               | 2.15         |      |               | 2.01         | -    | 1.89 | 1.92 |      |      |               | 1.92 | 1.90 |      | 1.85 | 1.94 | 1.85 |               | 1.87 | 1.79 |                                                  |      | 1.76 |
|                      | 7月24~25日              |      | 1.99         | 2.06 |               | 2.04         |      |               | 2.01         | -    | 1.98 | 2.00 | 1.93 |      |               | 1.93 | 1.94 |      | 1.95 | 1.96 | 1.87 | _             | 1.90 | 1.89 |                                                  |      | 1.78 |
|                      | 7月25~26日              |      | 2.03         | 2.18 | $\overline{}$ | 2.06         |      |               | 1.99         | 1.92 | 1.98 | 2.05 |      |      |               | 1.91 | 1.88 |      | 1.90 | 1.93 | 1.87 | $\overline{}$ | 1.90 | 1.90 |                                                  |      | 1.81 |
|                      | 7月26~27日              |      | 1.99         | 2.16 |               | 2.03         |      |               | 1.85         | 1.81 | 1.86 | 1.85 |      |      |               | 1.81 | 1.78 |      | 1.80 | 1.85 | 1.79 | $\overline{}$ | 1.91 | 1.79 |                                                  |      | 1.72 |
|                      | 7月27~28日              |      | 1.98         | 1.95 |               | 1.89         |      |               | 1.89         | 1.86 | 1.96 | 1.91 | 1.88 |      |               | 1.87 | 1.87 |      | 1.88 | 1.90 | 1.84 | $\overline{}$ | 1.93 | -    |                                                  |      | 1.81 |
| CH₄                  | 7月28~29日              |      | 2.10         | 2.07 |               | 2.04         |      |               | 2.02         | 1.98 | 2.15 | 2.07 | 2.04 |      |               | 1.92 | 1.92 |      | 1.93 | 1.94 | 1.90 | $\overline{}$ | 1.98 | -    |                                                  |      | 1.83 |
| 0.14                 | 7月29~30日              |      | 2.14         | 2.09 |               | 1.92         |      |               | 1.94         | 1.99 | 2.13 | 2.03 | 2.01 |      | $\overline{}$ | 1.92 | 1.93 |      | 1.92 | 1.94 | 1.90 |               | 1.97 | -    |                                                  |      | 1.82 |
| 単位                   | 7月30~31日              |      | 2.08         | 2.13 |               | 1.93         |      |               | 1.92         | 1.97 | 2.00 | 2.03 | 1.95 |      |               | 1.89 | 1.91 |      | 1.87 | 1.92 | 1.89 |               | 1.91 | 1.85 |                                                  |      | 1.81 |
| ppmC                 | 7月31~8月1日             |      | 2.01         | 2.13 |               | 1.96         |      |               | 1.93         | 1.86 | 1.91 | 1.95 | 1.81 |      |               | 1.83 | 1.84 |      | 1.81 | 1.87 | 1.84 |               | 1.87 | 1.77 |                                                  |      | 1.74 |
|                      | 8月1~2日                |      | 2.08         | 1.96 |               | 1.88         |      |               | 1.93         | 1.85 | 1.90 | 1.95 | 1.85 |      |               | 1.82 | 1.93 |      | 1.84 | 1.85 | 1.81 |               | 1.84 | 1.77 |                                                  |      | 1.73 |
|                      | 8月2~3日                |      | 2.02         | 2.05 |               | 1.91         |      |               | 2.03         | 1.87 | 1.89 | 1.96 | 1.80 |      |               | 1.87 | 1.86 |      | 1.88 | 1.87 | 1.84 |               | 1.83 | 1.79 |                                                  |      | 1.73 |
|                      | 8月3~4日                |      | 2.07         | 2.10 |               | 1.99         |      |               | 1.89         | 1.80 | 1.88 | 1.80 | 1.78 |      |               | 1.79 | 1.77 |      | 1.78 | 1.82 | 1.78 |               | 1.81 | 1.74 |                                                  |      | 1.72 |
|                      | 8月4~5日                |      | 2.02         | 2.07 |               | 1.81         |      |               | 1.78         | 1.78 | 1.88 | 1.77 | 1.77 |      |               | 1.77 | 1.76 |      | 1.77 | 1.80 | 1.77 |               | 1.79 | 1.76 |                                                  |      | 1.72 |
|                      | 8月5~6日                |      | 1.87         | 2.04 |               | 1.85         |      |               | 1.79         | 1.83 | 1.89 | 1.80 | 1.80 |      |               | 1.79 | 1.78 |      | 1.80 | 1.82 | 1.79 | _             | 1.81 | 1.78 |                                                  |      | 1.7  |

表3-1-4 THC CO 風向

| 衣3-1-4 | THC、CO、風向 |       |         |          |              |          |            |      |         |        |       |        |       |       |        |              |          |        |      |       |       |          |         |               |     |         |      |
|--------|-----------|-------|---------|----------|--------------|----------|------------|------|---------|--------|-------|--------|-------|-------|--------|--------------|----------|--------|------|-------|-------|----------|---------|---------------|-----|---------|------|
| 項目名    | 期間        | 茨城県   | 栃木県     | 群馬県      | 群馬県          | 埼玉県      | 埼玉県        | 埼玉県  | さいたま市   | 千葉県    | 千葉県   | 千葉県    | 千葉県   | 千葉市   | 東京都    | 東京都          | 神奈川県     | 横浜市    | 川崎市  | 相模原市  | 山梨県   | 山梨県      | 長野県     | 静岡県           | 静岡県 | 静岡市     | 浜松市  |
| 坝日石    | 期间        | 土浦    | 真岡      | 前橋       | 富岡           | 鴻巣       | 日高         | 秩父   | 城南      | 市原     | 勝浦    | 佐倉     | 富津    | 千葉    | 綾瀬     | 多摩           | 大和       | 横浜     | 川崎   | 相模原   | 甲府    | 東山梨      | 長野      | 富士            | 湖西  | 静岡      | 浜松   |
|        | 7月23~24日  |       | 2.15    | 2.33     |              | 2.42     |            |      | 2.19    | -      | 2.00  | 1.99   | 1.88  |       |        | 2.14         | 2.27     |        | 2.09 | 2.23  | 1.95  |          | 1.99    | 1.95          |     |         | 1.84 |
|        | 7月24~25日  |       | 2.09    | 2.21     |              | 2.23     |            |      | 2.18    | -      | 2.12  | 2.09   | 2.09  |       |        | 2.15         | 2.34     |        | 2.24 | 2.25  | 1.98  |          | 2.03    | 2.25          |     |         | 1.84 |
|        | 7月25~26日  |       | 2.14    | 2.35     |              | 2.25     |            |      | 2.16    | 2.00   | 2.09  | 2.09   | 2.03  |       |        | 2.08         | 2.23     |        | 2.12 | 2.22  | 1.98  |          | 2.04    | 2.13          |     |         | 1.91 |
|        | 7月26~27日  |       | 2.10    | 2.36     |              | 2.23     |            |      | 2.02    | 1.94   | 1.96  | 1.91   | 1.86  |       |        | 1.95         | 2.00     |        | 1.91 | 2.17  | 1.85  |          | 2.08    | 1.91          |     |         | 1.80 |
|        | 7月27~28日  |       | 2.05    | 2.05     |              | 1.99     |            |      | 2.04    | 1.97   | 2.07  | 1.97   | 1.97  |       |        | 2.00         | 2.12     |        | 2.09 | 2.09  | 1.90  |          | 2.02    | -             |     |         | 1.87 |
| THC    | 7月28~29日  |       | 2.16    | 2.19     |              | 2.20     |            |      | 2.19    | 2.04   | 2.26  | 2.12   | 2.13  |       |        | 2.08         | 2.16     |        | 2.10 | 2.13  | 1.99  |          | 2.09    | -             |     |         | 1.91 |
| 10     | 7月29~30日  |       | 2.23    | 2.22     |              | 2.05     |            |      | 2.10    | 2.05   | 2.24  | 2.07   | 2.08  |       |        | 2.06         | 2.15     |        | 2.03 | 2.12  | 2.01  |          | 2.10    | -             |     |         | 1.90 |
| 単位     | 7月30~31日  |       | 2.16    | 2.28     |              | 2.07     |            |      | 2.09    | 2.11   | 2.09  | 2.08   | 2.03  |       |        | 2.06         | 2.16     |        | 2.00 | 2.11  | 2.00  |          | 2.05    | 2.12          |     |         | 1.90 |
| ppmC   | 7月31~8月1日 |       | 2.07    | 2.31     |              | 2.15     |            |      | 2.10    | 2.03   | 2.01  | 2.00   | 1.88  |       |        | 2.02         | 2.10     |        | 1.97 | 2.08  | 1.95  |          | 1.99    | 2.03          |     |         | 1.81 |
|        | 8月1~2日    |       | 2.15    | 2.11     |              | 2.04     |            |      | 2.10    | 2.05   | 1.99  | 2.04   | 1.93  |       |        | 2.00         | 2.20     |        | 2.04 | 2.06  | 1.92  |          | 1.94    | 1.98          |     |         | 1.79 |
|        | 8月2~3日    |       | 2.09    | 2.19     |              | 2.07     |            |      | 2.21    | 2.18   | 2.00  | 2.04   | 1.87  |       |        | 2.07         | 2.13     |        | 2.12 | 2.10  | 1.95  |          | 1.93    | 1.98          |     |         | 1.79 |
|        | 8月3~4日    |       | 2.13    | 2.26     |              | 2.16     |            |      | 2.05    | 2.08   | 1.97  | 1.86   | 1.84  |       |        | 1.97         | 1.97     |        | 1.88 | 2.01  | 1.86  |          | 1.91    | 1.88          |     |         | 1.79 |
|        | 8月4~5日    |       | 2.08    | 2.23     |              | 1.97     |            |      | 1.92    | 1.93   | 1.97  | 1.81   | 1.83  |       |        | 1.92         | 1.97     |        | 1.85 | 1.97  | 1.86  |          | 1.88    | 2.00          |     |         | 1.80 |
|        | 8月5~6日    |       | 1.92    | 2.24     |              | 2.01     |            |      | 1.94    | 2.06   | 1.98  | 1.85   | 1.85  |       |        | 1.91         | 1.97     |        | 1.89 | 1.99  | 1.86  |          | 1.94    | 1.93          |     |         | 1.80 |
|        | 7月23~24日  |       |         | 0.1      |              |          |            |      |         |        |       |        |       |       |        | 2.8          |          |        | 0.2  | 0.4   |       |          |         |               |     |         |      |
|        | 7月24~25日  |       |         | 0.0      |              |          |            |      |         |        |       |        |       |       |        | 3.2          |          |        | 0.3  | 0.4   |       |          |         | $\overline{}$ |     |         |      |
|        | 7月25~26日  |       |         | 0.0      |              |          |            |      |         |        |       |        |       |       |        | 2.8          |          |        | 0.2  | 0.4   |       |          |         | $\overline{}$ |     |         |      |
|        | 7月26~27日  |       |         | 0.1      |              |          |            |      |         |        |       |        |       |       |        | 1.3          |          |        | 0.1  | 0.3   |       |          |         | $\overline{}$ |     |         |      |
|        | 7月27~28日  |       |         | 0.0      |              |          |            |      |         |        |       |        |       |       |        | 1.7          |          |        | 0.1  | 0.3   |       |          |         | _             |     |         |      |
| со     | 7月28~29日  |       |         | 0.0      |              |          |            |      |         |        |       |        |       |       |        | 2.4          |          |        | 0.2  | 0.3   |       |          |         | $\overline{}$ |     |         |      |
|        | 7月29~30日  |       |         | 0.2      |              |          |            |      |         |        |       |        |       |       |        | 2.1          |          |        | 0.1  | 0.3   |       |          |         | $\overline{}$ |     |         |      |
| 単位     | 7月30~31日  |       |         | 0.2      |              |          |            |      |         |        |       |        |       |       |        | 2.1          |          |        | 0.1  | 0.3   |       |          |         | $\overline{}$ |     |         |      |
| ppm    | 7月31~8月1日 |       |         | 0.1      |              |          |            |      |         |        |       |        |       |       |        | 1.3          |          |        | 0.1  | 0.3   |       |          |         |               |     |         |      |
|        | 8月1~2日    |       |         | 0.1      |              |          |            |      |         |        |       |        |       |       |        | 1.1          |          |        | 0.1  | 0.2   |       |          |         | $\overline{}$ |     |         |      |
|        | 8月2~3日    |       |         | 0.1      |              |          |            |      |         |        |       |        |       |       |        | 1.9          |          |        | 0.3  | 0.3   |       |          |         | $\overline{}$ |     |         |      |
|        | 8月3~4日    |       |         | 0.1      |              |          |            |      |         |        |       |        |       |       |        | 0.9          |          |        | 0.0  | 0.2   |       |          |         | $\overline{}$ |     |         |      |
|        | 8月4~5日    |       |         | 0.0      |              |          |            |      |         |        |       |        |       |       |        | 0.5          |          |        | 0.0  | 0.2   |       |          |         | $\overline{}$ |     |         |      |
|        | 8月5~6日    |       |         | -        |              |          |            |      |         |        |       |        |       |       |        | 0.5          |          |        | 0.0  | 0.2   |       |          |         | $\overline{}$ |     |         |      |
|        | 7月23~24日  | E     | N       | ESE      | WNW          | ESE      | S          | CALM | CALM    | SSW    | SSE,S | S      | S     | ENE   | SE,SSE | SSE          | S,SSW,SW | SW     | CALM | S     | CALM  | s        | ENE     | S             | WSW | WNW     | W    |
|        | 7月24~25日  | CALM  | NNE     | WNW      | NESEWN/(CALM | NNE,NW   | WSW        | CALM | CALM    | E      | NW    | NNE    | N     | SE    | N      | WNW          | N, NNW   | N      | Е    | WNW   | CALM  | NE       | ENE     | S             | NW  | WNW     | CALM |
|        | 7月25~26日  | ESE   | SSE     | E        | WNW          | SE       | SSE        | CALM | SE,CALM | SSE    | CALM  | S      | SSW   | WSW   | SSE    | SE,S,SSW     | WSW      | SW     | WSW  | S     | WNW   | WSW      | NNE     | S             | SSE | ESE     | CALM |
|        | 7月26~27日  | SW    | SSE,S   | E        | WNW          | ENE      | SSE        | CALM | SSW     | SSW    | SW    | SSW    | S     | SE    | SSE    | SSE,S        | S,SSW    | SW     | W    | S     | WNW   | S        | NNE     | S             | SW  | NW      | WSW  |
|        | 7月27~28日  | ENE,E | NNE     | WNW      | WNW          | NW       | SW,W       | CALM | CALM    | ESE    | SSW,W | SSE    | E     | SSE,S | SSE    | ESE,NN/(CALM | S        | ESE    | ESE  | CALM  | W     | NE,W     | ENE     | ESE           | NW  | NW      | WNW  |
|        | 7月28~29日  | ENE,E | N       | E        | WNW          | ESE      | SW         | CALM | E,CALM  | SE     | CALM  | s      | ENE,E | SSW   | S      | SSW          | SSW      | ESE    | Е    | S     | E     | S        | NNE     | N,ESE,SSE     | SSE | NW      | CALM |
|        | 7月29~30日  | S     | SSE     | E        | WNW          | SSW      | SSE,SW     | CALM | SSW     | SSE    | CALM  | S      | E     | S     | S      | S            | SSW      | SSW    | WSW  | S     | W     | NE       | WSW     | SW            | SE  | WNW     | SE   |
| 最多風向   | 7月30~31日  | S     | SSE,S   | E        | WNW          | S        | SE,SSE,WSW | CALM | SSW     | SSE    | SSE   | s      | SW    | SSW   | S      | S            | SSW      | SSW    | W    | S     | W     | NNE,NE,W | WSW     | SW            | SE  | ESE,WNW | CALM |
|        | 7月31~8月1日 | SSW   | SSE     | E        | WNW          | S        | SSE        | CALM | SSW     | SSE    | S     | S      | S     | W     | SSE,S  | SSE          | S        | SSW    | WSW  | S     | W,WNW | NE       | ESE,WSW | SSW           | SSW | CALM    | CALM |
|        | 8月1~2日    | CALM  | N       | ESE,W,NW | -            | N,NNE,NW | SSE,SW     | CALM | CALM    | SSW    | WSW   | S      | S     | SW    | SSE    | W            | S,NW     | SSW,SW | WSW  | W,WNW | WNW   | W        | WSW     | SSE,S,SSW     | SW  | E       | SW   |
|        | 8月2~3日    | E     | N,S,NNW | WNW      | -            | NNE,NE   |            | CALM | NNE     | SSW    | SSW   | s      | s     | WSW   |        | W            | NW       | SW     | WSW  | W     | CALM  | NE       | WSW     | SSE,NN/(CALM  | WSW | WNW,NW  | _    |
|        | 8月3~4日    | SW    | N       | WNW      | WNW          | N        | WSW        | CALM | SSW     | SW     | SW    | SSW,SW | S.SSW | WSW   |        | s            | SSW      | SW     | WSW  | S     | WNW   | SSE,W    | WSW     | S             | SSE | NW      | CALM |
|        | 8月4~5日    | SW    | NNE     | E,WNW    | WNW          | s        | SW         | CALM | SSW     | SSW,SW | WSW   | SSW    | s     | WSW   | SSW    | SSW          | SSW      | SW     | WSW  | S     | WNW   | SSW      | _       | SSW           | SSW | WNW     | CALM |
|        | 8月5~6日    | SW    | s       | ESE      | WNW          | SSE      | WSW        | CALM | SSW     | SW     | SW    | SSW    | s     | wsw   | SSW    | SSW          | SW       | SW     | WSW  | S     | w     | NNE      | WNW     | SSW           | SW  | wsw     | SW   |

表3-1-5 風速 温度 湿度

| 表3-1-5 | 風速、温度、湿度  | Ę    |     |      |      |      |     |     |       |      |      |      |      |     |      |      |      |     |      |      |     |     |      |      |     |     |      |
|--------|-----------|------|-----|------|------|------|-----|-----|-------|------|------|------|------|-----|------|------|------|-----|------|------|-----|-----|------|------|-----|-----|------|
| 項目名    | 期間        | 茨城県  | 栃木県 | 群馬県  | 群馬県  | 埼玉県  | 埼玉県 | 埼玉県 | さいたま市 | 千葉県  | 千葉県  | 千葉県  | 千葉県  | 千葉市 | 東京都  | 東京都  | 神奈川県 | 横浜市 | 川崎市  | 相模原市 | 山梨県 | 山梨県 | 長野県  | 静岡県  | 静岡県 | 静岡市 | 浜松市  |
| 79.D D | 知回        | 土浦   | 真岡  | 前橋   | 富岡   | 鴻巣   | 日高  | 秩父  | 城南    | 市原   | 勝浦   | 佐倉   | 富津   | 千葉  | 綾瀬   | 多摩   | 大和   | 横浜  | 川崎   | 相模原  | 甲府  | 東山梨 | 長野   | 富士   | 湖西  | 静岡  | 浜松   |
|        | 7月23~24日  | 1.1  | 1.5 | 1.4  | 1.3  | 1.3  | 1.0 | 0.5 | 1.0   | 3.0  | 0.7  | 1.2  | 2.0  | 1.8 | 1.7  | 0.7  | 1.7  | 2.0 | 0.8  | 2.3  | 0.7 | 0.8 | 2.1  | 1.9  | 2.8 | 1.3 | 2.0  |
|        | 7月24~25日  | 0.9  | 1.5 | 1.7  | 1.2  | 1.4  | 1.5 | 0.5 | 0.9   | 2.6  | 1.1  | 1.5  | 1.9  | 2.0 | 1.9  | 0.9  | 2.0  | 2.7 | 1.0  | 2.4  | 0.6 | 0.9 | 2.0  | 1.5  | 3.0 | 1.6 | 2.0  |
|        | 7月25~26日  | 1.3  | 1.8 | 1.7  | 1.8  | 1.3  | 1.3 | 0.7 | 1.1   | 2.3  | 0.6  | 1.5  | 1.5  | 4.2 | 1.5  | 8.0  | 2.0  | 2.2 | 1.1  | 2.6  | 0.8 | 1.0 | 2.3  | 1.6  | 2.0 | 1.6 | 0.8  |
|        | 7月26~27日  | 2.3  | 2.2 | 1.6  | 1.5  | 1.4  | 1.4 | 0.5 | 1.9   | 5.6  | 1.3  | 2.4  | 3.3  | 2.7 | 2.9  | 1.1  | 3.0  | 5.1 | 1.2  | 3.5  | 1.0 | 1.3 | 1.9  | 2.2  | 2.4 | 1.4 | 1.5  |
|        | 7月27~28日  | 1.3  | 2.1 | 3.6  | 2.0  | 1.6  | 1.6 | 0.7 | 0.9   | 3.5  | 1.2  | 1.6  | 2.9  | 2.2 | 2.0  | 1.1  | 2.0  | 4.2 | 1.4  | 2.3  | 0.9 | 0.9 | 4.0  | 3.4  | 3.6 | 2.3 | 2.5  |
| 風速     | 7月28~29日  | 1.4  | 1.8 | 1.8  | 1.5  | 1.7  | 1.9 | 0.7 | 1.5   | 2.5  | 0.7  | 1.7  | 1.7  | 2.1 | 2.1  | 1.0  | 2.6  | 2.1 | 0.9  | 3.6  | 0.9 | 1.3 | 2.5  | 2.7  | 2.4 | 1.8 | 1.2  |
|        | 7月29~30日  | 1.7  | 2.2 | 2.0  | 1.7  | 2.0  | 2.3 | 1.0 | 2.3   | 2.5  | 0.6  | 2.3  | 1.8  | 2.0 | 3.0  | 1.3  | 3.1  | 2.7 | 0.9  | 4.7  | 0.9 | 1.1 | 2.7  | 2.9  | 2.8 | 1.5 | 1.5  |
| 単位     | 7月30~31日  | 1.6  | 2.0 | 1.8  | 1.8  | 1.6  | 1.8 | 0.7 | 1.9   | 2.5  | 0.8  | 1.9  | 1.7  | 2.1 | 2.7  | 1.2  | 3.2  | 2.6 | 1.0  | 3.8  | 0.7 | 1.1 | 2.1  | 2.4  | 2.1 | 1.6 | 1.2  |
| m/s    | 7月31~8月1日 | 1.4  | 1.7 | 1.5  | 1.5  | 1.5  | 1.6 | 0.7 | 1.3   | 2.9  | 1.0  | 1.8  | 2.1  | 2.3 | 2.3  | 0.9  | 2.3  | 2.8 | 0.8  | 3.0  | 0.8 | 1.3 | 2.7  | 1.9  | 1.6 | 1.4 | 1.0  |
|        | 8月1~2日    | 1.0  | 1.7 | 2.0  | -    | 1.7  | 1.7 | 0.6 | 1.1   | 3.3  | 0.7  | 1.4  | 2.2  | 2.1 | 2.1  | 1.2  | 2.9  | 2.5 | 1.0  | 3.7  | 0.9 | 1.1 | 2.8  | 2.3  | 1.8 | 1.8 | 1.2  |
|        | 8月2~3日    | 1.2  | 1.4 | 1.3  | -    | 1.2  | 1.2 | 0.4 | 1.2   | 3.4  | 0.7  | 1.1  | 2.3  | 4.2 | 1.8  | 0.9  | 1.9  | 2.7 | 0.9  | 3.1  | 0.5 | 1.1 | 2.4  | 1.8  | 1.1 | 1.7 | 1.2  |
|        | 8月3~4日    | 1.6  | 1.4 | 1.5  | 1.3  | 1.1  | 1.5 | 0.4 | 1.3   | 5.9  | 1.1  | 2.1  | 3.0  | 6.2 | 2.7  | 1.0  | 3.3  | 5.9 | 1.5  | 3.4  | 0.9 | 1.0 | 2.4  | 1.9  | 1.3 | 1.5 | 0.9  |
|        | 8月4~5日    | 3.0  | 1.5 | 1.2  | 1.1  | 1.6  | 1.5 | 0.4 | 3.5   | 7.3  | 1.4  | 3.1  | 3.8  | 6.6 | 4.2  | 1.5  | 6.3  | 8.2 | 2.2  | 5.1  | 0.8 | 1.2 | 2.3  | 2.4  | 1.4 | 1.8 | 1.0  |
|        | 8月5~6日    | 3.5  | 2.3 | 1.5  | 1.2  | 1.8  | 1.4 | 0.6 | 3.6   | 8.5  | 1.5  | 3.5  | 3.7  | 5.1 | 4.6  | 1.6  | 6.2  | 8.1 | 2.3  | 5.0  | 0.8 | 1.0 | 1.7  | 4.0  | 2.5 | 2.1 | 1.6  |
|        | 7月23~24日  | 28.1 |     | 28.7 | 27.0 | 29.6 |     |     |       | 28.0 | 26.5 | 27.4 | 26.4 |     | 29.2 | 29.2 | 28.9 |     | 28.6 | 28.9 |     |     | 26.7 | 26.7 |     |     | 28.7 |
|        | 7月24~25日  | 27.8 |     | 27.6 | 26.8 | 28.8 |     |     |       | 28.6 | 27.4 | 27.7 | 28.3 |     | 29.3 | 29.3 | 29.1 |     | 29.1 | 29.0 |     |     | 25.3 | 29.1 |     |     | 31.4 |
|        | 7月25~26日  | 29.4 |     | 30.1 | 28.7 | 30.9 |     |     |       | 29.6 | 27.8 | 28.4 | 28.0 |     | 31.1 | 31.1 | 29.6 |     | 30.4 | 29.6 |     |     | 29.3 | 28.2 |     |     | 29.4 |
|        | 7月26~27日  | 29.8 |     | 29.9 | 28.7 | 30.9 |     |     |       | 30.0 | 27.7 | 29.6 | 27.5 |     | 30.8 | 30.8 | 30.6 |     | 29.9 | 30.3 |     |     | 30.0 | 27.0 |     |     | 29.1 |
|        | 7月27~28日  | 26.6 |     | 25.8 | 25.3 | 27.7 |     |     |       | 28.0 | 26.8 | 26.9 | 26.7 |     | 28.7 | 28.7 | 27.4 |     | 28.5 | 27.6 |     |     | 23.1 | 27.8 |     |     | 28.4 |
| 温度     | 7月28~29日  | 25.6 |     | 25.5 | 24.5 | 26.7 |     |     |       | 26.1 | 23.7 | 24.4 | 25.1 |     | 27.4 | 27.4 | 25.7 |     | 26.9 | 25.4 |     |     | 23.8 | 26.5 |     |     | 26.4 |
|        | 7月29~30日  | 26.3 |     | 25.7 | 24.4 | 27.4 |     |     |       | 26.1 | 24.4 | 25.1 | 25.5 |     | 27.9 | 27.9 | 26.2 |     | 27.0 | 25.7 |     |     | 26.9 | 25.9 |     |     | 26.8 |
| 単位     | 7月30~31日  | 27.7 |     | 26.9 | 25.9 | 28.6 |     |     |       | 27.1 | 26.7 | 26.5 | 26.8 |     | 28.7 | 28.7 | 27.0 |     | 27.9 | 26.6 |     |     | 28.5 | 26.8 |     |     | 27.9 |
|        | 7月31~8月1日 | 28.8 |     | 28.8 | 27.6 | 30.0 |     |     |       | 28.3 | 27.1 | 27.6 | 27.4 |     | 29.8 | 29.8 | 28.3 |     | 29.0 | 28.1 |     |     | 26.6 | 26.7 |     |     | 27.9 |
|        | 8月1~2日    | 27.9 |     | 27.8 | -    | 28.6 |     |     |       | 29.1 | 27.5 | 28.2 | 27.3 |     | 29.5 | 29.5 | 28.1 |     | 29.2 | 27.8 |     |     | 25.9 | 25.7 |     |     | 28.4 |
|        | 8月2~3日    | 30.0 |     | 29.2 | -    | 31.1 |     |     |       | 29.5 | 27.6 | 28.3 | 27.8 |     | 31.0 | 31.0 | 30.2 |     | 30.6 | 30.2 |     |     | 26.7 | 26.6 |     |     | 27.3 |
|        | 8月3~4日    | 29.4 |     | 28.6 | 25.3 | 29.8 |     |     |       | 29.7 | 27.7 | 28.5 | 27.3 |     | 31.1 | 31.1 | 30.2 |     | 29.9 | 30.2 |     |     | 28.6 | 26.0 |     |     | 26.8 |
|        | 8月4~5日    | 29.7 |     | 30.0 | 28.0 | 31.4 |     |     |       | 29.4 | 27.4 | 28.6 | 26.8 |     | 31.0 | 31.0 | 30.0 |     | 29.6 | 29.7 |     |     | 28.8 | 25.6 |     |     | 26.8 |
|        | 8月5~6日    | 30.0 |     | 30.7 | 29.2 | 32.0 |     |     |       | 29.7 | 27.1 | 28.8 | 27.1 |     | 31.6 | 31.6 | 30.8 |     | 30.2 | 30.7 |     |     | 29.0 | 26.3 |     |     | 27.9 |
|        | 7月23~24日  | 78.4 |     | 70.6 |      | 71.5 |     |     |       | 80.5 | 83.5 | 76.5 | 82.1 |     | 71.2 | 76.3 | 69.3 |     | 73.2 | 74.2 |     |     | 74.3 | 80.7 |     |     | 71.6 |
|        | 7月24~25日  | 78.5 |     | 80.2 |      | 78.8 |     |     |       | 80.1 | 81.0 | 76.3 | 73.9 |     | 72.1 | 82.4 | 68.8 |     | 72.1 | 74.4 |     |     | 81.8 | 67.4 |     |     | 55.3 |
|        | 7月25~26日  | 76.6 |     | 68.5 |      | 66.1 |     |     |       | 78.4 | 82.4 | 77.8 | 80.0 |     | 65.8 | 73.7 | 67.3 |     | 68.2 | 71.3 |     |     | 68.2 | 71.9 |     |     | 68.4 |
|        | 7月26~27日  | 76.9 |     | 76.8 |      | 73.0 |     |     |       | 75.9 | 85.3 | 71.2 | 83.8 |     | 67.0 | 73.5 | 65.0 |     | 69.6 | 71.4 |     |     | 69.4 | 86.6 |     |     | 81.0 |
|        | 7月27~28日  | 78.8 |     | 63.6 |      | 65.8 |     |     |       | 74.2 | 74.2 | 69.8 | 73.7 |     | 64.6 | 68.6 | 69.0 |     | 68.0 | 73.2 |     |     | 73.6 | 65.7 |     |     | 57.4 |
| 湿度     | 7月28~29日  | 69.2 |     | 64.7 |      | 65.0 |     |     |       | 70.6 | 77.3 | 71.5 | 69.4 |     | 59.2 | 72.7 | 64.6 |     | 61.1 | 70.6 |     |     | 62.8 | 58.5 |     |     | 68.7 |
|        | 7月29~30日  | 74.6 |     | 64.7 |      | 62.6 |     |     |       | 76.3 | 78.9 | 74.8 | 73.2 |     | 61.9 | 74.6 | 65.4 |     | 69.4 | 70.5 |     |     | 58.0 | 62.0 |     |     | 65.8 |
| 単位     | 7月30~31日  | 76.2 |     | 70.8 |      | 67.6 |     |     |       | 82.4 | 82.3 | 77.6 | 78.3 |     | 66.7 | 81.6 | 70.7 |     | 73.9 | 77.8 |     |     | 57.8 | 68.0 |     |     | 72.7 |
| %      | 7月31~8月1日 | 77.7 |     | 70.7 |      | 68.6 |     |     |       | 80.8 | 84.7 | 77.6 | 79.6 |     | 68.5 | 80.5 | 70.4 |     | 71.4 | 77.0 |     |     | 75.3 | 81.4 |     |     | 77.2 |
|        | 8月1~2日    | 77.2 |     | 72.9 |      | 70.4 |     |     |       | 77.3 | 80.0 | 71.3 | 79.3 |     | 68.6 | 80.1 | 67.6 |     | 70.3 | 74.1 |     |     | 73.9 | 84.9 |     |     | 79.7 |
|        | 8月2~3日    | 69.4 |     | 64.9 |      | 62.5 |     |     |       | 66.6 | 71.2 | 66.1 | 72.1 |     | 61.0 | 71.1 | 60.7 |     | 60.2 | 66.1 |     |     | 74.7 | 75.1 |     |     | 72.5 |
|        | 8月3~4日    | 75.5 |     | 72.9 |      | 72.6 |     |     |       | 70.5 | 76.1 | 68.0 | 79.3 |     | 59.4 | 68.6 | 60.3 |     | 63.8 | 64.7 |     |     | 65.8 | 85.3 |     |     | 81.4 |
|        | 8月4~5日    | 76.3 |     | 67.4 |      | 60.8 |     |     |       | 74.7 | 82.0 | 69.3 | 85.0 |     | 60.0 | 67.6 | 60.5 |     | 66.8 | 64.9 |     |     | 60.8 | 90.2 |     |     | 87.1 |
|        | 8月5~6日    | 75.9 |     | 62.1 |      | 62.0 |     |     |       | 72.8 | 83.3 | 67.6 | 83.9 |     | 59.7 | 66.8 | 59.6 |     | 64.8 | 63.6 |     |     | 63.5 | 88.5 |     |     | 81.8 |

# 3.2 調査期間中のオキシダント 1 時間値(単位:ppb) 東京都族居はオキシダントの自動測定を実施していない、斜線は未実施・は欠測(校正中、調整中等)を示す。

| 表3-2-1        |            | 1980 (2013年)<br>13日~7 |          | ハナン        | タントリ     | ノ日勤店 | 側定を実      | INEU CU    | 1/4.61.    | 計算をは      | 不天爬       | , -IAX   | /RIJ ( fX L | CH' N    | 医十二      | F) & M 9   |            |          |          |            |          |          |          |          |          |          |              |
|---------------|------------|-----------------------|----------|------------|----------|------|-----------|------------|------------|-----------|-----------|----------|-------------|----------|----------|------------|------------|----------|----------|------------|----------|----------|----------|----------|----------|----------|--------------|
| 月日            | 地点名        | 茨城県                   | 栃木県      | 群馬県        |          |      |           |            | さいたま市      |           | 千葉県<br>勝浦 | 千葉県      | 千葉県         | 千葉市      |          |            |            |          | 川崎市      | 相模原市       | 山梨県      | 山梨県      |          | 静岡県      |          | 静岡市      |              |
|               | 時刻<br>1時   | 土浦 8                  | 真岡 21    | 前橋<br>30   | 富岡 -     | 鴻巣   | 日高 20     | 秩父<br>15   | 城南 1       | 市原<br>15  | 15        | 15年 16   | - 高洋 7      | 十楽<br>22 | 綾瀬       | 多摩         | 大和<br>6    | 横浜       |          | 相模原<br>20  | 甲府<br>32 | 東山梨      | 長野 29    | - MI     | 湖西       | 静岡       | 浜松 7         |
|               | 2時         | 5                     | 21       | 29         | 23       | 3    | 13        | 15         | 1          | 5<br>9    | 13        | 12       |             | 22       | $\leq$   | - 4        | 11         | 19       |          | 11         | 28       | 13       | 30       | 12       | 6        | 4        | 3            |
|               | 4時         | 3                     | 13       | 25         | 17       |      | 11        | 5          | 1          | 5         | 10        | 5        | 2           | 20       | $\leq$   | 12         | 8          | 14       | 5        | 8          | 23       | 14       | 17       | 9        | 2        |          | 1 2          |
|               | 5時<br>6時   | 2                     | 7        | 25         | 16       | 17   | 10        | 6          | 1 2        | 4         | 1         | 2        | 3           | 17       |          | 10         | 9          | 10       | 12       | 6          | 19       | 14       | 16<br>15 | 3        | 9        | 4        | 4            |
|               | 7時<br>8時   | 9<br>27               | 11<br>16 | 24<br>32   | 20<br>27 |      | 17        | 17<br>21   | 13         | 6<br>12   | 5         | 4        | 5 9         | 8        |          | 15<br>24   | 10         | 10       | 9        | 7 30       | 16       | 16       | 18<br>26 | 13       | 14<br>30 | 13       | 3 13<br>3 29 |
|               | 9時         | 41                    | 31       | 47         | 38       | 47   | 43        | 33         | 30         | 24        | 29        | 24       | 17          | 13       |          | 45         | 40         | 21       | 19       | 50         | 30       | 30       | 37       | 11       | 34       | 30       | 39           |
|               | 10時        | 61<br>69              | 67<br>79 | - 64       | - 55     | 66   | 69        | 58<br>71   | 57<br>85   | 41<br>56  | 22        | 45<br>71 | 39<br>32    | 25       | $\leq$   | 70<br>82   | 50<br>70   | 37       | 23       | - 63       | 40<br>53 | 40       | 43       | 22       | 39<br>46 | 43       |              |
| 7月23日         | 12時        | 77                    | 90       | 98         | 77       | 106  | 98        | 75<br>81   | 96         | 64        | 44        | 70       | 36          | 78       | $\geq$   | 96         | 79         | 63       |          | 87         | 59       |          | 51       | 46       | 67       | 55       | 5 50         |
|               | 13時        | 86<br>94              | 101      | 107<br>105 | 87<br>84 | 107  | 106       | 89         | 102<br>102 | 51<br>82  | 48<br>50  | 71<br>73 | 62<br>63    | 85<br>81 |          | 109<br>128 | 101<br>97  | 75       | 86<br>68 | 103<br>113 | 58<br>64 |          | 53<br>54 | 67       | 70       | 70<br>75 |              |
|               | 15時        | 113<br>98             | 96<br>89 | 95<br>88   | 92       | 120  | 135       | 92         | 103        | 71<br>63  | 52<br>54  | 69       | 65<br>66    | 69<br>59 | $\leq$   | 127<br>118 | 82<br>85   | 70       |          | 115        | 60<br>57 |          | 51<br>48 | 63       | 55<br>51 | 86<br>96 |              |
|               | 17時        | 97                    | 93       | 91         | 91       | 105  | 136       | 126        | 101        | 63        | 60        | 59       | 76          | 55       |          | 123        | 80         | 62       | 63       | 104        | 53       | 63       | 44       | 71       | 46       | 95       | 5 47         |
|               | 18時<br>19時 | 69<br>55              | 122      | 100<br>97  | 88<br>82 | 94   | 142       | 136<br>100 | 97<br>77   | 73<br>78  | 62        | 64       | 78<br>54    | 62       |          | 102<br>75  | 60<br>51   | 57       | 49       | 82<br>68   | 55<br>60 | 58<br>50 | 41<br>39 | 55<br>32 | 28<br>24 | 94       |              |
|               | 20時<br>21時 | 44<br>48              | 79<br>59 | 74         | 51<br>46 | 69   | 99        | 63<br>57   | 59<br>48   | 75<br>55  | 40        | 52<br>55 | 30<br>13    | 57<br>48 | $\leq$   | 60<br>48   | 36<br>38   | 59       | 53<br>46 | 54<br>47   | 61       | 50<br>50 | 35<br>34 | 20       | 22<br>15 | 48       |              |
|               | 22時        | 45                    | 50       | 75         | 40       | 43   | 65        | 50         | 32         | 33        | 22        | 54       | 14          | 40       |          | 47         | 45         | 39       | 36       | 39         | 64       | 50       | 32       | 19       | 13       | 26       | 16           |
|               | 23時        | 47                    | 35       | 53         | 34       | 34   |           | 45<br>39   | 20         | 29        | 21        | 37       | 18          | 29       | $\leq$   | 37         | 37         | 25       | 33       | 37         | 63<br>58 |          | 25       | 19       | 10       | 18       | 3 14         |
|               | 1時         | 31                    | 25       | -          | 33       | - 16 | 44        |            | 7          | 17        | 18        | 24       | 15          | 31       |          | 35<br>27   | . 14       | 21       | 12       | 31         | 51<br>44 | 44       | 20       | - 10     | - 40     | - 7      | -            |
|               | 3時         | 13                    | 24<br>24 | 29<br>27   | 33       | 17   | 27        | 26<br>22   | 5          | 23<br>19  | 14        | 18<br>15 | 15<br>12    | 27       |          | 23         | 15         | 16       | 10       | 26<br>25   | 35       | 27       | 15<br>18 | 10       | 12<br>10 | 5        |              |
|               | 4時<br>5時   | 6                     | 22       | 34<br>25   | 33       |      |           | 18         | 3          | 16<br>10  | 12        | 13       | 8           | 16       | $\leq$   | 24         | 4          | 13       | 6        | 26<br>22   | 32       |          | 15       | 10       | 14       | 5        | 10           |
|               | 6時         | 7                     | 15       | 25         | 19       | 10   | 18        | 13         | 2          | 9         | 10        | 9        | 9           | 8        |          | 22         | 3          |          | 5        | 13         | 19       | 9        | 15       | 8        | 19       | 5        | 16           |
|               | 7時<br>8時   | 13                    | 14<br>25 | 22         | 19       | 14   | 45        | 17         | 7          | 12        | 11        | 7        | 11          | 40       | $\leq$   | 22<br>28   | 22         | 7        | 7        | 10<br>20   | 24       | 10       | 17       | 7        | 14<br>15 | 11       | 15           |
|               | 9時         | 27<br>52              | 33<br>35 | 31<br>31   | 27       | 43   |           | 29<br>42   | 31<br>56   | 14<br>13  | 20<br>29  | 13       | 25<br>28    | 46       | $\leq$   | 49<br>65   | 32         |          | 7        | 23<br>46   | 20<br>35 |          | 26<br>34 | 14       | 23<br>30 | 22       |              |
|               | 11時        | 76                    | 61       | 60         | 38<br>45 | 80   | 97        | 52         | 87         | 27        | 33        | 59       | 43          | 56       |          | 91         | - 50       | 25       | 54       | 74         | 44       | 41       | 39       | 35       | 42       | 46       | 31           |
| 7月24日         | 12時        | 93<br>92              | 72<br>76 | 72<br>69   | 47       |      |           | 60<br>74   | 100        | 55<br>60  | 40        | 84<br>91 | 61<br>83    | 57<br>61 |          | 111        | 73<br>81   | 58<br>92 |          | 97<br>116  | 56<br>66 | 44       | 38<br>32 | 48       | 49<br>64 | 62<br>70 |              |
|               | 14時        | 92                    | 76       | 27         | 34       | 115  | 127       | 82         | 117        | 120       | 51        | 83       | 65          | 51       |          | 119        | 83         | 88       | 92       | 118        | 74       | 54       | 29       | 46       | 70       | 73       | 5            |
|               | 15時<br>16時 | 90<br>90              | 76<br>91 | 26<br>25   | 32       | 100  | 119       | 83<br>57   | 120<br>116 | 117<br>77 | 54<br>53  | 89<br>80 | 42<br>46    | 47       |          | 131<br>142 | 107<br>117 | 83       |          | 125<br>141 | 75<br>62 | 57<br>77 | 29<br>27 | 45       | 70<br>58 | 73       |              |
|               | 17時<br>18時 | 74<br>68              | 55<br>48 | 25<br>27   | 30       | 80   |           | 74<br>50   | 109        | 66<br>60  | 46<br>46  | 111      | 61<br>69    | 48       |          | 137        | 81<br>77   | 71       |          | 127        | 47       | 77       | 25<br>27 | 45<br>46 | 47       | 73       | 3 4          |
|               | 19時        | 63                    | 51       | 25         | 29<br>25 | 79   |           | 45         | 78         | 51        | 55        | 83       | 69          | 38       |          | 131<br>93  | 82         |          | 43       | 102<br>93  | 54       | 85       | 27       | 46       | 35<br>30 | 36       | 3            |
|               | 20時<br>21時 | 53<br>45              | 47       | 18         | 23       | 76   | 71        | 29<br>39   | 68<br>64   | 65<br>52  | 66<br>50  | 58<br>55 | 62<br>63    | 30       | $\leq$   | 81<br>70   | 73<br>59   | 35       | 58<br>62 | 84<br>71   | 49<br>36 |          | 24       | 33       | 28<br>27 | 27       | 2            |
|               | 22時        | 35                    | 40       | 51         | 19       | 61   | 63        | 48         | 54         | 45        | 47        | 49       | 48          | 26       | 2        | 62         | 56         | 56       | 55       | 64         | 34       | 33       | 21       | 18       | 28       | 16       | 3 20         |
|               | 23時        | 34                    | 34       | 44<br>55   | 14       | 58   | 57        | 51<br>43   | 39<br>43   | 42<br>38  | 48        | 46       | 40          | 21       | $\leq$   | 58<br>65   | 55<br>52   | 51       | 45       | 60<br>48   | 31<br>29 | 32       | 17       | 17       | 28<br>26 | 14       |              |
|               | 1時         |                       | 23       | 48         |          | 49   |           | 31         | 41         | 39        | 40        | 32       | 36          | <u> </u> |          | 54         | 49         | 49       | 47       | 41         | 26       | 33       | 9        | -        | -        |          | 1            |
|               | 2時         | 27<br>25              | - 21     | 25<br>6    | 9        | 43   |           | 18<br>21   | 29<br>26   | 34<br>27  | 36        | 29       | 37<br>33    | 10       |          | 41<br>32   | 39         | 47       |          | 28<br>16   | 20       | 33       | 6        | 15       | 13<br>13 | 8        | 3 10         |
|               | 4時         | 23<br>19              | 14       | 6          | 4        | 22   | 23        | 17         | 16         | 25<br>28  | 33        | 24<br>26 | 30<br>21    | 7        | $\leq$   | 29<br>21   | 33<br>26   | 39       | 32       | 12<br>15   | 19       |          | 4        | 4        | 16<br>14 | 5        |              |
|               | 6時         | 11                    | 12       | 8          | 6        |      | 17        | 6          | . 8        | 28        | 34        | 25       | 21          | 7        |          | 15         | 16         | 32       | 27       | 16         | 16       | 22       | 6        | 4        | 17       | 6        |              |
|               | 7時<br>8時   | 18                    | 17       | 13         | 10       | 13   | 23        | 12         | 12         | 37        | 35<br>42  | 33<br>42 | 20<br>35    | 12       | $\leq$   | 13         | 19         | 28       | 27       | 24<br>33   | 14       | 28       | 13       | 18       | 19       | 10       |              |
|               | 9時         | 52                    | 46       | 26         | 30       | 32   | 31        | 29         | 41         | 45        | 48        | 52       | 42          | 31       |          | 40         | 36         | 31       | 38       | 44         | 39       | 39       | 29       | 32       | 28       | 60       | 34           |
|               | 10時<br>11時 | 57<br>66              | 60<br>79 | 35<br>44   | 39       | 54   | 52<br>69  | 43         | 53<br>73   | 53<br>63  | 51<br>49  | 58<br>59 | 58<br>81    | 63       |          | 50<br>63   | 42<br>56   | 24       | 46<br>56 | 47<br>60   | 52<br>67 |          | 38<br>45 | 38<br>58 | 33       | 76<br>95 |              |
| 7月25日         | 12時<br>13時 | 62<br>55              | 95<br>93 | 58<br>65   | 46<br>47 | 70   | 72        | 47<br>50   | 95         | 58<br>64  | 55<br>54  | 66       | 86<br>69    | 93       |          | 76<br>91   | 68         | 66       |          | 75<br>91   | 64<br>63 |          | 47       | 79<br>88 | 70<br>84 | 103      | 85           |
|               | 14時        | 58                    | 86       | 68         | 51       | 69   | 82        | 59         | 109        | 52        | 56        | 57       | 58          | 104      |          | 106        | 81<br>99   | 77       | 94       | 109        | 60       | 68<br>58 | 46       | 79       | 90       | 84       |              |
|               | 15時        | 59<br>62              | 83<br>87 | 72         | 56<br>65 | 105  | 85<br>105 | 73<br>89   | 97<br>87   | 49<br>49  | 55<br>50  | 52<br>49 | 99<br>120   | 58<br>56 | $\leq$   | 116<br>121 | 106<br>95  | 80       | 90       | 122        | 65       |          | 45<br>45 | 79       | 88<br>71 | 90       |              |
|               | 17時        | 55                    | 98       | 76         | 77       | 95   | 124       | 89         | 63         | 51        | 42        | 48       | 77          | 40       | $\geq$   | 112        | 100        | 117      | 85       | 116        | 84       | 65       | 44       | 75       | 69       | 89       | 61           |
|               | 18時<br>19時 | 45<br>42              | 92<br>56 | 71<br>85   | 81<br>85 | 72   | 111       | 97<br>115  | 52<br>41   | 47        | 35<br>28  | 50<br>42 | 58<br>49    | 35       | $\leq$   | 106<br>105 | 97<br>81   | 91       | 83<br>92 | 109        | 79       | 76<br>74 | 42<br>38 | 78<br>82 | 66<br>64 | 84<br>64 |              |
|               | 20時<br>21時 | 39<br>33              | 44       | 56<br>46   | 86<br>61 | 41   | 95<br>83  | 88<br>63   | 36<br>30   | 35<br>32  | 23        | 27       | 40<br>28    | 28       |          | 85<br>59   | 47         | 56<br>46 | 72<br>62 | 73<br>64   | 73<br>74 | 80<br>91 | 35<br>34 | 80<br>80 | 60<br>56 | 41<br>35 | 56           |
|               | 22時        | 26                    | 43       | 40         | 50       | 23   | 75        | 48         | 22         | 30        | 9         | 20       | 18          | 20       |          | 61         | 45         | 35       |          | 63         | 75       | 74       | 33       | 83       | 50       |          | 53           |
|               | 23時        | 27<br>29              | 32       | 36         | 35<br>25 |      |           | 45<br>36   | 23         | 23        | 4         | 15       | 14          | 21       | $\leq$   | 51<br>51   | 34         | 33       | 35       | 58<br>68   | 71       | 54       | 28       | 78<br>83 | 52<br>38 | 29       |              |
|               | 1時         | 31                    | 29       | 23         | 22       | 13   | 45        | 28         | 17         | 15        | 3         | 15       | 16          | 11       |          | 63         | 34         | 31       | 22       | 71         | 66       | 36       | 22       | -        | -        | -        | 32           |
|               | 2時         | 32<br>29              | 26<br>23 | 21         | 19       | 13   | 41        | 24<br>15   | 7          | 12        | 1         | 10       | 15<br>10    | 14       | $\leq$   | 64<br>63   | 33         | 36       | 20       | 63<br>58   | 62<br>59 |          | 18       | 47       | 30       | 16       |              |
|               | 4時         | 22                    | 24       | 12         | 14       | 10   | 19        | 13         | 4          | 8         | 1         | 5        | 7           | 13       | $\leq$   | 40<br>21   | 37         | 56       | 5        | 21         | 49       |          | 11       | 11       | 20       | 10       | 15           |
|               | 5時<br>6時   | 10                    | 19       | 10         | 11       |      | 14        |            | 3          | 4         | 5         | 3        | 5           | 12       |          | 22         | 13         | 41       |          | 24         | 38       | 19       | 12       | 5        | 28       | 8        | 3 17         |
|               | 7時<br>8時   | 31<br>51              | 22<br>34 | 17<br>31   |          | 15   | 32        | 15<br>23   | 16<br>37   | 11<br>25  | 17        | 13       | 24          | 12       |          | 31<br>54   | 17         | 44       |          | 20<br>26   | 45<br>51 |          | 19<br>25 | 16       | 21<br>26 | 13       |              |
|               | 9時         | 46                    | 48       | 47         | 51       | 56   | 49        | 43         | 44         | 25        | 25        | 29       | 27          | 22       |          | 65         | 46         | 42       | 47       | 50         | 63       | 54       | 42       | 41       | 37       | 61       | 3            |
|               | 10時<br>11時 | 50<br>56              | 71<br>83 | 67<br>91   | 84       |      |           | 70         |            | 49<br>73  | 31<br>43  | 56<br>66 |             | 29<br>35 |          | 76<br>89   | 75         | 35       |          | 73<br>83   | 76<br>81 | 80       | 51<br>53 | 69<br>73 | 47<br>46 |          | 4            |
| 7月26日         | 12時<br>13時 | 56<br>58              | 84<br>92 | 98<br>100  |          |      |           |            |            | 80<br>71  | 61<br>67  | 79<br>97 | 64<br>51    | 47       |          | 95<br>85   | 75<br>61   | 57<br>61 |          | 86<br>70   | 75<br>66 |          | 53<br>54 | 65<br>42 |          | 63       | 3 42         |
|               | 14時        | 72                    | 99       | 95         | 94       | 157  | 109       | 99         | 121        | 73        | 64        | 105      | 58          | 47       |          | 70         | 51         | 39       | 60       | 64         | 65       | 73       | 56       | 36       | 44       | 52       | 2 3          |
|               | 15時<br>16時 | 98<br>94              |          | 97<br>107  |          |      |           | 111        | 88         | 61<br>52  | 44<br>39  | 62       |             | 53<br>50 |          | 56<br>52   | 43         |          | 35       | 53<br>53   | 68       | 72       | 58<br>58 |          |          | 48       | 3 4          |
|               | 17時        | 62                    | 106      | 123        | 112      | 85   | 71        | 108        | 58         | 38        | 34        | 44       | 34          | 45       |          | 51         | 38         | 32       | 28       | 45         | 59       | 69       | 51       | 26       | 38       | 45       | 3            |
|               | 18時<br>19時 | 48<br>33              |          | 125<br>140 |          | 52   | 53        | 77         | 26         | 30        | 31<br>27  | 32<br>23 |             | 36<br>32 |          | 40<br>31   | 25         | 24       | 20       | 36<br>31   | 48<br>39 | 53       | 48<br>47 | 24       | 32       | 34       | 1 2          |
|               | 20時<br>21時 | 37<br>34              | 34<br>25 | 118<br>92  |          | 30   | 38        |            | 30<br>27   | 26<br>21  | 25<br>21  | 25<br>19 | 21          | 30<br>28 |          | 27<br>27   | 22         |          |          | 28<br>24   | 36<br>34 | 36       | 46<br>44 |          |          | 21       | 2            |
|               | 22時        | 20                    | 26       | 69         | 54       | 24   | 30        | 39         | 23         | 21        | 20        | 15       | 17          | 27       | $\leq$   | 24         | 25         | 16       | 14       | 23         | 32       | 28       | 34       | 16       | 15       | 16       | 16           |
|               | 23時<br>24時 | 17<br>18              | 20<br>15 | 59<br>58   |          |      | 27        |            |            | 17        | 18<br>16  | 12       | 11<br>7     | 25<br>30 |          | 23<br>21   | 23<br>19   | 17       |          | 21<br>18   | 30<br>28 |          | 29<br>26 |          | 13<br>13 |          |              |
|               | 1時         | 15                    | 15       | 47         | 41       | 3    | 25        | 21         | 16         |           | 15        | 12       | 3           | 34       |          | 17         | 15         | 15       | 14       | 13         | 26       | 23       | 24       | -        | -        | -        | 10           |
|               | 2時         | 10<br>11              | 12       | 37<br>38   | 39<br>34 | 3    | 28        | 13         | 11         | 5         | 14        | 13       | 5           | 32<br>35 |          | 16<br>15   | 13         | 16       | 10       | 17<br>16   | 23<br>20 | 22       | 19<br>18 |          | 11<br>8  |          | 12           |
|               | 4時         | 10                    | 14       | 46<br>44   | 31       | 3    | 20        | 12         | 11         | 12        | 9         | 9        | 2           | 35       |          | 14<br>12   | 10         | 15       | 9        | 14         | 18<br>16 | 17       | -        | 4        | 6        | 3        | 3 9          |
|               | 5時<br>6時   | 9<br>12               | 13       | 24         | 25<br>20 | ( E  | 20        | 11         | 8          | 8         | 8         | 9        | 5           | 32       |          | 12         | 8          | 14       | 11       | 10         | 16       | 0        | 15       | 2        | 6<br>5   | 3        | 3 8          |
|               | 7時<br>8時   | 16<br>19              | 16<br>20 | 22<br>31   | 30       | 10   | 28        | 15<br>18   |            | 12        | 11        | 10       |             | 30       |          | 13<br>18   | 12         | 13       |          | 12<br>16   | 15       | 9        | 17<br>27 |          | 7        | 11       |              |
|               | 9時         | 25                    | 34       | 43         | 46       | 43   | 55        | 32         | 27         | 19        | 16        | 17       | 12          | 43       |          | 29         | 20         | 18       | 13       | 23         | 27       | 26       | 37       | 10       | 20       | 21       | 2            |
|               | 10時<br>11時 | 26<br>36              | 60<br>85 | 57<br>66   | 56       |      |           |            | 57         | 23<br>31  | 18<br>26  | 28<br>36 | 13<br>23    | 49<br>51 |          | 34<br>43   | 26<br>33   |          |          | 32<br>39   | 37<br>45 | 33       | 37<br>32 |          | 30<br>50 | 52       | 3:           |
| 7月27日         | 12時        | 46                    | 96       | 56         | 71       | 79   | 65        | 74         | 67         | 40        | 32        | 36       | 29          | 54       |          | 48         | 33         | 37       | 36       | 40         | 44       | 40       | 40       | 33       | 60       | 55       | 61           |
|               | 13時<br>14時 | 52<br>53              | 90<br>60 | 37<br>39   | 44<br>32 | 77   | 64        |            | 82<br>69   | 44<br>52  | 39<br>36  | 43<br>53 | 37<br>36    | 53<br>51 |          | 48<br>51   | 49         | 52       |          | 43<br>47   | 36<br>31 | 37       | 47<br>53 |          | 59<br>55 | 64       | 5 5          |
|               | 15時<br>16時 | 43<br>36              | 44       | 46<br>51   | 41       | 33   | 36        | 40         | 46         | 46        | 32<br>32  | 56<br>58 | 33          | 52<br>50 |          | 44<br>36   | 48         | 58       | 59       | 44         | 33<br>37 | 32       | 55<br>52 | 54       | 50       | 62       | 2 49         |
|               | 17時        | 34                    | 40       | 53         | 49       | 38   | 35        | 43         | 33         | 40        | 33        | 48       | 30          | 48       |          | 36         | 28         | 38       | 41       | 30         | 37       | 38       | 51       | 46       | 59       | 44       | 51           |
|               | 18時<br>19時 | 35<br>39              | 43       | 54<br>54   |          |      |           |            |            | 32<br>24  | 35<br>35  | 42       | 31<br>21    | 47       | $\vdash$ | 34<br>38   |            |          |          | 29<br>22   | 37<br>43 |          | 48<br>46 |          |          |          | 62           |
|               | 20時        | 33                    | 35       | 50         | 49       | 39   | 30        | 44         | 41         | 26        | 34        | 39       | 17          | 38       |          | 38         | 20         | 22       | 32       | 37         | 50       | 26       | 47       | 45       | 58       | 49       | 58           |
|               | 21時<br>22時 | 33<br>30              | 36<br>40 | 49<br>48   |          | 34   |           | 29<br>19   | 33<br>19   | 28<br>29  | 33<br>29  | 38<br>35 | 15<br>17    | 38       |          | 45<br>46   |            | 17       |          | 45<br>42   | 50<br>48 |          | 46<br>47 |          |          | 48       | 51           |
|               | 23時        | 27                    | 42       | 47         | 40       | 45   | 21        | 15         | 26         | 28        | 32        | 28       | 20          | 34       |          | 43         | 28         | 22       | 22       | 35         | 46       | 44       | 47       | 47       | 52       | 29       | 52           |
| $\overline{}$ | 24時        | 31                    | 44       | 45         | 41       | 45   | 30        | 1 6        | 37         | 38        | 39        | 29       | 25          | 32       | _        | 39         | 27         | 26       | 29       | 21         | 46       | 39       | 47       | 36       | 50       | 21       | 51           |

| 表3-2-2<br>月日 | 2 7月2<br>地点名<br>時刻 | 8日~8<br>茨城県<br>土浦 | 月1日<br>栃木県<br>真岡 | 群馬県前橋          | 群馬県富岡          | 埼玉県            | 埼玉県日高           | 埼玉県<br>秩父        | さいたま市<br>城南      | 千葉県<br>市原      | 千葉県勝浦          | 千葉県<br>佐倉      | 千葉県<br>富津      | 千葉市 東京都<br>千葉 綾瀬 | 東京都多摩          | 神奈川県           | 横浜市横浜          | 川崎市川崎          | 相模原市相模原        | 山梨県甲府          | 山梨県東山梨   | 長野県長野          | 静岡県富士          | 静岡県湖西          | 静岡市            | 浜松市<br>浜松      |
|--------------|--------------------|-------------------|------------------|----------------|----------------|----------------|-----------------|------------------|------------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------|----------------|----------------|----------------|----------------|----------------|
|              | 1時<br>2時           | 36<br>36          | 43<br>46         | 43<br>45       | 42<br>42       | 43             | 25<br>14        | 9                | - 30             | 44<br>45       | 43<br>45       | 35             | 36<br>41       | 19               | 38<br>37       | 23             | 21             | 21             | 25             | 43             | 32       | 46<br>45       | - 24           | -<br>46        | - 16           | 48<br>44       |
|              | 3時                 | 33<br>32          | 43<br>33         | 43             | 41<br>34       | 38             | 10              | 3                | 30               | 42             | 45             | 29<br>32       | 42             | 9 4              | 35<br>27       | 12             | 38             | 30<br>14       | 12             | 33<br>29       | 19       | 48             | 17             | 43             | 14             | 44             |
|              | 5時<br>6時<br>7時     | 35<br>32          | 26<br>25<br>26   | 39<br>32<br>32 | 33<br>28<br>34 | 28<br>32       | 10<br>8<br>17   | 3                | 27<br>24<br>25   | 41<br>42<br>42 | 42<br>41<br>42 | 34<br>33<br>39 | 43<br>44<br>42 | 3 3              | 16<br>16       | 10             | 36             | 18             | 8<br>20        | 28<br>29<br>30 | 21       | 44<br>43<br>40 | 17<br>19<br>20 | 40<br>39<br>41 | 15<br>13       | 37             |
|              | 8時 9時              | 35<br>38<br>41    | 37               | 39             | 41             | 35             | 25<br>36        | 16               | 37               | 47<br>45       | 48             | 42             | 46<br>48       | 34<br>43         | 31             | 28             | 32<br>36<br>34 | 33<br>43<br>38 | 19             | 34             | 36       | 41             | 25<br>33       | 43             | 33             | 34<br>36<br>40 |
|              | 10時                | 47<br>52          | 50               | 46             | 46             | 41             | 41              | 48               | 48               | 53<br>56       | 50             | 51<br>54       | 52             | 51<br>52         | 42             | 35             | 38             | 41             | 39             | 48             | 49       | 50             | 40             | 51             | 55<br>65       | 5              |
| 7月28日        | 12時<br>13時         | 60<br>67          | 62<br>64         | 50             | 47<br>49       | 62             | 63<br>66        | 54<br>56         | 62<br>72         | 54<br>50       | 51<br>48       | 55             | 56<br>53       | 55<br>55         | 58<br>67       | 46             | 51             | 59<br>64       | 49<br>57       | 64<br>62       | 62       | 52<br>51       | 46<br>55       | 69<br>64       | 67<br>66       | 55             |
|              | 14時<br>15時         | 69<br>65          | 68<br>67         |                | 51<br>58       | 77<br>90       | 68<br>71        | 66<br>70         | 79<br>76         | 54<br>51       | 47<br>47       | 54<br>54       | 60<br>52       | 52<br>48         | 82<br>83       | 54<br>48       | 58<br>41       | 59<br>56       | 69<br>64       | 60<br>63       |          | 51<br>52       | 55<br>45       | 64<br>65       | 67<br>67       | 59<br>51       |
|              | 16時<br>17時         | 60<br>60          | 66<br>72         | 75             | 69<br>76       | 89<br>83       | 92<br>89        | 75<br>87         | 78<br>80         | 51<br>49       | 46<br>46       | 54<br>51       | 50<br>49       | 52<br>51         | 54<br>41       | 42<br>37       | 38             | 47<br>42       | 54<br>46       |                |          | 53<br>51       | 45<br>44       | 62<br>63       | 64<br>64       | 57<br>55       |
|              | 18時                | 51<br>45          | 73<br>57         | 59             | 76<br>82       | 50             | 62<br>49        | 92<br>79         | 60<br>40         | 49<br>45       | 45<br>38       | 48             | 48             | 47               | 38             | 36             | 36             | 38             | 43<br>45<br>41 | 61<br>55       | 60       | 49             | 44<br>44<br>41 | 62<br>61       | 55<br>52       | 56<br>56       |
|              | 20時<br>21時<br>22時  | 40<br>39<br>36    | 57<br>51         | 54<br>45<br>39 | 79<br>63<br>54 | 43<br>41<br>37 | 45<br>42<br>39  | 67<br>49<br>44   | 35<br>33<br>28   | 42<br>40<br>39 | 29<br>18<br>12 | 35<br>32<br>27 | 43<br>38<br>24 | 40<br>36<br>33   | 39<br>34<br>31 | 27<br>21<br>15 | 35<br>32<br>31 | 30<br>30<br>38 | 38             | 52<br>51<br>49 | 52       | 43<br>37<br>32 | 35<br>29       | 57<br>52       | 39<br>31<br>24 | 50<br>48<br>41 |
|              | 23時                | 33<br>29          | 38               | 36             | 36             | 33             | 36<br>30        | 35               | 26<br>29         | 38             | 12             | 23             | 22             | 30<br>16         | 31             | 14             | 32             | 34             | 32             | 48             | 33       | 29             | 27             | 48             | 17             |                |
|              | 1時<br>2時           | 20<br>8           | 34               | 29             | 22             | 28             | 21              | 28<br>20         | 26<br>21         | 24             | 5              | 22             | 18             | 12               | 28             | 2              | 34             | 31<br>26       | 27             | - 41           | - 28     | 25<br>24       | - 11           | - 33           | - 10           | 24             |
|              | 3時<br>4時           | 4                 | 23<br>18         | <del></del>    | 14<br>10       | 17             | 9               | 16<br>17         | 15<br>5          | 9              | 2              | 14             | 15<br>13       | 19               | 23<br>15       | 2              | 35             | 24<br>23       | 26<br>12       | 36<br>26       | 24       | 22             | 16<br>20       | 33<br>39       | 10             | 19             |
|              | 5時<br>6時           | 10<br>16          | 16               | 19             | 11             | 9              |                 | 14<br>12         | 3<br>2           | 6              | 1              | 9              | 10<br>12       | 20               | 12             | 17             | 21             | 24<br>17       | 7              | 29<br>15       | 22       | 20<br>15       | 15<br>14       | 39<br>34       | 7              | 21             |
|              | 7時                 | 27<br>34          | 17<br>24         |                | 17             | 19             | 16<br>26        | 16<br>24         | 16               | 32             | 23             | 23             | 19<br>33       | 23               | 15<br>24       | 13             | 24             | 20             | 15<br>28       | 31             |          | 19<br>25       | 17<br>25       | 39<br>46       | 13             | 38             |
|              | 10時                | 39<br>48<br>60    | 57<br>67         | 49             |                | 31<br>49<br>61 | 38<br>51<br>65  | 39<br>53<br>61   | 25<br>35<br>45   | 45<br>51<br>55 | 36<br>44<br>49 | 37<br>49<br>54 | 45<br>40<br>44 | 44<br>48<br>52   | 39<br>-<br>51  | 34             | 23             | 26<br>31<br>47 | 37<br>43<br>51 | 38<br>49<br>66 | 52       | 35<br>48<br>58 | 38<br>35<br>40 | 52<br>56<br>55 | 43<br>57<br>61 | 48<br>58       |
| 7月29日        | 12時                | 70<br>70          | 75               | 78             | 73             | 79             | 73<br>77        | 72               | 57<br>73         | 64<br>78       | 50<br>49       | 55<br>56       | 53             | 54<br>61         | 54             | 46             | 42             | 51             | 51             | 74<br>70       | 68       | 65             | 41             | 54<br>53       | 59             | 56             |
|              | 14時<br>15時         | 80                | 92               | 89             | 89             | 87             | 66              | 80               | 81<br>74         | 58<br>53       | 47             | 53<br>53       | 53<br>48       | 73<br>61         | 51<br>51       | 42             | 52             | 57<br>55       | 52<br>52       | 66             | 71       | 70<br>72       | 49             | 54<br>53       | 56<br>57       | 52             |
|              | 16時<br>17時         | 56<br>57          | 101              | 108            | 87<br>75       | 68             | 61<br>56        | 59<br>51         | 70<br>63         | 52<br>53       | 46<br>45       | 52<br>52       | 42             | 46               | 50<br>43       | 38<br>35       | 42             | 52<br>46       | 49<br>46       | 59<br>59       | 71       | 72<br>65       | 48<br>45       | 52<br>54       | 55<br>52       | 50<br>47       |
|              | 18時<br>19時         | 51<br>45          | 81<br>71         |                | 68<br>57       | 47             | 50<br>49        | 44<br>34         | 52<br>45         | 48<br>42       | 44             | 48<br>46       | 47<br>45       | 41<br>36         | 43<br>39       | 35<br>34       | 39             | 43<br>40       | 44             | 52             | 55       | 60<br>57       | 43<br>43       | 49<br>46       | 48<br>49       | 4:             |
|              | 20時<br>21時         | 42<br>36          | 59<br>51         | 45             | 42             | 47             | 45<br>44        | 44<br>39         | 39<br>38         | 42<br>39       | 38<br>32       | 38             | 43<br>38       | 32<br>30         | 37<br>37       | 35<br>28       | 35             | 41             | 42<br>38       | 48             | 40       | 54<br>50       | 40<br>35       | 43<br>41       | 38             | 35<br>35       |
|              | 22時 23時 24時        | 35<br>33<br>30    | 45<br>43<br>35   |                | 35<br>25       | 36             | 38              | 25<br>24<br>19   | 38               | 36<br>30       | 27<br>15       | 28<br>25       | 29             | 28<br>25<br>22   | 34             | 25             | 32<br>31<br>31 | 41             | 34<br>32<br>28 | 47<br>46<br>38 | 31       | 68<br>61       | 32<br>16       | 38<br>36       | 14             | 28             |
|              | 1時 2時              | 27<br>26          | 33               | 38<br>33<br>28 | - 19           | 33<br>30<br>26 | 27<br>19        | 15<br>15         | 35<br>31<br>30   | 29<br>27<br>26 | 2              | 22<br>19<br>20 | 32<br>34<br>30 | 20               | 28<br>30<br>32 | 25<br>20       | 29             | 18             |                | 37<br>36       | 29       | 55             | - 12           | 38<br>-<br>41  | - 11           | 27<br>25<br>25 |
|              | 3時                 | 23<br>19          | 28               |                | 15             | 20             | 15              | 13               | 32               | 21             | 4              | 20             | 21             | 8                | 26<br>16       | - 6            | 26             | 26<br>25       | 17             | 33             | 23       | 48             | 13             | 35             | 4              | 20             |
|              | 5時<br>6時           | 21<br>21          | 13               | 22             | 14             | 13             | 10              | 6                | 23               | 14             | 3              | 18<br>17       | 13             | 4 2              | 12             | 11             | 20             | 22             | 10             |                |          | 34             | 15<br>17       | 38<br>31       | 4              | 20             |
|              | 7時<br>8時           | 23<br>31          | 18               | 30<br>35       | 18<br>29       | 19             | 18<br>34        | 10<br>15         | 23<br>36         | 26<br>37       | 6<br>28        | 21<br>31       | 20<br>41       | 10<br>12         | 14<br>26       | 15<br>26       | 25             | 17<br>26       | 13<br>22       | 21<br>26       |          | 34<br>37       | 18<br>23       | 29<br>35       | 12<br>23       | 22<br>33       |
|              | 9時<br>10時          | 39<br>51          | 48<br>58         |                | 42<br>54       |                | 40<br>57        | 28<br>50         | 42<br>49         | 45<br>48       | 43<br>42       | 42<br>48       | 46<br>46       | 19<br>25         | 38<br>48       | 32<br>35       | 17             | 27<br>32       | 36<br>42       | 36<br>46       | 50       | 46<br>55       | 32<br>34       | 42<br>51       | 37<br>50       | 39<br>47       |
| 7月30日        | 11時                | 61<br>75          | 71<br>83         | 75             | 73             | 78             | 72              | 69               | 58<br>69         | 39<br>51       | 42             | 54<br>56       | 49             | 45               | 57<br>52       | 39             | 39             | - 47           | 48<br>50       | 66             | 63       | 66             | 36<br>41       | 49<br>45       | 55<br>53       | 54             |
|              | 13時<br>14時<br>15時  | 89<br>88<br>78    | 101<br>114       | 86<br>91<br>86 | 76<br>82<br>87 | 83<br>87<br>81 | 81<br>74<br>71  | 72<br>80<br>89   | 70<br>77<br>79   | 51<br>46<br>42 | 42<br>41<br>40 | 54<br>47<br>55 | 45<br>42<br>34 | 57<br>65<br>41   | 51<br>50<br>48 | 38<br>37<br>35 | 46<br>44<br>43 | 52<br>45<br>42 | 48<br>48<br>46 | 69<br>71<br>61 | 74       | 69<br>72<br>75 | 42             | 43<br>43<br>45 | 51<br>51<br>49 | 42<br>38<br>38 |
|              | 16時                | 65<br>66          | 116              | 92             |                |                | 65              | 78<br>71         | 72<br>59         | 42             | 38             | 61<br>44       | 30             | 29               | 42             | 31             | 37             | 43             | 41             | 61             | 69       | 74             | 40             | 44             | 47             | 37             |
|              | 18時<br>19時         | 46<br>41          | 97               | 82             | 83<br>68       | 51             | 47              | 60<br>48         | 47<br>40         | 39<br>36       | 35<br>31       | 40<br>35       | 35             | 29               | 35<br>31       | 29             | 30             | 28<br>20       | 39<br>35       | 52<br>49       | 59       | 61<br>57       | 36<br>35       | 38<br>42       | 43             | 32<br>33       |
|              | 20時<br>21時         | 32<br>26          | 52<br>41         | 49<br>41       | 55<br>45       | 38             | 37<br>33        | 40<br>33         | 29<br>26         | 32<br>29       | 29<br>28       | 30<br>26       | 29<br>29       | 13<br>14         | 29<br>27       | 24<br>19       | 25             | 19<br>10       | 30<br>26       | 46<br>43       |          | 52<br>50       | 30<br>32       | 34<br>25       | 22<br>17       | 34<br>27       |
|              | 22時<br>23時         | 27<br>26          | 36               | 35             | 33             | 27             | 28<br>22        | 30<br>21         | 24<br>25         | 26<br>24       | 26<br>23       | 24<br>22       | 27<br>23       | 12               | 25<br>24       | 18             | 22             | 14<br>10       | 24             | 42<br>37       | 37       | 49<br>51       | 27<br>24       | 31<br>28       | 11<br>8        | 23             |
|              | 24時<br>1時<br>2時    | 25<br>23          | 28               | - 18           | 29<br>27<br>25 | 24             | 18<br>12<br>10  | 20<br>18<br>16   | 18               | 19<br>18<br>15 | 20             | 20<br>17       | 22<br>21<br>17 | 13               | 26<br>25<br>15 | 15<br>15       | 17<br>16<br>15 | 6              | 14             |                | 23       | 66             | - 13           | 27<br>-<br>16  | - 7            | -<br>13        |
|              | 3時 4時              | 21<br>18<br>16    | 25<br>16         | 15             | 20             | 24             | 9               | 13               | 23<br>21<br>14   | 12             | 16<br>12       | 11             | 12             | 11               | 11             | 16             | 13             | 4              | 13<br>9        | 29<br>25<br>26 | 20       | 56<br>43       |                | 13             | 3              | 12             |
|              | 5時                 | 14                | 12               | 33             | 17             | 14             | 5               | 7 8              | 8                | 4              | 4 2            | 7              | 8              | 8                | 3              | 8              | 14             | 13             | 6              | 24             | 16       | 38             | 7 9            | 10             | 3              | 4              |
|              | 7時<br>8時           | 15<br>21          | 15<br>22         | 34             | 23             |                | 11              | 13<br>15         | 6<br>19          | 9              | 7<br>15        | 6<br>14        | 11<br>10       | 9                |                | 19             |                | 14<br>24       |                | 17<br>24       |          | 36<br>42       | 11<br>23       | 12<br>18       |                | 14             |
|              | 9時<br>10時          | 30<br>37          | 32<br>43         | 57             | 63             | -              | 53              | 28<br>58         | 22<br>48         | 14             | 15<br>16       | 28             | 21<br>25       | 18               | 34<br>53<br>71 | 30<br>43       | 21             | 27<br>16       | 50             | 46             | 50       | 48<br>51       | 27             | 20<br>31       | 31             | 34             |
| 7月31日        | 11時                | 51<br>62          | 59<br>72         | 90             | 73<br>85       | 97             | 79<br>102       | 78<br>77         | 70<br>89         | 24<br>31       | 17             | 39<br>50       | 23             | 32<br>43         | 78             | 55<br>50       | 20             | 46<br>54       | 76             | 72             | 55       | 58<br>69       |                | 46<br>36       | 50<br>55       | 49<br>50       |
|              | 13時<br>14時<br>15時  | 71<br>102<br>108  | 91<br>99         | 105            | 93             | 117            | 98<br>99<br>103 | 79<br>88<br>86   | 115<br>98<br>127 | 38<br>34<br>21 | 16<br>15       | 44             | 18<br>15       | 51               | 83<br>56<br>41 | 22<br>21       | 21             | 56<br>42<br>25 | 52             |                | 47       | 61<br>60<br>57 | 30             | 23<br>22<br>20 | 58<br>54<br>32 | 26             |
|              | 15時<br>16時<br>17時  | 68                | 108              | 95             | 109            | 127            | 73              | 93               | 102              |                | 13<br>13       |                | 20             | 24               | 41 41 37       | 23             | 20             | 23<br>19       | 38             | 53             | 44       | 56<br>59       | 23             | 20<br>22<br>30 | 20<br>23       | 2              |
|              | 18時<br>19時         | 33<br>27          | 102              | 101            | 113            | 46             | 58              | 89               | 33<br>26         | 14<br>11       | 16<br>18       | 17<br>6        | 18             | 19               | 28<br>20       | 16             | 21             | 16<br>12       | 23             | 42<br>36       | 48<br>46 | 56<br>51       | 18<br>17       | 29<br>27       | 26<br>20       | 2              |
|              | 20時<br>21時         | 19<br>17          | 41<br>33         | 57             | 78<br>59       | 30             | 23<br>18        | 52<br>46         | 16<br>17         | 16<br>19       | 21<br>22       | 6<br>8         | 23<br>21       | 9                | 18<br>16       | 12<br>10       | 14             | 7              | 19<br>15       | 33<br>29       | 34       | 48<br>47       | 17<br>13       | 27<br>21       | 18<br>22       | 2:             |
|              | 22時<br>23時         | 17<br>11          | 23<br>20         | 41<br>36       | 50<br>48       | 20             |                 | 40<br>39         | 8                | 18<br>17       | 20<br>18       | 9              | 20<br>19       | 3                | 13<br>12       | 10             | 13             | 8              |                | 26<br>22       | 29<br>20 | 43<br>37       | 19             | 18<br>18       | 25<br>19       | 15             |
|              | 24時 1時 28年         | - 7               | 18               | 25             | 37             | 6              | -               | 36<br>28         | 1                | 15             | 18<br>19       |                | 17             | 5                | 9              |                |                | 8              |                |                | 18       | 27             | -              | 15             | 15             | 12             |
|              | 2時<br>3時<br>4時     | 7<br>6            | - 17             | 13             | 19             | 7              | 4               | 18<br>19<br>19   | 2                | 11<br>9<br>7   | 14<br>11       |                | 13<br>15       | 17<br>15<br>14   | 11<br>10<br>7  | 4              | 12             | 10<br>5        | 12<br>7        | 19<br>18<br>14 | 16       | 24<br>18<br>16 | 8              | 8<br>6<br>5    | 3              |                |
|              | 5時<br>6時           | 5<br>6            | 2                | 23             | 17             | 5              | 3               | 10               | 1                | 4              | 12             | 6              | 13             |                  | 3              | 1              | 7              | 4              | 3              | 13             | 18       | 14             | 2              | 3<br>4         | 2              |                |
|              | 7時<br>8時           | 7                 | 7                | 37             | 22             | 9              |                 | 19               | 5                | 9              | 10             | 7              | 7              | 11 16            | 10             | 14             | 8              | 8              | 8              | 10             | 19       | 17             | 4              | 7              | 6              | 10             |
|              | 9時<br>10時          | 16<br>24          | 16               | 47<br>60       | 51<br>69       | 26<br>47       | 33<br>53        | 38<br>59         | 20<br>32         | 11<br>18       | 13<br>17       | 18<br>27       | 9              | 30<br>55         | 28<br>51       | 29<br>42       | 23             | 17<br>21       | 28<br>43       | 26<br>39       | 31<br>41 | 26<br>34       | 12<br>22       | 15<br>20       | 22<br>29       | 12             |
| 8月1日         | 11時<br>12時         | 39<br>55          | 40<br>54         | 77<br>86       | 83<br>69       | 77<br>94       | 79<br>99        | 86<br>93         | 52<br>75         | 26<br>37       | 20<br>19       | 34<br>53       | 19<br>23       | 94               | 74<br>78       | 41             | 41             | 38<br>40       | 57<br>66       | 55<br>67       | 51<br>59 | 42<br>52       | 31<br>35       | 18<br>19       | 38<br>45       | 1              |
| -,,, H       | 13時                | 68<br>86          | 67<br>71         | 92             | 80             | 107            | 97              | 82<br>96         | 98<br>95         | 36<br>45       | 18             | 63             | 20             | 120<br>105       | 77<br>68       | 38             | 30             | 46             | 57             | 51             | 72       | 57<br>69       | 20             | 14             | 31             | 1              |
|              | 15時                | 90<br>78          | 74               | 53             | 76             | 88             |                 | 110              | 94<br>77         | 33<br>20       | 13             | 44             | 16<br>16       | 55               | 56<br>40       |                | 15             | 17             | 42             | 53             | 62       | 55<br>54       | 12             | 13             | 38             | 1              |
|              | 17時<br>18時<br>19時  | -<br>28           | 42<br>36         | 69             |                | 68             | 55              | 117<br>104<br>69 | 52<br>23         | 16<br>12<br>10 | 14<br>10       | 18<br>11       | 16<br>11       |                  | 47<br>35       | 15             |                | 14<br>10       |                | 42             | 53       | 33<br>36       | 11             | 10<br>12<br>11 | 30<br>24<br>16 | 11             |
|              | 20時 21時            | 39<br>35<br>26    | 24<br>26         | 44             | -              | 39<br>40       | 48<br>43<br>42  | 54<br>44         | 7                | 9 7            | 11<br>11       | 9<br>7<br>6    | 9              | 28<br>21<br>20   | 23<br>14<br>29 | 18             | 7              | 2 2            | 12             | 27             | 43       | 28<br>22       | 10             | 11             | 16<br>10       |                |
|              | 22時 23時            | 25<br>21          | 21               | 49             | -              | 52<br>45       | 38              | 37               | 35               | 2              | 7              | 3              | 1              | 19<br>17         | 46<br>44       | 45             |                | 15             | 46             | 40             | 35       | 28             | 19             | 8              | 5              | 10             |
|              | 24時                | 17                | 16               |                |                | 47             |                 | 26               | 40               | 1              | 7              | 4              | 5              | 15               | 36             |                |                | 45             |                |                | 30       | 18             |                | 3              | 37             |                |

| 表3-2-3 |                                                      |                            |                            | 群馬県前橋              | 群馬県富岡                | 埼玉県<br>鴻巣<br>41      | 埼玉県<br>日高<br>28      | 埼玉県<br>秩父<br>19      | さいたま市<br>城南<br>32    | 千葉県<br>市原<br>8       | 千葉県<br>勝浦<br>11      | 千葉県<br>佐倉<br>22      | 千葉県<br>富津<br>14     | 千葉市<br>千葉<br>13      | 東京都綾瀬         | 東京都<br>多摩<br>30      | 神奈川県<br>大和<br>26 | 横浜市<br>横浜<br>27      | 川崎市<br>川崎            | 相模原市<br>相模原<br>28    | 山梨県<br>甲府<br>29      | 山梨県<br>東山梨<br>27     | 長野県<br>長野<br>15            | 静岡県富士                      | 静岡県湖西                | 静岡市静岡                | 浜松市<br>浜松            |
|--------|------------------------------------------------------|----------------------------|----------------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|----------------------|---------------|----------------------|------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------|----------------------|
|        | 2時                                                   | 20<br>19                   | 9                          | 34<br>32           | -                    | 39<br>31             | 23<br>21             | 9                    | 29<br>25             | - 6                  | 19<br>11             | 26<br>23             | 17<br>12            | 12                   |               | 23<br>17             | 22<br>19         | 13<br>15             | 32<br>11             | 18<br>18             | 29<br>23             | 18                   | 13                         | 24<br>12                   | 3                    | 20<br>13             | 1                    |
|        | 4時<br>5時                                             | 10                         | 6<br>5                     | 20<br>16           | -                    | 27<br>22             | 18<br>17             | 12                   | 18<br>10             | 5<br>4               | 9                    | 15<br>8              | 9                   | 5                    |               | 17                   | 16<br>15         | 11<br>5              | 13                   | 19<br>16             | 19<br>19             | 12                   | - 6                        | 4 2                        | 2                    | 11                   | 0                    |
|        | 6時                                                   | 3<br>19                    | 4                          | 18                 |                      | 22                   | 13                   | 7                    | 4<br>19              | 4                    | 3                    | 8                    | 9                   | 4                    | =             | 13                   | 11               | 8                    | 3                    | 14                   | 14                   | 13                   | 8                          | 3                          | 2                    | 12                   | 1                    |
|        | 7時<br>8時                                             | 34                         | 14                         | 26<br>31           |                      | 29<br>31             | 18<br>23             | 10                   | 33                   | 19                   | 14                   | 18<br>33             | 10<br>13            | 20                   | $\leq$        | 20                   | 19               | 13<br>18             | 14                   | 16<br>19             | 18<br>24             | 19                   | 10                         | 14                         | 7                    | 10<br>19             | 8                    |
|        | 9時                                                   | 45<br>56                   | 26<br>46                   | 35<br>43           |                      | 42<br>52             | 32<br>48             | 15                   | 40<br>59             | 22                   | 19                   | 53<br>71             | 10                  | 33<br>55             | =             | 34<br>48             | 24               | 23<br>27             | 34                   | 19<br>39             | 33<br>44             | 30                   | 25<br>36                   | 22                         | 10                   | 24<br>32             | 11                   |
|        | 11時                                                  | 69                         | 62                         | 58                 |                      | 69                   | 60                   | 59                   | 80                   | 54                   | 26                   | 76                   | 37                  | 62                   |               | 71                   | 50               | 27                   | 34                   | 59                   | 50                   | 46                   | 47                         | 33                         | 12                   | 40                   | 13                   |
| 8月2日   | 12時                                                  | 79<br>73                   | 66<br>63                   | 77                 |                      | 78<br>85             | 72<br>80             | 66<br>67             | 89<br>104            | 57<br>72             | 38<br>33             | 78<br>84             | 28<br>30            | 114<br>70            | $\leq$        | 97<br>112            | 66<br>59         | 55<br>72             | 63<br>63             | 78<br>87             | 49                   | 49<br>56             | 54                         | 34<br>37                   | 15<br>18             | 52                   | 17<br>20             |
|        | 14時                                                  | 67<br>80                   | 73<br>66                   | 80                 |                      | 86<br>106            | 89<br>98             | 65<br>69             | 126<br>145           | 50<br>42             | 29<br>27             | 124<br>124           | 32<br>27            | 27<br>18             | =             | 100<br>86            | 63<br>66         | 43<br>58             | 68<br>95             | 84<br>77             | 40<br>45             | 32                   | 55<br>52                   | 47<br>34                   | 20                   | 51<br>46             | 24                   |
|        | 16時<br>17時                                           | 65<br>91                   | 73<br>79                   | 74                 | 73<br>64             | 118<br>125           | 123<br>108           | 71<br>50             | 156<br>103           | 50<br>69             | 26                   | 83<br>65             | 29<br>16            | 18                   | $\leq$        | 80<br>54             | 45<br>38         | 47<br>39             | 55<br>40             | 61<br>47             | 47<br>46             | 37                   | 44<br>36                   | 22                         | 19                   | 27<br>26             | 20                   |
|        | 18時                                                  | 114                        | 82                         | 73<br>80           | 51                   | 124                  | 84                   | 22                   | 90                   | 28                   | 28                   | 59                   | 17                  | 13                   | $\leq$        | 46                   | 33               | 34                   | 28                   | 42                   | 48                   | 43                   | 29                         | 28                         | 14                   | 24                   | 20<br>15             |
|        | 19時<br>20時                                           | 60<br>32                   | 63<br>53                   | 58<br>50           | 30<br>25             | 84<br>58             | 57<br>42             | 19                   | 52<br>42             | 23                   | 21                   | 30<br>24             | 9                   | 10                   | =             | 39<br>31             | 26<br>18         | 27                   | 28                   | 40<br>36             | 45<br>41             | 23                   | 28                         | 19                         | 13                   | 21<br>16             | 15<br>12             |
|        | 21時<br>22時                                           | 23<br>20                   | 59<br>34                   | 37<br>36           | 27<br>26             | 48<br>40             | 41                   | 27<br>25             | 31                   | 10<br>16             | 20<br>17             | 17                   | 8                   | 5                    | $\leq$        | 29<br>26             | 13               | 20<br>17             | 11                   | 27<br>22             | 36<br>32             | 19                   | 24                         | 13<br>10                   | 9                    | 11                   | 11<br>10             |
|        | 23時                                                  | 17                         | 30                         | 32                 | 26                   | 34                   | 32                   | 16                   | 2                    | 16                   | 14                   | 13                   | 5                   | 1                    | $\leq$        | 27                   | 12               | 17                   | 7                    | 20                   | 26                   | 16                   | 18                         | 4                          | 7                    | 6                    | 9                    |
|        | 24時<br>1時                                            | 14<br>11                   | 32<br>33                   | 27<br>30           | 29<br>22             | 29<br>10             | 30<br>29             | 17<br>20             | 1                    | 14                   | 14<br>12             | 12<br>9              | 2                   | 3                    | $\leq$        | 17<br>20             | 6<br>4           | 17<br>20             | 6<br>3               | 21<br>22             | 19<br>10             | 18<br>18             | 17<br>16                   | -                          | - '                  | -                    | 7                    |
|        | 2時                                                   | 11 22                      | 30                         | 32<br>29           | 21                   | 14                   | 28                   | 15                   | 1                    | 6                    | 12                   | 3                    | 10                  | 5                    | $\leq$        | 19<br>23             | 3                | 15<br>15             | 2                    | 22<br>19             | 12<br>12             | 17                   | 12                         | 1                          | . 5<br>7             | 3                    | 7                    |
|        | 4時<br>5時                                             | 24                         | 29<br>25                   | 27                 | 14                   | 18                   | 17                   | 12                   | 1                    | 9                    | 12                   | 4                    | 7 8                 | 2                    | $\leq$        | 34<br>15             | 17               | 14                   | 8                    | 17                   | 9                    | 17                   | 9                          | 1                          | 5                    | 2                    | 7                    |
|        | 6時                                                   | 22<br>22                   | 21                         | 23<br>22           | 16                   | 17                   | 13                   | 10                   | 5                    | 10                   | 11                   | 4                    | 6                   | 3                    | $\leq$        | 12                   | 14               | 12<br>12             | 13                   | 11                   | 6                    | 14                   | 8                          | 3                          | 3                    | 2                    | 6                    |
|        | 7時<br>8時                                             | 27<br>44                   | 21                         | 27<br>38           | 18<br>24             | 20<br>27             | 23                   | 14                   | 14<br>21             | 12<br>16             | 12                   | 14                   | 10                  | 5                    | =             | 20<br>28             | 16<br>27         | 12<br>20             | 12<br>19             | 17<br>33             | 9<br>18              | 16                   | 11                         | - 6<br>8                   | - 4                  | 3                    | 6<br>7               |
|        | 9時                                                   | 53<br>60                   | 39                         | 47                 | 36<br>50             | 42                   | 52<br>68             | 33                   | 36<br>49             | 28                   | 19                   | 22                   | 11                  | 6                    | =             | 45<br>65             | 45               | 34<br>55             | 32<br>52             | 51<br>70             | 26                   | 31                   | 21                         | 9                          | 8                    | 6                    | 7                    |
|        | 11時                                                  | 67                         | 40                         | 70                 | 60                   | 66                   | 73                   | 62                   | 62                   | 50                   | 24                   | 77                   | 18                  | 12                   | $\leq$        | 80                   | 49               | 35                   | 54                   | 66                   | 41                   | 41                   | 24                         | 16                         | 14                   | 12                   | 15                   |
| 8月3日   | 12時                                                  | 66<br>77                   | 46<br>53                   | 79<br>80           | 70<br>71             | 71<br>82             | 80<br>86             | 65<br>53             | 79<br>98             | 58<br>26             | 22<br>20             | 101<br>99            | 17                  | 14                   | $\leq$        | 72<br>42             | 29<br>22         | 25<br>21             | 38<br>28             | 47<br>30             | 31<br>30             | 39                   | 24                         | 20<br>28                   | 15                   | 13                   | 18<br>14             |
|        | 14時<br>15時                                           | 82<br>85                   | 54<br>53                   | 78<br>54           | 46<br>27             | 87<br>103            | 72<br>46             | 34<br>30             | 120<br>62            | 23<br>18             | 14<br>16             | 47<br>24             | 15<br>14            | 16<br>16             | =             | 31<br>21             | 18               | 19<br>18             | 19                   | 24<br>20             | 24<br>26             | 41                   | 23<br>24                   | 24<br>17                   | 14                   | 15<br>21             | 13<br>12             |
|        | 16時                                                  | 44<br>32                   | 53<br>53                   | 40                 | 24                   | 94                   | 66                   | 16                   | 40                   | 16                   | 16                   | 19                   | 13                  | 15                   |               | 24                   | 19               | 16                   | 18                   | 25<br>30             | 27                   | 35                   | 23                         | 17                         | 14                   | 19                   | 12                   |
|        | 17時                                                  | 19                         | 49                         | 42                 | 24                   | 60                   | 71                   | 15                   | 28                   | 8                    | 12                   | 13                   | 9                   | 7                    | $\leq$        | 29                   | 13               | 13                   | 13                   | 26                   | 27                   | 38                   | 21<br>25                   | 13                         | 18                   | 17                   | 13                   |
|        | 19時                                                  | 13<br>8                    | 41                         | 33<br>28           | 15<br>10             | 57<br>49             | 56<br>36             | 13<br>12             | 19<br>3              | 3                    | 10                   |                      | 6<br>5              |                      | =             | 25<br>13             | 11               | 13<br>10             | 12                   | 18<br>13             | 17<br>16             | 31<br>18             | 23<br>20                   | 11<br>7                    | 17<br>15             | 12                   | 14                   |
|        | 21時                                                  | 5                          | 36<br>23                   | 30<br>20           | 9                    | 39<br>37             | 29<br>29             | 6                    | 5                    | 2                    | 9                    | 4                    | 3                   | 8                    | $\leq$        | 8                    | 7                | 11                   | 6                    | 9                    | 15<br>14             | 15                   | 18<br>17                   | 8                          | 12                   | 6                    | 12<br>11             |
|        | 23時                                                  | 2                          | 23                         | 20                 | 7                    | 30                   | 28                   | 4                    | 3                    | 1                    | 8                    | 4                    | 7                   | 10                   | $\leq$        | 5                    | 5                | 10                   | 7                    | 8                    | 12                   | 12                   | 12                         | 6                          | 8                    | 6                    | 9                    |
|        | 24時<br>1時                                            | 2                          | 24                         | 27<br>26           | 5                    | 24                   | 25<br>25             | 5<br>4               | - 2                  | 1                    | 9                    | 3                    | 8                   | 5                    | =             | 4                    | 3                | 10                   | 4                    | 6<br>4               | 10<br>9              | 10<br>7              | 11                         | - 6                        | - 8                  | - 2                  | 3                    |
|        | 2時                                                   | 2                          | 20<br>18                   | 25<br>26           | 5                    | 15<br>12             | 26<br>20             | 3                    | 6                    | 3                    | 7                    | 3                    | 3                   | 9                    | $\leq$        | 3                    | 3                | 9                    | 6                    | 4                    | 8 7                  | 4                    | 12                         | 1 2                        | 4                    | 1                    | 4                    |
|        | 4時                                                   | 1                          | 13                         | 20                 | 3                    | 9                    | 14                   | 3                    | 0                    | 1                    | 5                    | 2                    | 1                   | 6                    | $\leq$        | 1                    | 2                | 9                    | 5                    | 3                    | 5                    | 3                    | 4                          | 3                          | 3                    | 1                    | 5                    |
|        | 5時<br>6時                                             | 3                          | 12                         | 12<br>13           | 2                    | 6                    | 12                   | 3                    | 1                    | 2                    | 5                    | 3                    | 1                   | 4                    | $\leq$        | 2                    | 2                | 8                    | 4                    | 3                    | 4                    | 3                    | 5                          | 1                          | 2                    | 1                    | 1                    |
|        | 7時<br>8時                                             | 6<br>8                     | 13<br>20                   | 21<br>28           | 5<br>16              | 9                    | 11                   | 6<br>9               | 7                    | 4<br>6               | 7 9                  | 5                    | - 4                 | 6<br>8               | =             | - 3<br>6             | 3<br>6           | 7 9                  |                      | 7                    | - 6<br>7             | 9                    | 8                          | 3                          | 4                    | 2                    | 3                    |
|        | 9時                                                   | 13                         | 34                         | 45                 | 26                   | 28                   | 38                   | 16                   | 16                   | 8                    | 10                   | 9                    | . 8                 | 9                    | $\leq$        | 11                   | 9                | 11                   | 9                    | 11                   | 9                    | 13                   | 13                         | 5                          | 6                    | 7                    | 4                    |
|        | 10時<br>11時                                           | 18<br>29                   | 41<br>49                   | 55<br>62           | - 30                 | 41<br>61             | 53<br>49             | 26<br>47             | 28<br>34             | 11                   | 11                   | 11                   | 12                  | 11                   | $\leq$        | 16<br>18             | 10               | 14<br>15             | 12                   | 13<br>14             | 17<br>22             | 20<br>30             | 19<br>25                   | 8                          | 8                    | 10<br>9              | 9                    |
| 8月4日   | 12時                                                  | 39<br>31                   | 61<br>65                   | 58<br>50           | 38<br>40             | 56<br>57             | 57<br>48             | 65<br>65             | 33<br>36             | 14                   | 11                   | 17                   | 12                  | 12                   | =             | 20<br>19             | 12               | 15<br>15             | 14                   | 17                   | 29<br>29             | 37                   | 27<br>32                   | 12                         | 9                    | 12                   | 9                    |
|        | 14時<br>15時                                           | 29<br>29                   | 74<br>67                   | 79<br>74           | 33<br>51             | 54<br>42             | - 27                 | 75<br>75             | 32<br>21             | 13                   | 14                   | 15<br>15             | 12                  | 16<br>16             | $\leq$        | 15<br>17             | 10               | 14                   | 12                   | 14<br>15             | 17<br>17             | 40<br>29             | 28<br>26                   | 17                         | 10                   | 15<br>16             | 10                   |
|        | 16時                                                  | 23                         | 64                         | 70                 | 65                   | 34                   | 29                   | 72                   | 21                   | 12                   | 15                   | 12                   | 11                  | 16                   | $\leq$        | 19                   | 16               | 17                   | 14                   | 18                   | 16                   | 29                   | 23                         | 15                         | 12                   | 12                   | 14                   |
|        | 17時<br>18時                                           | 19<br>23                   | 53<br>53                   | 70<br>65           | 57<br>62             | 34<br>35             | 31<br>48             | 75<br>60             | 25<br>24             | 10                   | 13                   | 13                   | 7                   | 13                   | $\leq$        | 19<br>15             | 18               | 18<br>17             | 16<br>14             | 18<br>15             | 14                   | 23<br>19             | 20                         | 14                         | 12                   | 10<br>7              | 16<br>14             |
|        | 19時                                                  | 13                         | 53<br>50                   | 40<br>13           | 37<br>17             | 24<br>16             | 42                   | 34<br>20             | 17<br>10             | 4                    | 12                   | 9                    | 3                   | 10                   | /             | 10                   | 8                | 13<br>12             | 9                    | 12<br>10             | 12                   | 16                   | 17                         | 6                          | 8                    | 6                    | 11                   |
|        | 21時                                                  | 3                          | 39                         | 16                 | 10                   | 11                   | 20                   | 22                   | 7                    | 5                    | 11                   | 6                    | 6                   | 11                   | $\leq$        | 6                    | 5                | 11                   | 8                    | 7                    | 11                   | 10                   | 15                         | 6                          | 4                    | 1                    | 9                    |
|        | 23時                                                  | 4                          | 30                         | 14                 | 9                    | 7                    | 20                   | 16                   | 6                    | 6                    | 10<br>9              | 8                    | 7                   | 10                   | $\leq$        | 6                    | 5                | 9                    | 6                    | 8                    | 6                    | 8                    | 14                         | 3                          | 2                    | 1                    | 2                    |
|        | 24時<br>1時                                            | 3                          | 29<br>29                   | 8                  | 7                    | 7                    | 21<br>18             | 10<br>10             | 5<br>3               | 4                    | 8                    | 8                    | 5<br>4              | 6                    | $\overline{}$ | 6                    | 4                | 9<br>10              | 6<br>8               | 8                    | - 6                  | - 6                  | 12                         | - 2                        | - 3                  | - 1                  | 1 0                  |
|        | 2時                                                   | 3                          | 31                         | 9                  | 3                    | 5                    | 18                   | 8                    | 2                    | 2                    | 7                    | - 5                  | - 2                 | 6                    | =             | 7                    | 4                | 9                    | 6                    | 8 7                  | 5                    | 2                    | 9                          | 1                          | 4                    | 1                    | 1                    |
|        | 4時                                                   | 3                          | 28                         | 5                  | 2                    | 5                    | 7                    | 6                    | 4                    | 2                    | 5                    | 5                    | 1                   | 15                   | $\leq$        | 5                    | 3                | 7                    | 5                    | 4                    | 3                    | 1                    | 7                          | 1                          | 3                    | 1                    | 1                    |
|        | 5時<br>6時                                             | 3                          | 23<br>16                   | 4                  | 2                    | 7                    | 7                    | 4                    | 2                    | 2                    | 5                    | 4                    | 1                   | 14                   | $\leq$        | 3                    | 2                | 6                    | 4                    | 3                    | 3                    | 2                    | 6                          | 1                          | 2                    | 2                    | 2                    |
|        | 7時<br>8時                                             | 5<br>7                     | 14                         | 9                  | 5<br>11              | 12                   | 10                   | 7<br>8               | 5<br>7               | 4<br>6               | 5<br>6               | 5<br>6               | 3<br>4              | 7<br>10              | =             | 6                    | - 4              | 8                    |                      | - 6<br>7             | 5<br>8               | - 4                  | 11                         | 2<br>4                     | 3<br>5               | 2<br>4               | 3<br>5               |
|        | 9時                                                   | 10<br>14                   | 21<br>32                   | 23                 | 22                   | 20                   | 22<br>32             | 18<br>41             | 11                   | 7                    | 8                    | 8                    | 6                   | 14                   | $\leq$        | 13                   | 7                | 10                   | 10                   | 9                    | 12<br>17             | 16                   | 15                         |                            | 7                    | 5                    | 7                    |
|        | 11時                                                  | 21                         | 39                         | 45                 | 39                   | 39                   | 36                   | 60                   | 27                   | 9                    | 9                    | 12                   |                     | 19                   |               | 16                   | 11               | 12                   |                      |                      | 23                   | 32                   | 24                         | 8                          | 10                   | 12                   | 9                    |
| 8月5日   | 12時<br>13時                                           | 26<br>28                   | 48<br>54                   | 56                 | 43<br>43             | 42                   | 40<br>40             | 76<br>86             | 31<br>33             | 10<br>12             | 13                   | 12<br>13             | 9<br>14<br>13       | 20<br>27             | $\leq$        | 20<br>22             | 13<br>16         | 12<br>15<br>17       | - 16                 | -<br>18              | 30<br>27             | 33<br>34<br>37       | 25<br>22                   | 15                         | 12                   | 13                   | 12<br>13<br>14       |
|        | 14時                                                  | 33<br>35                   | 50<br>41                   |                    | 46<br>46             | 47                   | 40<br>56             | 82<br>54             | 35<br>34             | 15<br>13             | 15<br>15             | 17<br>17             | 13<br>13            | 24<br>25             | $\leq$        | 23<br>24             | 18               | 17<br>17             | 19<br>17             | 19<br>20             | 26<br>22             | 37<br>29             | 22<br>20                   | 16                         | 15<br>15             | 14                   | 14<br>13             |
|        | 16時                                                  | 28                         | 38                         | 41                 | 47                   | 48                   | 60                   | 60                   | 36<br>31             | 11                   | 14                   | 16                   | 11                  | 23                   | $\leq$        | 22                   | 18               | 16                   | 16                   | 20                   | 17                   | 32                   | 21                         | 16                         | 17                   | 16                   | 14                   |
|        | 18時                                                  | 16                         | 35<br>32                   | 16                 | 22                   |                      | 46<br>27             | 70                   | 25                   | 10                   | 13<br>13<br>14       | 10                   | 13<br>13<br>12      | 18                   | $\leq$        | 17                   | 16               |                      | 15                   | 19                   | 15                   | 22                   | 23                         | 15                         | 19                   | 15                   | 17                   |
|        | 19時                                                  | 11<br>8                    | 22<br>16                   |                    | 14<br>10             | 17                   | 20<br>17             | 48<br>32             | 18<br>12             | 6<br>5               | 14                   |                      | 12<br>9             | 17<br>16             | =             | 14<br>9              | 12<br>9          | 12                   | 7                    | 14<br>11             | 14<br>11             | 17                   | 21                         |                            | 18                   | 13<br>12             | 16<br>16             |
|        | 21時<br>22時                                           | 7                          | 10                         | 9                  | 9                    | 13                   | 26<br>27             | 30<br>23             | 9                    | 6                    | 15<br>15             | 6                    | 7                   |                      | =             | 7                    | 8                | 13<br>14             |                      | 10                   | 10                   | 9                    | 11                         | 11                         | 16<br>15             | 10                   | 16<br>14             |
|        | 23時                                                  | 8                          | 7                          |                    | 6                    | 9                    | 24                   | 25                   | 6                    | 5                    | 15                   | 10                   | 10                  | 19                   | $\leq$        | 7                    | 8                | 14                   | 11                   | 8                    | 9                    | 6                    | 10                         | 8                          | 12                   | 3                    | 12                   |
|        | 24時<br>1時                                            | 7                          | 8                          |                    | - 4                  | 8<br>6               | 21<br>17             |                      | 6<br>5               | 6                    | 15<br>16             | 10                   | 8                   |                      | $\leq$        | 7                    | 7                | 15<br>15             | 10                   |                      | 9<br>7               | 4                    | 10<br>10                   |                            | - 11                 | - 4                  | 12<br>11             |
|        | 2時                                                   | 6<br>5                     |                            |                    | 2                    | 5                    | 10                   | 13                   | 5<br>5               | - 6<br>- 5           | 15<br>16             | 9                    | 11<br>13            | 18                   | =             | 7                    | 6                | 15<br>16             |                      | 8 7                  | 6                    | 4                    | 10                         | 12                         | 11                   |                      | 10<br>11             |
|        | 4時<br>5時                                             | 5                          | 7                          | 2                  | 3                    | 5                    | 6                    | 4                    | 5                    | 9                    | 18                   | 7                    | . 11                | 17                   | =             | 6                    | 7                | 15                   | 8                    | 7                    | 5                    | 2                    | 7                          | 2                          | 12                   | 1                    | 11                   |
|        | 6時                                                   | 7                          | 19                         | 2                  | 3                    | 6                    | 5                    | 6                    | 6                    | 5                    | 16                   | 8                    | 10                  | 14                   | $\leq$        | 5                    | 3                | 13                   | 9                    | 4                    | 5                    | 2                    | 5                          | 2                          | 11                   | 3                    | 11                   |
|        | 7時<br>8時                                             | 10<br>11                   | 24<br>26                   | 17                 | 13                   | 7<br>12              | 10<br>17             | 9<br>15              | 7<br>10              | 11                   | 15<br>17             | 9<br>12              | 8<br>11             | 18                   | =             | 6<br>9               | 5<br>9           | 13<br>14             |                      | 9                    | 8                    | 10                   |                            |                            | 11<br>13             | 11                   | 11<br>13             |
|        | 9時<br>10時                                            | 14<br>20                   | 29<br>29                   | 31                 | 23<br>34             | 20                   | 29<br>46             | 21<br>37             | 16<br>24             | 15<br>18             | 20<br>20             | 15<br>18             | 15<br>19            |                      | =             | 14<br>22             | 11<br>14         | 15<br>18             | 14                   | 13<br>19             | 13                   | 15<br>22             | 17                         |                            | 15<br>18             | 14                   | 14<br>14             |
|        | 11時                                                  | 28                         | 29                         | 49                 | 42                   | 57                   | 54                   | 54<br>67             | 38                   | 20                   | 20                   | 22                   | 22                  | 26                   |               | 27                   | 17               | 20                   | 19                   | 21                   | 28                   | 29                   |                            | 22                         | 20                   | 20                   | 18                   |
|        | 12時                                                  | 39<br>48                   | 31<br>32                   | 77                 | 64<br>70             | 57                   | 60<br>64             | 66                   | 46<br>48             | 21<br>20             | 19<br>18             | 24                   | 21                  | 29<br>28             | =             | 32<br>35             | 20<br>24         | 21                   | 23                   | 28                   |                      | 39                   | 32                         |                            | 22                   | 29                   | 21                   |
| 8月6日   |                                                      | 47<br>39                   | 30<br>29                   | 62                 | 79<br>66             | 58                   | 64<br>63             | 63<br>70             |                      | 18<br>18             | 17<br>18             | 22<br>26             | 19<br>20            | 30<br>31             | =             | 33<br>32             | - 23             | 22<br>21             | 22<br>20             | 29<br>29             | 32                   | 37<br>39             | 31                         | 25                         | 25<br>23             | 29                   | 21                   |
| 8月6日   | 14時                                                  |                            | 29                         |                    | 31                   | 58                   | 61                   | 69                   | 48                   | 19                   | 17                   | 24                   | 18                  | 27                   |               | 29                   | 21               | 20                   | 18                   | 27                   | 28                   | 37                   | 26                         | 24                         | 24                   | 26                   | 21<br>21<br>20<br>21 |
| 8月6日   | 14時<br>15時<br>16時                                    | 32                         |                            |                    |                      |                      |                      |                      | ^-                   |                      |                      |                      |                     |                      |               |                      |                  |                      |                      |                      |                      |                      |                            |                            |                      |                      |                      |
| 8月6日   | 14時<br>15時<br>16時<br>17時<br>18時                      | 32<br>25<br>20             | 29<br>23                   |                    | 43<br>42             |                      | 44<br>32             | 69<br>63             | 37<br>29             | 16<br>15             | 17                   | 11                   | 16                  | 26<br>24             | $\leq$        | 26<br>23             | 17               | 18                   | 16<br>14             | 24<br>21             | 28<br>26             | 35<br>32             | 30<br>30                   | 19                         | 24<br>21             |                      | 19                   |
| 8月6日   | 14時<br>15時<br>16時<br>17時<br>18時<br>19時               | 32<br>25                   | 29<br>23<br>25             |                    | 42<br>40             | 38<br>29             |                      | 63<br>49             |                      |                      | 17<br>16             | 11<br>10             | 16<br>9             | 24<br>22             |               | 23<br>18             | 17<br>16         | 18<br>16             | 14<br>12             | 21<br>18             | 26<br>22             | 32<br>28             | 30<br>31                   | 19                         | 21<br>19             | 22<br>19             | 19                   |
| 8月6日   | 14時<br>15時<br>16時<br>17時<br>18時<br>19時<br>20時<br>21時 | 32<br>25<br>20<br>15<br>11 | 29<br>23<br>25<br>28<br>25 | -<br>-<br>39<br>36 | 42<br>40<br>28<br>24 | 38<br>29<br>21<br>18 | 32<br>22<br>17<br>12 | 63<br>49<br>40<br>31 | 29<br>21<br>16<br>14 | 15<br>15<br>15<br>15 | 17<br>16<br>16<br>16 | 11<br>10<br>12<br>11 | 16<br>9<br>12<br>12 | 24<br>22<br>21<br>19 |               | 23<br>18<br>14<br>14 | 17<br>16<br>13   | 18<br>16<br>17<br>18 | 14<br>12<br>11<br>12 | 21<br>18<br>15<br>14 | 26<br>22<br>18<br>17 | 32<br>28<br>23<br>18 | 30<br>31<br>28<br>24       | 19<br>16<br>16             | 21<br>19<br>17<br>19 | 22<br>19<br>18<br>14 | 19<br>20<br>19<br>18 |
| 8月6日   | 14時<br>15時<br>16時<br>17時<br>18時<br>19時<br>20時        | 32<br>25<br>20<br>15       | 29<br>23<br>25<br>28       | -<br>-<br>39<br>36 | 42<br>40<br>28       | 38<br>29<br>21       | 32<br>22<br>17       | 63<br>49<br>40       | 29<br>21<br>16       | 15<br>15<br>15       | 17<br>16<br>16       | 11<br>10<br>12       | 16<br>9<br>12       | 24<br>22<br>21       |               | 23<br>18<br>14       | 17<br>16<br>13   | 18<br>16<br>17       | 14<br>12<br>11       | 21<br>18<br>15       | 26<br>22<br>18       | 32<br>28<br>23       | 30<br>31<br>28<br>24<br>19 | 19<br>16<br>16<br>16<br>13 | 21<br>19<br>17       | 22<br>19<br>18<br>14 | 19<br>20<br>19       |

# 4 成分分析測定結果

表4-1-1 7月23日から7月24日まで

(PM2.5,炭素成分,イオン成分: μg/m³ 無機成分:ng/m³)

| 衣4-1- |                              |          | 7月24   |              |          |         |         |         |         |         |         |         |         |          |        |        |         |        |         | ( PM2.5 |          |          | 「ン成分:   |         |         | 分:ng/m  |           |
|-------|------------------------------|----------|--------|--------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|----------|--------|--------|---------|--------|---------|---------|----------|----------|---------|---------|---------|---------|-----------|
| 自治    | 体名                           | 茨城県      | 栃木県    | 群馬県          | 群馬県      | 埼玉県     | 埼玉県     | 埼玉県     | さいたま市   | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市      | 東京都    | 東京都    | 神奈川県    | 横浜市    | 川崎市     | 相模原市    | 山梨県      | 山梨県      | 長野県     | 静岡県     | 静岡県     | 静岡市     | 浜松市       |
| 調査    | 地点名                          | 土浦       | 真岡     | 前橋           | 富岡       | 鴻巣      | 田剛      | 秩父      | 城南      | 市原      | 勝浦      | 佐倉      | 富津      | 千葉       | 綾瀬     | 多摩     | 大和      | 横浜     | 川崎      | 相模原     | 甲府       | 東山梨      | 長野      | 富士      | 湖西      | 静岡      | 浜松        |
| 基本事項  | PM2.5濃度                      | 33.3     | 35.7   | 28.4         | 29       | 42.7    | 44.4    | 37.5    | 32.1    | 31.6    | 23.4    | 30.7    | 25.7    | 28.9     | 43.6   | 35.1   | 38.2    | 32.1   | 34.2    | 40      | -        | -        | 29      | 27.7    | 23.6    | 37.2    | 21.6      |
| イオン成分 | CI-                          | 0.027    | <0.048 | < 0.055      | < 0.055  | < 0.054 | < 0.054 | < 0.054 | 0.012   | < 0.027 | < 0.027 | < 0.027 | <0.027  | < 0.0045 | < 0.07 | < 0.07 | < 0.058 | 0.02   | 0.081   | < 0.02  | < 0.0022 | < 0.0022 | 0.016   | < 0.014 | < 0.014 | 0.13    | < 0.00062 |
|       | NO3-                         | 1.3      | 0.51   | 0.41         | 0.15     | 2.3     | 0.19    | 0.19    | 0.66    | 0.13    | 0.03    | 0.066   | 0.043   | 0.077    | 1.1    | 0.5    | 0.55    | 0.21   | 0.67    | 0.39    | 0.16     | 0.16     | 0.16    | 0.06    | 0.068   | <0.1    | < 0.05    |
|       | SO42-                        | 12       | 15     | 7            | 8.8      | 16      | 15      | 12      | 13      | 13      | 6.1     | 7.1     | 8.3     | 11       | 14     | 15     | 15      | 13     | 15      | 14      | 13       | 11       | 14      | 12      | 12      | 12      | 9.5       |
|       |                              | 0.078    |        | <0.067       | <0.067   | 0.095   | 0.071   | 0.036   | 0.13    | 0.16    | 0.0091  | 0.13    | 0.04    | 0.14     | 0.1    | 0.27   |         | 0.28   | 0.22    | 0.09    | <0.020   | <0.020   | 0.066   | 0.31    | 0.15    | 0.19    |           |
|       | Na⁺                          |          |        |              |          |         |         |         |         |         | 0.0091  |         |         |          |        |        | 0.24    |        |         |         |          |          |         | 0.31    |         |         | 0.063     |
|       | NH <sub>4</sub> <sup>+</sup> | 3.5      | 5.6    | 2.7          | 2.9      | 7.2     | 5.6     | 4.6     | 4.7     | 4.4     | 2       | 2.6     | 2.4     | 4.2      | 5.8    | 5.6    | 6.1     | 4.7    | 5.2     | 5.3     | 4.4      | 3.8      | 5.1     | 4       | 4.3     | 3.7     | 3         |
|       | K <sup>+</sup>               | 0.3      | 0.18   | 0.11         | 0.13     | 0.17    | 0.16    | 0.19    | 0.2     | 0.075   | < 0.01  | 0.11    | 0.028   | 0.036    | 0.2    | 0.17   | 0.16    | 0.4    | 0.17    | 0.35    | 0.49     | < 0.24   | 0.042   | 0.058   | 0.14    | 0.17    | 0.067     |
|       | Ma <sup>2+</sup>             | 0.01     | 0.016  | < 0.042      | <0.042   | 0.019   | 0.0073  | 0.0064  | 0.024   | 0.03    | 0.0065  | 0.013   | 0.017   | 0.032    | <0.005 | 0.017  | <0.087  | 0.06   | 0.038   | 0.02    | <0.15    | <0.15    | <0.0069 | 0.036   | 0.024   | 0.011   | 0.0085    |
|       | - 24                         |          |        |              |          |         |         |         |         |         |         |         |         |          |        |        |         |        |         |         |          |          |         |         |         |         |           |
|       | Car                          | 0.026    | 0.064  | <0.061       | <0.061   | 0.031   | 0.027   | 0.04    | 0.11    | 0.11    | 0.0091  | 0.05    | 0.21    | 0.061    | 0.06   | 0.09   | <0.28   | 0.2    | 0.076   | <0.1    | <0.16    | <0.16    | <0.064  | <0.11   | 0.12    | 0.049   | <0.04     |
| 無機成分  | Na                           | -        | 170    | 63           | 51       | -       | -       | -       | 140     | 160     | 170     | 120     | 140     | 170      | 140    | 390    | 180     | 180    | 250     | 120     | 77       | 96       | 53      | 280     | 120     | 210     | 84        |
|       | Al                           | 32       | 50     | 110          | 66       | -       | -       | -       | <240    | 69      | 14      | 49      | 42      | 17       | 30     | 30     | 67      | 170    | 35      | 80      | <18      | 25       | 54      | 28      | 14      | 22      | 32        |
|       | Si                           | -        | -      | -            | -        | -       | -       | -       | 160     | 75      | 48      | 72      | 220     | 22       | 120    | 140    | -       | 200    | -       | 120     | 28       | 37       | -       | 70      | 90      | 38      |           |
|       | K                            | -        | 120    | 100          | 100      | 200     | 210     | 160     | 200     | 76      | 48      | 100     | 43      | 110      | 180    | 200    | 130     | 290    | 160     | 150     | 83       | 130      | 85      | 50      | 80      | 140     | 47        |
|       | Ca                           | -        | 140    | 99           | 98       | 12      | 1.6     | 7.7     | <460    | 74      | <25     | 53      | 98      | 36       | 40     | 80     | 13      | 180    | 71      | 63      | <49      | <110     | 42      | 52      | 15      | 72      | 43        |
|       | Sc                           | < 0.010  | <0.71  | <0.011       | <0.011   | < 0.044 | <0.044  | <0.044  | < 0.33  | < 0.073 | < 0.073 | < 0.073 | <0.073  | < 0.91   | 0.06   | 0.07   | <0.79   | <0.11  | 0.024   | < 0.07  | 0.027    | < 0.017  | 0.013   | <0.2    | <0.2    | < 0.019 | <1.1      |
|       | Ti                           | 2.9      | <9.6   |              | -        | 2.1     | 2       | 2.1     | 9.1     | 5       | <1.7    | 5.5     | 3.9     | <4.2     | 7      | 5      | 12      | 12     | 5.2     | 9.4     | 1.3      | 1.9      | 11      | 4.9     | 4       | 1.4     | 5.2       |
|       | V                            | 15       | 6.1    | 3.3          | 3.2      | 7.8     | 4.2     | 6.8     | 20      | 20      | 13      | 9.2     | 24      | 10       | 10     | 35     | 11      |        | 34      | 8.6     | 6.7      | 7.2      | 2.2     | 25      | 7.8     | 15      | 6.9       |
|       | Cr                           | 1.7      |        | 2.7          | 1.5      | 0.68    | 0.58    | 0.91    | 2.2     | 1.3     | <1.1    | 1.3     | <1.1    | 3.2      | 3      | 1      | 3.1     |        | 3.8     | 1.7     | <2.5     | <1.4     | 0.43    | 0.8     | 4.7     | <1.5    | 0.98      |
|       | Mn                           | 11       | 4.8    | 6.3          | 7.3      | 4.5     | 2.4     | 5.7     | 9.3     | 6.3     | 1.6     | 5       | 2.8     | 5.2      | 12     | 13     | 11      |        | 19      | 9.6     | 3.6      | 4.1      | 5.9     | 3.4     | 7.1     | 7 7     | 5.5       |
|       | Fe                           | 180      | 100    | 120          | 94       | 4.5     | 64      | 58      | 180     | 130     | 29      | 120     | 66      | 130      | 150    | 210    | 220     |        | 560     | 160     | 39       | 45       | 74      | 58      | 98      | 61      | 43        |
|       |                              |          |        | 0.08         |          | 0.037   | < 0.027 |         | 0.068   | 0.15    | < 0.05  |         | 0.056   |          | <0.08  | 0.13   |         |        | 0.16    |         | 0.056    | 0.047    | 74      | 0.05    |         | 0.075   |           |
|       | Co                           | 0.086    | <0.12  |              | 0.08     |         |         | 0.043   |         |         |         | 0.053   | 0.056   | <0.14    |        |        | 0.1     |        |         | 0.07    | 0.056    |          | - 0.04  |         | <0.2    |         | 0.054     |
|       | Ni                           | 5.4      | 8.6    | 2.1          | 1.5      | 5.6     | 1.2     | 2.5     | 7.1     | 8.1     | 3.9     | 3.1     | 5       | 3.6      | 3.6    | 12     | 3.7     |        | 12      | 3.3     | 2        | 2.5      | 0.91    | 9.1     | 3.4     | 4.8     | 2.7       |
|       | Cu                           | 6.2      | <2.3   | 4.4          | 3.6      | 3.4     | 5.7     | 3.6     | 6.7     | 2.8     | <1.4    | 3.4     | <1.4    | 2.8      | 9.4    | 6.6    | <11     |        | 9.4     | 7.8     | 2.7      | 4.8      | 3.1     | 2.8     | 4.5     | 6.5     | 2.4       |
|       | Zn                           | 56       | 31     | 34           | 34       | 42      | 19      | 31      | 59      | 270     | 11      | 25      | 18      | 27       | 60     | 71     | 39      |        | 56      | 42      | 21       | <41      | 24      | 19      | 46      | 39      | 27        |
|       | As                           | 0.95     | 0.82   | 0.75         | 1        | 0.54    | 0.58    | 0.84    | 1       | 0.76    | 0.46    | 0.69    | 0.39    | 0.83     | 1.4    | 1.3    | 1       |        | 1.6     | 1.2     | 0.67     | 1        | 0.95    | <0.7    | <0.7    | 1.4     |           |
|       | Se                           | 0.23     | 1.8    | 1.1          | 1.9      | 1.4     | 1.2     | 1.1     | 1.4     | 1.1     | <1      | <1      | <1      | 1.9      | 2      | 2      | 3.2     |        | 1.8     | 4       | 0.89     | 1        | 1.1     | 0.5     | <1      | 1.5     |           |
|       | Rb                           | -        | 0.39   | 0.29         | 0.31     | 0.33    | 0.19    | 0.51    | 1.4     | 0.25    | 0.1     | 0.27    | 0.12    | 0.32     | 0.4    | 0.6    | < 0.29  | <1.1   | 0.37    | 0.29    | 0.19     | 0.27     | 0.34    | 0.09    | <0.1    | 0.32    | 0.17      |
|       | Mo                           | 1.8      | <2.3   | 1            | 1.1      | 1       | 1.5     | 1.2     | 2       | 0.94    | 0.29    | 0.65    | 0.28    | 2.2      | 1.2    | 5      | 1.3     | <1.3   | 4.1     | 1.2     | 0.51     | 0.56     | 0.48    | <0.6    | 0.7     | 1.2     | 1.5       |
|       | Sb                           | 1.6      | 1.7    | -            | -        | 2.2     | 4.4     | 1.8     | 3.4     | 1.1     | 0.32    | 0.83    | 0.29    | 0.87     | 2      | 1.4    | 2.2     | <6.3   | 1.8     | 2.1     | 1.4      | 1.9      | 5.8     | 0.9     | 1.3     | 1.2     | 0.95      |
|       | Cs                           | 0.06     | 0.068  | 0.041        | 0.053    | 0.037   | 0.026   | 0.041   | 0.053   | 0.038   | < 0.02  | 0.034   | < 0.02  | < 0.067  | 0.06   | 0.07   | < 0.13  | <9.1   | 0.068   | < 0.06  | 0.053    | 0.039    | -       | <0.1    | <0.1    | 0.071   | < 0.029   |
|       | Ва                           | 3.3      | 4.1    | 6.2          | 4.2      | 2.4     | 8.2     | 2.4     | 20      | 2.5     | 3.7     | 4       | 2.7     | 2.5      | 12     | 6.6    | 8.2     | 34     | 8.4     | 8.4     | 3        | 4.4      | -       | 3       | 3.6     | 5.2     | 2.5       |
|       | La                           | 0.19     | 0.12   | 0.035        | 0.1      | < 0.043 | < 0.043 | < 0.043 | 0.13    | 0.22    | 0.031   | 0.15    | 0.038   | < 0.39   | 0.17   | 0.27   | < 0.37  | <11    | 0.14    | 0.25    | 0.072    | 0.045    | 0.051   | < 0.07  | < 0.07  | 0.1     | 0.047     |
|       | Ce                           | 0.098    | 0.11   | 0.07         | 0.1      | < 0.023 | < 0.023 | < 0.023 | 0.16    | 0.15    | 0.028   | 0.12    | 0.05    | < 0.34   | 0.3    | 0.3    | < 0.32  | <13    | 0.26    | 0.43    | 0.11     | 0.067    | -       | <0.08   | <0.08   | 0.15    | 0.081     |
|       | Sm                           | < 0.0095 | <0.15  | 0.0035       | 0.002    | < 0.027 | < 0.027 | <0.027  | < 0.013 | <0.021  | < 0.021 | <0.021  | <0.021  | < 0.062  | <0.1   | <0.1   | < 0.56  | <19    | < 0.015 | <0.08   | <0.028   | <0.0022  | -       | <0.2    | <0.2    | 0.013   | < 0.034   |
|       | Hf                           | -        | <0.19  | <0.012       | <0.012   | <0.048  | <0.048  | <0.048  | 0.01    | < 0.059 | < 0.059 | <0.059  | < 0.059 | <0.41    | <0.08  | <0.08  |         | 0.028  | 0.091   | < 0.03  | < 0.059  | 0.0011   |         | <0.2    | <0.2    | 0.0025  | <0.49     |
|       | \M                           | 1.6      | 0.44   | <0.012       | <0.012   | 0.39    | 0.11    | 0.2     | 0.56    | 0.61    | 0.25    | 0.44    | 0.14    | 0.5      | 0.6    | 0.9    | 0.5     | 3.9    | 3.7     | 0.43    | 0.16     | 0.0011   |         | <0.5    | 0.8     | 0.0023  | 0.25      |
|       | Ta                           | 1.0      | <0.23  | <0.0012      | < 0.0031 | <0.045  | <0.045  | < 0.045 | <0.0022 | <0.02   | < 0.02  | <0.02   | <0.02   | <0.30    | <0.07  | < 0.07 | - 0.5   | <0.019 | < 0.014 | <0.022  | < 0.0051 | <0.012   | _       | <0.7    | <0.5    | 0.00033 | <0.63     |
|       |                              | < 0.0074 |        |              |          |         |         |         |         |         |         |         |         |          |        |        | -       |        |         |         |          | <0.0069  | - 1     |         |         |         |           |
|       | Th                           |          | <0.22  | 0.025<br>7.4 | 0.023    | <0.029  | < 0.029 | <0.029  | <0.0082 | <0.016  | <0.016  | <0.016  | <0.016  | <0.21    | < 0.2  | <0.2   |         | <3.4   | <0.014  | <0.07   | 0.026    |          | - 0.0   | <0.1    | < 0.1   | 0.012   | 0.85      |
|       | 70 (Da)                      | 9.5      | 6.8    | 1.4          | 5.9      |         | 5.3     | 6.4     | 12      | 6.4     | 2       | 5.6     | 2.3     | 6.7      | 11     | 13     | 6       | 9.1    | 8.6     | 6.8     | 3.8      | 4.9      | 6.6     | 3       | 7.5     | /       | 4.6       |
|       | その他(Be)                      | -        | <0.18  |              | -        | -       | -       | -       | -       | <0.015  | < 0.015 | <0.015  | <0.015  | -        | -      | -      | -       |        | -       | -       | -        | -        | - 0.45  | -       |         |         |           |
|       | その他(Cd)                      | -        | 0.21   | -            | -        | -       | -       | -       | -       | 0.19    | <0.063  | 0.13    | 0.16    |          |        | -      | -       |        | -       | -       | -        | -        | 0.18    | 0.07    | <0.2    | -       |           |
|       | その他(Sr)                      | -        | -      | -            | -        | -       | -       | -       | -       | -       | -       | -       | -       | -        | -      | -      | -       | -      | -       | -       | -        | -        | -       | -       | -       | -       | -         |
|       | その他(Y)                       | -        | -      | -            | -        | -       | -       | -       | -       | -       | -       | -       | -       | -        | -      | -      | -       | -      | -       | -       | -        | -        | -       | -       | -       | -       | -         |
|       | その他(TI)                      | -        | -      | -            | -        | -       | -       | -       | -       | -       | -       | -       | -       | -        | -      | -      | -       | -      | -       | -       | -        | -        | -       | -       | -       | -       | -         |
| 炭素成分  | OC1                          | 0.14     |        | 0.35         | 0.81     | 0       | 0.27    | 0.31    | 0.1     | 0.15    | 0.081   | 0.056   | 0.091   | <0.10    | <0.4   | <0.4   | 0.32    | 0.34   | 0.16    | 0.94    | < 0.0070 | 0.023    | 0.041   | <0.08   | < 0.04  | 0.045   | < 0.023   |
|       | OC2                          | 1.3      | 1.9    | 1.8          | 2        | 2.8     | 4.5     | 4.3     | 1.9     | 3.6     | 1.1     | 2.3     | 1.9     | 4        | 2      | 1      | 2.5     | 1.8    | 2.3     | 3.4     | 2.1      | 2        | 0.71    | 1.6     | 1.4     | 2       | 1.1       |
|       | OC3                          | 0.54     | 0.81   | 1.3          | 1.2      | 1.1     | 1.8     | 2.1     | 0.96    | 0.99    | 0.65    | 1.2     | 0.73    | 0.67     | 1      | 0.6    | 0.84    | 0.77   | 0.97    | 1.3     | 1.3      | 1.3      | 1       | 0.8     | 0.8     | 1.3     | 0.77      |
|       | OC4                          | 0.56     | 0.42   | 1            | 1        | 1.4     | 2       | 2       | 0.89    | 0.37    | 0.22    | 0.34    | 0.27    | 0.39     | 1      | 0.6    | 0.68    | 0.72   | 0.79    | 1.2     | 0.75     | 0.84     | 0.32    | 0.3     | 0.35    | 0.72    | 0.4       |
|       | Ocpyro                       | 0.86     | 2.8    | 1.5          | 1.9      | 1.7     | 2.5     | 1.9     | 1.7     | 2.1     | 1.1     | 2.1     | 1.3     | 2        | 1.8    | 1.2    | 1.8     | 0.95   | 1.2     | 2       | 2.1      | 2.1      | 1.5     | 1.5     | 1.8     | 1.8     | 0.87      |
|       | EC1                          | 1.8      | 4.2    | 2.2          | 2.5      | 3.4     | 4.1     | 3.7     | 3.2     | 3.2     | 0.82    | 2.4     | 1.1     | 3.2      | 2.7    | 2.1    | 2.8     | 2.5    | 3       | 4.4     | 2.1      | 2.2      | 1.4     | 2.2     | 1.7     | 1.9     |           |
|       | EC2                          | 0.15     | 1.5    | 0.79         | 1        | 0.93    | 1.1     | 0.25    | 1.3     | 0.87    | 0.66    | 0.87    | 0.83    | 0.56     | 0.88   | 0.8    | 1.3     |        | 0.37    | 0.53    | 1.6      | 1.6      | 0.87    | 0.77    | 0.7     | 2.5     | 1.3       |
|       | EC3                          | 0.0025   | 0.076  | 0.055        | 0.07     | 0.045   | 0.085   | 0.20    | 0.068   | 0.067   | 0.075   | 0.075   | 0.085   | < 0.017  | 0.06   | 0.04   | 0.057   | 0.23   | <0.026  | 0.14    | 0.057    | 0.034    | 0.07    | <0.06   | 0.019   | 0.03    |           |
|       | OC                           | 3.4      | 5.9    | 6.000        | 6.9      | 7       | 11      | 11      | 5.6     | 7.2     | 3.2     | 0.013   | 4.3     | 7.1      | 5.8    | 3.4    | 6.1     | 4.6    | 5.4     | 8.8     | 6.2      | 6.3      | 3.6     | 4.2     | 4.4     | 5.9     | 3.1       |
|       | EC                           | 1.1      | 0.9    | 1.5          | 1.7      | 2.7     | 2.8     |         |         | 1.2     | 0.46    | 12      | 0.72    | 1.7      |        | 1.7    | 2.4     | 1.8    | 2.2     |         | 1.7      | 1.7      | 0.93    | 1.5     | 0.62    |         |           |
|       |                              | 1.1      | 3      |              |          | 2.1     | ∠.8     | 2.1     | 2.9     | 2       |         |         |         |          | 1.8    | 1./    |         | 1.8    |         | 3.1     |          |          | 0.93    | 1.5     | 0.62    | 2.6     | 1.3       |
|       | WSOC                         | -        | 9.3    | 3.5          | 5.3      | -       | -       | -       | -       | 4.5     | 3.3     | 3.5     | 3.8     | 3.4      | -      | -      | 5.7     | -      | 4.9     | -       | 4.4      | 5.5      | - 1     | -       | -       | 5.5     |           |

| ₹₹4-1-   | 2 1/727                      | פית חי   | 1/7/20 | п в с    |          |         |          |         |        |         |         |         |         |         |         |         |        |         |         | ( FM2.3 | ,灰条川     | ነን,14     | 1 / 1111 / 11 | μg/m    | 無懱风         | J . Hg/⊞ | . )     |
|----------|------------------------------|----------|--------|----------|----------|---------|----------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|----------|-----------|---------------|---------|-------------|----------|---------|
| 自治       | 体名                           | 茨城県      | 栃木県    | 群馬県      | 群馬県      | 埼玉県     | 埼玉県      | 埼玉県     | さいたま市  | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市     | 東京都     | 東京都     | 神奈川県   | 横浜市     | 川崎市     | 相模原市    | 山梨県      | 山梨県       | 長野県           | 静岡県     | 静岡県         | 静岡市      | 浜松市     |
| 調査       | 地点名                          | 土浦       | 真岡     | 前橋       | 富岡       | 鴻巣      | 日高       | 秩父      | 城南     | 市原      | 勝浦      | 佐倉      | 富津      | 千葉      | 綾瀬      | 多摩      | 大和     | 横浜      | 川崎      | 相模原     | 甲府       | 東山梨       | 長野            | 富士      | 湖西          | 静岡       | 浜松      |
| 基本事項     | PM2.5濃度                      | 28.4     | 25.4   | 13.7     | 11       | 32.5    | 32.1     | 25.4    | 35.9   | 36.1    | 28.2    | 34.8    | 44.2    | 34.9    | 38.8    | 41.4    |        | 38.4    | 36.9    | 35.5    | - 1713   | -         | 11.8          | 37.6    | 10.2        | 33.3     | 11.7    |
| イオン成分    | CI-                          | < 0.013  | <0.048 | 0.09     | <0.055   |         | < 0.054  | < 0.054 | 0.07   | 0.053   | < 0.027 | <0.027  | <0.027  | 0.0063  | < 0.07  | <0.07   |        | 0.02    |         | <0.02   | <0.0022  | <0.0022   |               | < 0.014 | 0.022       | <0.02    | 0.044   |
| 1/1/1000 |                              |          |        |          |          |         |          |         |        |         |         |         |         |         |         |         |        |         |         |         |          |           |               |         |             |          |         |
|          | NO3-                         | 0.079    | 0.17   | 0.12     | <0.08    | 0.62    | 0.087    | 0.096   | 3.5    | 0.26    | 0.034   | 0.74    | 0.54    | 0.79    | 1.5     | 2.4     |        | 0.26    |         | 0.23    | 0.095    | 0.12      |               | 0.21    | 0.079       | <0.1     | 0.054   |
|          | SO42-                        | 9.8      | 9.9    | 3.6      | 3        | 13      | 13       | 8.6     | 10     | 12      | 7.2     | 12      | 11      | 15      | 13      | 13      |        | 15      |         | 14      | 7.3      | 7.8       |               | 4       | 3.7         | 9.8      | 3.8     |
|          | Na <sup>+</sup>              | 0.058    | 0.07   | < 0.067  | < 0.067  | 0.046   | 0.042    | 0.0076  | 0.088  | 0.12    | 0.013   | 0.13    | 0.049   | 0.14    | 0.07    | 0.1     | -      | 0.15    | 0.15    | 0.08    | 0.095    | < 0.020   | 0.025         | 0.49    | 0.16        | 0.066    | 0.13    |
|          | NH <sub>4</sub> <sup>+</sup> | 2.9      | 3.7    | 1.3      | 0.83     | 5.4     | 4.8      | 3       | 4.8    | 4.3     | 2.3     | 4.4     | 3.5     | 5.5     | 5.8     | 6.3     | -      | 5.8     | 5.8     | 5.3     | 2.5      | 2.8       | 1.4           | 5.2     | 1.3         | 3.1      | 1.3     |
|          | 14114                        |          |        |          |          |         |          | 0 0 = 4 |        |         |         |         |         |         |         |         | _      |         |         |         |          |           |               |         |             |          |         |
|          | K⁺                           | 0.22     | 0.12   | 0.07     | 0.039    | 0.078   | 0.11     | 0.054   | 0.15   | 0.1     | 0.026   | 0.15    | 0.074   | 0.25    | 0.13    | 0.16    | -      | 0.2     | 0.21    | 0.23    | 0.3      | <0.24     | < 0.035       | 0.13    | 0.078       | 0.076    | 0.083   |
|          | Mg <sup>2+</sup>             | < 0.0082 | 0.0081 | < 0.042  | < 0.042  | 0.014   | 0.0045   | 0.0024  | 0.011  | 0.018   | 0.007   | 0.022   | 0.019   | 0.053   | < 0.005 | < 0.005 | -      | 0.02    | 0.064   | 0.02    | < 0.15   | < 0.15    | < 0.0069      | 0.038   | 0.018       | 0.018    | 0.011   |
|          | Ca <sup>2+</sup>             | 0.019    | <0.018 | < 0.061  | < 0.061  | 0.015   | 0.026    | 0.027   | 0.054  | 0.079   | 0.014   | 0.05    | 0.27    | 0.098   | 0.03    | 0.03    | -      | 0.15    | 0.087   | <0.1    | <0.16    | <0.16     | < 0.064       | 0.19    | <0.11       | 0.15     | 0.075   |
| 無機成分     | Na                           | -        | 320    | 27       | <5.4     | -       | -        | -       | 84     | 150     | 160     | 110     | 170     | 110     | 100     | 130     |        | 120     | 170     | 100     | 49       |           |               | 250     | 120         | 180      |         |
| 無饿刀刀     | INA                          |          |        |          |          | -       |          |         |        |         |         |         |         |         |         |         |        |         |         |         |          |           |               |         |             |          | 33      |
|          | Al                           | 11       | 61     | 76       | 34       | -       | -        | -       | <250   | 57      | 20      | 39      | 220     | 26      | 18      | 16      |        | 150     | 31      | 65      | <18      |           |               | 56      | 14          | 40       | 32      |
|          | Si                           | -        | -      | -        | -        | -       | -        | -       | 150    | 72      | 22      | 92      | 390     | 36      | 90      | 120     | -      | 160     | -       | 100     | 22       |           | -             | 120     | 100         | 42       | -       |
|          | K                            | -        | 95     | 60       | <11      | 100     | 96       | 140     | 120    | 160     | 94      | 170     | 160     | 160     | 110     | 130     | 120    | 140     | 160     | 110     | 73       | 120       | 52            | 140     | 50          | 130      | 42      |
|          | Ca                           | -        | 170    | 110      | <87      | 4.7     | 2.8      | 8.9     | <460   | 120     | <25     | 46      | 360     | 31      | 30      | 30      | 14     | 130     | 59      | 59      | <49      | <110      | 26            | 78      | 54          | 160      | 150     |
|          | Sc                           | < 0.010  | < 0.71 | < 0.011  | < 0.011  | < 0.044 | < 0.044  | < 0.044 | < 0.33 | < 0.073 | < 0.073 | < 0.073 | < 0.073 | <0.91   | 0.08    | 0.06    | < 0.79 | <0.11   | < 0.023 | < 0.07  | 0.056    | < 0.017   | < 0.0050      | <0.2    | <0.2        | < 0.019  | <1.1    |
|          | Ti                           | 4.2      | 9.7    | - 10.011 | - 10.011 | 1.9     | 10.0 . 1 | 5.6     | 14     | 13      | 2.1     | 10.01.0 | 14      | <4.2    | 5.00    | Δ.σ.σ   |        | 9       |         | 7.5     | 1.4      | 1.9       |               | 6.8     | <2          | 2        | 2.4     |
|          | \/                           | 8.6      | 4.4    | 1.5      | 0.72     | 7.1     | 0.78     | 4.9     | 8      | 14      | 11      | 8.8     | 18      | 9.6     | 9.3     | 10      | 10     | 26      |         | 8.2     | 2.9      |           |               | 24      | 0.7         | 9.2      | 1.8     |
|          | V                            | 8.6      | 1.7    | 1.5      |          |         |          |         |        |         |         |         |         |         |         |         |        |         |         |         |          |           |               |         |             |          |         |
|          | Cr                           |          |        | 1        | 0.6      |         | 0.31     | 0.7     | 2.2    | 6.7     | <1.1    | 1.7     | 2.5     | 1.5     | 2.2     | 2.3     |        | 5.4     |         | 2.8     | <2.5     |           |               | 2.2     | 0.2         | 1.6      | 0.7     |
|          | Mn                           | 6.8      | 4.4    | 3.2      | 2.4      | 4.8     | 1.9      | 4.4     | 8.7    | 16      | 3.6     | 6.9     | 14      | 7.2     | 10      | 9.8     |        | 14      |         | 9.7     | 2.8      | 4.4       |               | 7.7     | 3.4         | 6.3      | 1       |
|          | Fe                           | 120      | 80     | 58       | 36       | 58      | 16       | 94      | 160    | 320     | 63      | 200     | 440     | 150     | 160     | 160     | 370    | 300     | 210     | 200     | 29       | 46        | 41            | 120     | 55          | 67       | 14      |
|          | Co                           | 0.065    | < 0.12 | < 0.06   | < 0.06   | < 0.027 | 0.15     | 0.055   | 0.14   | 0.13    | < 0.05  | 0.067   | 0.13    | < 0.14  | 0.1     | 0.09    | 0.085  | < 0.83  | 0.14    | 0.07    | 0.064    | 0.043     | -             | 0.07    | < 0.2       | 0.061    | < 0.039 |
|          | Ni                           | 3.6      | 4.3    | 0.77     | 0.42     | 4.1     | 0.64     | 2.1     | 3.6    | 7.1     | 3.6     | 3.2     | 6.8     | 3.9     | 3.5     | 3.6     | 4      | 9.8     | 8       | 3.4     | 0.98     | 1.2       | 0.43          | 9.6     | <0.4        | 3        | 0.3     |
|          | Cu                           | 3.8      | 4.4    | <2.4     | <2.4     | 2       | 4        | 4       | q      | 4.6     | <1.4    | 4.5     | 7.3     | 4.5     | 6.1     | 7.6     |        | 6.3     | 6.5     | 5.6     | 2.5      |           |               | 6.8     | 1.3         | 5.2      | 0.68    |
|          | Zn                           | 44       | 37     | 12       | 9.8      |         | 6.1      | 24      | 43     | 85      | 19      | 33      | 65      | 31      | 45      | 59      |        | 41      |         | 39      | 11       |           |               | 37      | 15          | <28      | 5.8     |
|          | Δ11                          | 1.5      |        |          |          |         |          |         | 43     |         |         |         |         |         |         |         |        |         |         |         | 0.71     | 1.1       |               |         |             |          | 0.27    |
|          | AS                           |          | 2.6    | 0.54     | 0.47     |         | 0.22     | 0.65    | 1      | 1.1     | 0.96    | 1.1     | 1.1     | 1.3     | 1.3     | 1.4     |        | <0.8    |         | 1.4     |          |           |               | <0.7    | <0.7        | 1.1      |         |
|          | Se                           | 0.25     | 2.3    | 0.9      | 0.51     | 1       | <0.49    | 0.62    | 1.8    | 2.8     | <1      | <1      | 2.6     | 2.9     | 2       | 2       | 4.9    | 2.2     | 2.4     | 7.7     | 0.58     | 1.1       |               | 1       | <1          | 1.2      | 0.47    |
|          | Rb                           | -        | 0.3    | 0.17     | 0.13     |         | 0.094    | 0.35    | 1.1    | 0.85    | 0.23    | 0.46    | 0.63    | 0.49    | 0.4     | 0.4     |        | <1.1    |         | 0.34    | 0.2      |           |               | 0.36    | <0.1        | 0.27     | 0.13    |
|          | Mo                           | 1.3      | <2.3   | 0.63     | 1.2      | 0.86    | 0.37     | 0.85    | 1.7    | 2.1     | 0.7     | 0.93    | 1.3     | 1       | 1.8     | 1.4     | 2.4    | <1.3    | 3.4     | 1.6     | 0.36     | 0.63      | 0.22          | 1       | <0.6        | 0.78     | < 0.74  |
|          | Sb                           | 1.3      | 1.3    | - 1      | -        | 2.1     | 1.5      | 1.3     | 3.2    | 1.9     | 0.69    | 1.3     | 1.5     | 1.6     | 1.5     | 2.6     | 1.8    | <6.3    | 1.8     | 1.7     | 0.82     | 1.2       | 0.85          | 2.8     | 0.4         | 1.2      | 0.23    |
|          | Cs                           | 0.059    | 0.042  | 0.025    | 0.02     | 0.034   | < 0.017  | 0.041   | 0.063  | 0.17    | 0.036   | 0.079   | 0.11    | 0.094   | 0.08    | 0.06    | <0.13  | <9.1    | 0.097   | 0.07    | 0.066    | 0.047     | -             | <0.1    | <0.1        | 0.042    | < 0.029 |
|          | Ва                           | 2.6      | 2.8    | 1.9      | 1.6      |         | <0.85    | 1.4     | 12     | 3.8     | 2       | 2.6     | 4       | 2.8     | 5.5     | 4.5     |        | <10     |         | 4.7     | 2.2      | 3.8       |               | 6.1     | 2.3         | 3.9      | 2       |
|          | l a                          | 0.13     | 0.11   | 0.034    | 0.014    |         | < 0.043  | < 0.043 | 0.2    | 0.31    | 0.074   | 0.14    | 0.21    | <0.39   | 0.2     | 0.18    |        | <11     |         | 0.26    | 0.063    | 0.051     |               | < 0.07  | <0.07       | 0.07     | <0.025  |
|          | Ce                           | 0.13     | 0.14   | 0.049    | 0.032    | <0.023  | <0.043   | <0.023  | 0.32   | 0.28    | 0.059   | 0.093   | 0.24    | <0.34   | 0.2     | 0.10    |        | <13     | 0.23    | 0.20    | 0.003    | 0.031     |               | <0.07   | <0.08       | 0.099    | 0.012   |
|          |                              |          |        |          |          |         |          |         |        |         |         |         |         |         |         |         |        |         |         |         |          |           |               |         |             |          |         |
|          | Sm                           | <0.0095  | <0.15  | 0.0034   | 0.0018   | <0.027  | < 0.027  | < 0.027 | 0.014  | < 0.021 | < 0.021 | < 0.021 | < 0.021 | < 0.062 | <0.1    | <0.1    | < 0.56 | <19     |         | <0.08   | 0.039    | <0.0022   |               | <0.2    | <0.2        | <0.0083  | < 0.034 |
|          | Hf                           | -        | <0.19  | <0.012   | <0.012   | <0.048  | <0.048   | 0.29    | 0.014  | < 0.059 | < 0.059 | 0.11    | < 0.059 | <0.41   | <0.08   | <0.08   |        | 0.019   | <0.04   | < 0.03  | 0.1      | 0.0013    |               | <0.2    | <0.2        | 0.002    | < 0.49  |
|          | W                            | 0.6      | 0.32   | < 0.012  | < 0.012  | 0.36    | 0.049    | 0.25    | 0.49   | 0.62    | 0.57    | 0.43    | 0.65    | <0.38   | 0.6     | 0.5     | 0.94   | 1.1     | 1.3     | 0.92    | 0.15     | 0.095     | -             | < 0.5   | <0.7        | 0.17     | < 0.054 |
|          | Ta                           | -        | < 0.23 | < 0.0031 | < 0.0031 | < 0.045 | < 0.045  | < 0.045 | 0.0032 | < 0.02  | < 0.02  | < 0.02  | < 0.02  | < 0.30  | < 0.07  | < 0.07  | -      | < 0.019 | 0.014   | < 0.022 | 0.0054   | < 0.012   | -             | < 0.7   | < 0.5       | 0.00044  | < 0.63  |
|          | Th                           | < 0.0074 | < 0.22 | 0.029    | < 0.02   | < 0.029 | < 0.029  | < 0.029 | 0.019  | < 0.016 | < 0.016 | < 0.016 | < 0.016 | < 0.21  | < 0.2   | < 0.2   | -      | <3.4    | < 0.014 | < 0.07  | 0.041    | < 0.00069 | -             | < 0.1   | < 0.1       | < 0.0076 | 0.11    |
|          | Pb                           | 8.5      | 6.9    | 2.9      | 2.2      | 6.4     | 3        | 5.3     | 10     | 15      | 4.4     | 8.4     | 13      | 9       | 10      | 12      | 8.2    | 11      | 9.9     | 8.1     | 3.7      | 6.3       | 4.4           | 8       | 3.2         | 6.3      | 1.1     |
|          | その他(Be)                      | -        | <0.18  | -        | -        | -       |          | -       | - 1    | < 0.015 | < 0.015 | <0.015  | < 0.015 | . 1     | -       | -       |        | -       | -       | -       | -        | -         | -             |         |             | -        | -       |
|          | その他(Cd)                      | _        | 0.35   |          |          | _       |          |         | _      | 0.28    | 0.16    | 0.23    | 0.32    | _       |         | _       | _      | _       | _       | _       | _        | -         | 0.36          | 0.22    | <0.2        | _        |         |
|          |                              |          | 0.00   |          |          | -       |          |         | -      |         | 0.10    |         | 0.52    |         |         |         | _      |         | -       |         |          |           | 0.50          | 0.22    | <b>\0.2</b> |          |         |
|          | その他(Sr)                      | -        |        |          | -        | -       | -        |         | -      | -       | -       | -       | -       |         | -       |         | -      |         | -       | -       | -        | -         | -             |         |             |          |         |
|          | その他(Y)                       | -        | -      | -        |          | -       | -        | -       | -      | -       | -       | -       | -       | -       | -       | -       | -      | -       | -       | -       | -        | -         | -             | -       | -           | -        |         |
|          | その他(TI)                      | -        | -      | -        | -        | -       | -        | -       | -      | -       | -       | -       | -       | -       | -       | -       | -      | -       | -       | -       | -        | -         | -             | -       | -           | -        |         |
| 炭素成分     | OC1                          | 0.12     | <0.028 | < 0.05   | 0.16     | 0       | 0        | 0       | 0.057  | 0.12    | 0.066   | 0.056   | 0.081   | <0.10   | < 0.4   | < 0.4   | -      | 0.62    | <0.08   | 0.28    | < 0.0070 | < 0.021   | < 0.039       | <0.08   | < 0.04      | 0.028    | < 0.023 |
|          | OC2                          | 1.3      | 1.5    | 0.82     | 0.9      | 2.3     | 2.6      | 2.6     | 1.7    | 4       | 1.2     | 2       | 2.6     | 6.3     | 2       | 2       | -      | 1.9     | 2.6     | 2.8     | 2        | 1.8       | 0.51          | 3       | 0.98        | 1.9      | 1       |
|          | OC3                          | 0.57     | 0.7    | 0.67     | 0.76     | 0.97    | 1        | 1.1     | 0.86   | 1.1     | 0.83    | 1.2     | 1.1     | 0.96    | 0.7     | 0.8     | -      | 0.9     | 1.1     | 1       | 1.4      | 1.2       | 0.75          | 1.9     | 0.5         | 1.5      | 0.65    |
|          | OC4                          | 0.53     | 0.41   | 0.41     | 0.41     | 0.8     | 1        | 0.89    | 0.72   | 0.42    | 0.27    | 0.4     | 0.47    | 0.46    | 0.8     | 0.8     |        | 0.9     |         | 1.1     | 0.85     |           |               | 0.6     | 0.25        | 0.86     | 0.43    |
|          | Ocpyro                       | 0.82     | 2.3    | 0.66     | 0.61     | 1.6     | 1.8      | 1.8     | 1      | 2.3     | 1.5     | 2.2     | 2.2     | 2.6     | 1.4     | 1.5     |        | 1.4     |         | 1.1     | 1.9      |           |               | 3.2     | 0.85        | 2.00     | 0.74    |
|          |                              | 1.5      |        |          |          |         |          |         | 2.2    |         |         |         |         | 4.3     |         |         |        | 3.4     |         | 2.0     | 1.9      |           |               |         | 0.64        | 2.1      | 0.74    |
|          | EC1                          |          | 3.2    | 0.81     | 0.7      |         | 2.8      | 2.6     |        | 3.9     | 1.5     | 3.4     | 3.6     |         | 2.2     | 2.4     |        |         |         | 3.2     |          | 1.9       |               | 4.6     |             |          |         |
|          | EC2                          | 0.18     | 1.3    | 0.9      | 0.83     | 1       | 1        | 0.89    | 1.3    | 0.9     | 0.83    | 0.98    | 1.3     | 0.63    | 1       | 1.1     |        | 0.4     |         | 0.68    | 1.6      |           |               | 0.82    | 0.44        | 2.7      | 0.73    |
|          | EC3                          | 0.0025   | 0.085  | 0.07     | 0.06     |         | 0.08     | 0.045   | 0.1    | 0.047   | 0.09    | 0.07    | 0.1     | < 0.017 | 0.07    | 0.06    |        | 0.03    |         | 0.05    | 0.055    |           |               | 0.06    | <0.009      | 0.029    | <0.028  |
|          | OC                           | 3.3      | 4.9    | 2.6      | 2.8      | 5.7     | 6.4      | 6.4     | 4.3    | 7.9     | 3.9     | 5.9     | 6.5     | 10      | 4.9     | 5.1     |        | 5.7     |         | 6.2     | 6.2      | 5.8       |               | 8.7     | 2.6         | 6.3      | 2.8     |
|          | EC                           | 0.86     | 2.3    | 1.1      | 0.98     | 2.2     | 2.1      | 1.7     | 2.6    | 2.5     | 0.92    | 2.3     | 2.8     | 2.3     | 1.9     | 2.1     | -      | 2.4     | 3       | 2.9     | 1.8      | 1.4       | 0.85          | 2.3     | 0.23        | 2.8      | 0.75    |
|          | WSOC                         | -        | 4.5    | 1.7      | 1.7      | -       | -        | -       | -      | 4.7     | 4.4     | 5.2     | 5.8     | 4       | -       | -       | -      | -       | 5.4     | -       | 4.4      | 4.4       | -             | -       | -           | 5.3      | -       |

|             | 3 7月25                       |          |        |         |           |              |         |            |          |         |         |         |         |             |            |       |        |           |        | ( PM2.5    |             |          | ン成分:         |           | 無機风     | 分:ng/m     |            |
|-------------|------------------------------|----------|--------|---------|-----------|--------------|---------|------------|----------|---------|---------|---------|---------|-------------|------------|-------|--------|-----------|--------|------------|-------------|----------|--------------|-----------|---------|------------|------------|
| 自治          | 体名                           | 茨城県      | 栃木県    | 群馬県     | 群馬県       | 埼玉県          | 埼玉県     | 埼玉県        | さいたま市    | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市         | 東京都        | 東京都   | 神奈川県   | 横浜市       | 川崎市    | 相模原市       | 山梨県         | 山梨県      | 長野県          | 静岡県       | 静岡県     | 静岡市        | 浜松市        |
| 調査          | 地点名                          | 土浦       | 真岡     | 前橋      | 富岡        | 鴻巣           | 日高      | 秩父         | 城南       | 市原      | 勝浦      | 佐倉      | 富津      | 羊羊          | 綾瀬         | 多摩    | 大和     | 横浜        | 川崎     | 相模原        | 甲府          | 東山梨      | 長野           | 富士        | 湖西      | 静岡         | 浜松         |
| 基本事項        | PM2.5濃度                      | 17.9     | 21.6   | 18.7    | 21.8      | 22.2         | 28.6    | 27.4       | 23.8     | 21.8    | 20.2    | 18.7    | 27.5    | 20.8        | 32.4       | 27.8  | 35.1   | 28.1      | 26.4   | 33.5       | -           | -        | 15.6         | 46.8      | 24.4    | 35.2       | 23.7       |
| イオン成分       | CI-                          | < 0.013  | <0.048 | < 0.055 | < 0.055   | < 0.054      | < 0.054 | < 0.054    | 0.0078   | <0.027  | < 0.027 | < 0.027 | < 0.027 | 0.0051      | < 0.07     | <0.07 | 0.088  | <0.02     | 0.024  | < 0.02     | < 0.0022    | <0.0022  | < 0.011      | < 0.014   | < 0.014 | 0.098      | <0.00062   |
|             | NO3-                         | 0.067    | 0.13   | 0.32    | 0.16      | 0.24         | 0.12    | 0.14       | 0.24     | 0.1     | 0.0044  | 0.041   | 0.076   | 0.092       | 0.5        | 0.6   | 0.4    | 0.08      | 0.19   | 0.39       | 0.062       | 0.31     | <0.13        | 0.11      | 0.098   | <0.1       | < 0.05     |
|             | SO42-                        | 7        | 8.1    | 4.6     | 6.6       | 14           | 11      | 8.4        | 8.7      | 9.2     | 6       | 5       | 8.4     | 7.9         | 11         | 11    | 14     | 14        |        | 12         | 10          | 8.2      | 3.9          | 21        | 9.7     | 11         | 7.7        |
|             | Na <sup>+</sup>              | 0.12     | 0.11   | <0.067  | < 0.067   | 0.21         | 0.069   | 0.038      | 0.13     | 0.11    | <0.0088 | 0.12    | 0.034   | 0.12        | 0.12       | 0.22  | 0.28   | 0.18      |        | 0.09       | <0.020      |          | 0.082        | 0.3       | 0.31    | 0.17       | 0.16       |
|             |                              | 2.2      |        |         |           |              |         | 2.9        | 0.10     | 0.11    |         |         | 2.5     |             |            | 4.2   |        | 5         |        | 0.00       |             |          |              |           |         |            |            |
|             | NH <sub>4</sub> <sup>+</sup> |          | 2.9    | 1.8     | 2.1       | 5.1          | 3.9     |            | 3        | 3       | 1.9     | 1.6     |         | 3.1         | 4.6        |       |        |           |        | 5          | 3.6         | 2.9      | 1.3          | 6.2       | 2.7     | 3.6        | 2.4        |
|             | K <sup>+</sup>               | 0.14     | 0.066  | 0.08    | 0.07      | 0.28         | 0.11    | 0.13       | 0.12     | 0.063   | <0.01   | 0.098   | 0.045   | 0.025       | 0.15       | 0.2   | 0.21   | 0.15      | 0.15   | 0.21       | <0.24       | <0.24    | 0.074        | 0.11      | 1.1     | 0.2        | 0.071      |
|             | Mg <sup>2+</sup>             | 0.011    | 0.018  | < 0.042 | < 0.042   | 0.039        | 0.0084  | 0.0053     | 0.018    | 0.016   | 0.0053  | 0.012   | 0.021   | 0.044       | < 0.005    | 0.01  | <0.087 | 0.03      | 0.046  | 0.02       | < 0.15      | <0.15    | 0.012        | 0.049     | 0.039   | 0.014      | 0.023      |
|             | Ca <sup>2+</sup>             | 0.012    | <0.018 | < 0.061 | < 0.061   | 0.023        | 0.018   | 0.036      | 0.059    | 0.06    | 0.01    | 0.038   | 0.34    | 0.072       | 0.04       | 0.07  | <0.28  | 0.16      | 0.22   | <0.1       | <0.16       | < 0.16   | < 0.064      | 0.2       | <0.11   | 0.053      | < 0.04     |
| 無機成分        | Na                           | -        | 200    | -       | 51        |              | -       | -          | 130      | 120     | 130     | 100     | 110     | 100         | 140        | 240   |        | 130       |        | 120        | 97          | 68       | 100          | 290       | 250     | 180        | 100        |
| m 192132273 | ΔΙ                           | 21       | 46     |         | <33       |              | -       | -          | <250     | 30      | 18      | 46      | 130     | 20          | 18         | 19    |        | 150       | 15     | 96         | 35          |          | 46           | 34        | 19      | 35         | 10         |
|             | C:                           | - 21     | 70     |         | \00       |              |         |            | 150      | 53      | 21      | 80      | 360     | 20          | 90         | 80    |        | 150       |        | 210        | 36          | 27       |              | 80        | 100     | 31         |            |
|             | υ<br>ν                       |          | 110    |         | 61        | 37           | 150     | 130        | 120      | 110     | 47      |         | 100     | 83          | 110        | 140   |        | 99        |        | 110        | 100         | 130      | 85           | 150       | 840     | 140        | 48         |
|             | Ca                           | -        | 130    |         | <87       | <1.2         | 5.1     | 6.8        | <460     | 67      | <25     | 46      | 220     | 23          | 30         | 40    |        | 120       |        | 77         | 50          |          | 35           | 40        | 33      | 72         | <20        |
|             | Sc                           | <0.010   | <0.71  |         | <0.011    | <0.044       | <0.044  | <0.044     |          | < 0.073 | <0.073  |         | < 0.073 | <0.91       | 0.07       | 0.06  |        | <0.11     |        | <0.07      | <0.022      | <0.017   |              | <0.2      | <0.2    | < 0.019    | <1.1       |
|             | 3C<br>T:                     |          |        | -       | <0.011    |              |         | <0.044     | <0.33    |         |         | <0.073  |         | <4.2        | 0.07       | 0.06  |        |           |        |            |             |          |              | <0.2      |         |            |            |
|             | 11                           | 1.6      | <9.6   | -       | - 0.7     | <1.4         | 2.7     | 2          | 7.9      | 3.5     | <1.7    | 3       | 9.4     |             | 4          |       | 0.0    | 6.5       |        | 16         | 2.4         | 2.2      | 3.2          | 5         | <2      | 2.1        | 3.8        |
|             | V<br>Cr                      | 5.6      | 3.6    |         | 2.7       | 1.7<br><0.29 | 5.7     | 4.2<br>1.5 | 5.6      | 7.1     | 8       | 7.1     | 26      | 8.4<br>0.53 | 8.7<br>2.4 | 15    |        | 20<br>3.4 |        | 8.4<br>2.2 | 7.4<br><2.5 | 3.8      | 1.4<br><0.42 | 59<br>2.3 | 13      | 12<br><1.5 | 9.1<br>2.3 |
|             | Cr                           | <0.39    | <0.60  | -       | 1.4       |              | 1.4     |            | 2.8      | <1.1    | <1.1    |         | 1.1     |             |            |       |        |           |        |            |             | <1.4     |              | 2.3       | 0.8     |            |            |
|             | Mn                           | 6.7      | 5.3    | -       | 4.9<br>79 | 1.9          | 6.1     | 4.5        | 6.4      | 6.4     | 1.6     | 3.4     | 8       | 2.2         | 8.9        | 11    |        | 8.4       |        | 8.4        | 4.7         | 5.3      | 3.6          | 400       | 5.5     | 6.5        | 8.2        |
|             | Fe                           | 74       | 110    | -       |           |              | 75      |            | 150      | 120     | 30      | 88      | 220     | 61          | 150        | 170   |        | 220       | 190    | 190        | 64          | 61       | 48           | 180       | 96      | 86         | 49         |
|             | Co                           | 0.028    | <0.12  | -       | <0.06     | <0.027       | 0.06    |            | 0.16     | <0.05   | < 0.05  | < 0.05  | 0.1     | <0.14       | <0.08      | 0.1   | 0.12   | <0.83     |        | 0.06       | 0.055       | 0.044    | -            | 0.19      | <0.2    | 0.059      | <0.039     |
|             | Ni                           | 1.9      | <4.0   | -       | 1.3       | 0.48         | 2.2     | 2.4        | 2.6      | 3.2     | 2.1     | 2.1     | 8       | 2.8         | 3.3        | 5.9   | 6.5    | 6.6       | 6.5    | 3.5        | 2.4         | 1.3      | 0.61         | 22        | 3.6     | 3.8        | 2.9        |
|             | Cu                           | 2.4      | <2.3   | -       | <2.4      |              | 5.1     |            | 5.6      | 2.5     | 1.7     | 2.3     | 3.8     | 1.5         | 5.6        | 4.8   |        | <4.4      |        | 3.7        | 3.6         | 8.4      | 5.1          | 7         | 3.6     | 5.6        | 2.4        |
|             | Zn                           | 23       | 34     | -       | 22        |              | 23      |            | 39       | 58      | 7       |         | 37      | 11          | 41         | 47    |        | 31        |        | 40         | 27          | <41      | 15           | 66        | 18      | 28         | 26         |
|             | As                           | 0.76     | 1.1    | -       | 0.84      | 0.18         | 1       | 0.83       | 0.98     | 0.84    | 0.64    | 0.8     | 0.91    | 0.87        | 1.3        | 1.3   |        | 0.82      |        | 1.2        | 0.73        | 1.1      |              | <0.7      | <0.7    | 1.1        | 0.44       |
|             | Se                           | 0.13     | 2.1    | -       | 1.6       |              | 2.1     | 0.81       | 1.3      | <1      | <1      |         | 1.1     | 0.86        | 2          | 2     | 2.3    | 2.1       |        | 2.3        | 1.1         | 1        |              | 1.8       | <1      | 1.8        | 0.72       |
|             | Rb                           | -        | 0.4    | -       | 0.22      | 0.073        | 0.33    |            | <0.75    | 0.24    | 0.11    |         | 0.32    | 0.21        | 0.4        | 0.5   |        | <1.1      |        | 0.38       | 0.24        | 0.27     |              | 0.41      | <0.1    | 0.37       | 0.14       |
|             | Мо                           | 0.33     | <2.3   | -       | 0.46      |              | 1       | 0.92       | 0.84     | 0.42    | 0.24    | 0.65    | 0.95    | 1.2         | 1.1        | 3     | 1.9    | <1.3      | 2.1    | 1.6        | 0.67        | 1        |              | 1.6       | 0.8     | 1.1        | < 0.74     |
|             | Sb                           | 0.86     | < 0.62 | -       | -         | 1.5          | 1.9     | 1          | 2.7      | 1.4     | 0.25    | 0.6     | 0.67    | 0.73        | 1.3        | 1.2   |        | <6.3      | 1.1    | 1.5        | 0.89        | 1        | 0.86         | 2.9       | 1.4     | 1.1        | 0.75       |
|             | Cs                           | 0.034    | 0.066  | -       | 0.039     | < 0.017      | 0.059   | 0.042      | 0.052    | 0.032   | < 0.02  | 0.028   | 0.051   | < 0.067     | 0.07       | 0.09  |        | <9.1      |        | <0.06      | 0.047       |          | -            | <0.1      | <0.1    | 0.065      | <0.029     |
|             | Ва                           | 1.9      | 2.3    | -       | 2.4       | 2            | 1.1     | 4.4        | 14       | 3.7     | 2.1     | 1.7     | 6.7     | 1.9         | 6.7        | 9.6   |        | <10       |        | 4.9        | 3.3         | 4        | -            | 7.9       | 6.1     | 4.2        | 2.8        |
|             | La                           | 0.054    | 0.16   | -       | 0.09      | <0.043       | <0.043  | < 0.043    | 0.14     | 0.087   | 0.026   | 0.054   | 0.13    | < 0.39      | 0.2        | 0.17  |        | <11       |        | 0.24       | 0.079       | 0.055    | 0.034        | <0.07     | <0.07   | 0.087      | 0.042      |
|             | Ce                           | 0.053    | <0.079 | -       | 0.07      | <0.023       | < 0.023 | < 0.023    | <0.15    | 0.1     | 0.03    | 0.075   | 0.14    | < 0.34      | 0.2        | 0.2   |        | <13       | 0.13   | 0.28       | 0.1         | 0.076    | -            | <0.08     | <0.08   | 0.1        | 0.077      |
|             | Sm                           | <0.0095  | <0.15  | -       | < 0.0005  | < 0.027      | < 0.027 | < 0.027    | < 0.013  | < 0.021 | < 0.021 |         | <0.021  | < 0.062     | <0.1       | <0.1  | < 0.56 | <19       |        | <0.08      | <0.028      | < 0.0022 | -            | <0.2      | <0.2    | <0.0083    | < 0.034    |
|             | Hf                           | -        | <0.19  | -       | < 0.012   | <0.048       | <0.048  | <0.048     | 0.0096   | < 0.059 | < 0.059 | < 0.059 | < 0.059 | <0.41       | <0.08      | <0.08 |        | <0.018    | 0.049  | < 0.03     | < 0.059     | 0.0014   | -            | <0.2      | <0.2    | < 0.0012   | < 0.49     |
|             | W                            | 1.5      | < 0.31 | -       | < 0.012   | 0.18         | 0.57    | 0.18       | 0.3      | 0.55    | 0.14    | 0.57    | 0.38    | 0.93        | 0.7        | 0.6   | _      | 2.1       | 2.4    | 0.72       | 0.11        | 0.13     | -            | <0.5      | <0.7    | 0.16       | 0.63       |
|             | Ta                           | -        | < 0.23 | -       | < 0.0031  | < 0.045      | < 0.045 | < 0.045    | < 0.0022 | <0.02   | < 0.02  | < 0.02  | <0.02   | < 0.30      | < 0.07     | <0.07 | -      | <0.019    | <0.014 | <0.022     | < 0.0051    | < 0.012  | -            | <0.7      | <0.5    | < 0.00022  | < 0.63     |
|             | Th                           | < 0.0074 | <0.22  | -       | < 0.02    | <0.029       | < 0.029 | < 0.029    | <0.0082  | < 0.016 | < 0.016 | < 0.016 | < 0.016 | <0.21       | <0.2       | <0.2  |        | <3.4      |        | < 0.07     | < 0.021     | <0.00069 | -            | <0.1      | <0.1    | < 0.0076   | <0.078     |
|             | Pb                           | 4.3      | 6.4    | -       | 4.7       | 2.4          | 7.4     | 5.2        | 13       | 5.4     | 2.9     | 3.2     | 6.4     | 4.1         | 9.5        | 12    | 7.7    | 6.3       | 5.6    | 7.7        | 5           | 5.7      | 4.1          | 13        | 4.8     | 7.7        | 3.4        |
|             | その他(Be)                      | -        | <0.18  | -       | -         | -            | -       | -          | -        | < 0.015 | <0.015  | <0.015  | <0.015  | -           | -          | -     | -      | -         | -      |            | -           | -        | -            | -         | -       | -          | -          |
|             | その他(Cd)                      | -        | 0.19   | -       | -         | -            | -       | -          | -        | 0.15    | 0.081   | 0.24    | 0.17    |             | -          | -     | -      | -         | -      | -          | -           | -        | 0.12         | 0.26      | <0.2    | -          | -          |
|             | その他(Sr)                      | -        | -      | -       | -         | -            | -       | -          | -        | -       | -       | -       | -       | -           | -          | -     | -      | -         | -      | -          | -           | -        | -            | -         | -       | -          | -          |
|             | その他(Y)                       | -        |        | -       | -         | -            | -       | -          | -        | -       | -       |         | -       |             | -          | -     | -      | -         | -      | -          | -           | -        | -            | -         |         | -          | -          |
|             | その他(TI)                      | -        |        | -       | -         | -            | -       |            |          | -       | -       | -       | -       |             |            | -     |        | -         | -      | -          | -           | -        |              | -         |         |            | -          |
| 炭素成分        | OC1                          | 0.082    | <0.028 | 0.21    | 0.33      | 0            | 0       | 0.19       | 0        | 0.13    | 0.076   | < 0.046 | 0.046   | <0.10       | < 0.4      | < 0.4 | 0.13   | 0.25      | <0.08  | 0.28       | 0.025       | <0.021   | < 0.039      | <0.08     | <0.04   | < 0.027    | 0.029      |
|             | OC2                          | 0.98     | 1.3    | 1.3     | 1.9       | 1            | 2.7     | 3.6        | 1.4      | 3.3     | 1.7     | 1.6     | 1.7     | 3.8         | 2          | 1     | 1.8    | 1.5       | 1.9    | 2.9        | 2.4         | 2.2      | 0.67         | 2.5       | 1.6     | 1.9        | 1.8        |
|             | OC3                          | 0.36     | 0.64   | 0.88    | 1         | 0.77         | 1       | 1.8        | 0.56     | 0.81    | 0.58    | 0.82    | 0.77    | 0.68        | 0.6        | 0.5   | 0.57   | 0.64      | 0.83   | 1          | 1.6         | 1.7      | 1.3          | 1.3       | 1.2     | 1.2        | 1.3        |
|             | OC4                          | 0.35     | 0.38   | 0.57    | 0.69      | 0.42         | 0.97    | 1.2        | 0.47     | 0.3     | 0.19    | 0.28    | 0.37    | 0.35        | 0.7        | 0.5   | 0.48   | 0.55      | 0.58   | 1.2        | 0.93        | 1        | 0.41         | 0.5       | 0.53    | 0.7        | 0.78       |
|             | Ocpyro                       | 0.5      | 1.9    | 1       | 1.4       | 0.66         | 1.9     | 2.1        | 0.93     | 1.4     | 0.71    | 1.3     | 1.4     | 1.4         | 1.4        | 1.1   | 1.2    | 0.95      | 0.96   | 1.1        | 2.4         | 1.9      | 1.1          | 2.4       | 1.4     | 1.8        | 1.4        |
|             | EC1                          | 0.85     | 2.6    | 1.2     | 1.8       | 0.69         | 2.8     | 3          | 1.4      | 2       | 0.57    | 1.4     | 1.8     | 2.3         | 1.8        | 1.7   |        | 2.2       |        | 2.8        | 2.5         | 2        | 1.2          | 3.8       | 2.1     | 1.9        | 1.4        |
|             | EC2                          | 0.18     | 1.2    | 1       | 0.87      | 0.51         | 0.98    | 0.77       | 1.1      | 0.71    | 0.58    | 0.69    | 0.92    | 0.5         | 0.92       | 0.78  | 0.84   | 0.36      | 0.35   | 0.51       | 1.7         | 1.8      | 0.47         | 0.72      | 0.44    | 2.5        | 1.5        |
|             | EC3                          | 0        | 0.084  | 0.07    | 0.08      | 0.025        | 0.06    | 0.055      | < 0.043  | 0.047   | 0.06    | 0.07    | 0.1     | <0.017      | 0.07       | 0.05  |        | 0         |        | 0          | 0.043       | <0.028   | 0.081        | <0.06     | 0.014   | <0.028     | 0.028      |
|             | OC                           | 2.3      | 4.2    | 4       | 5.3       | 2.9          | 6.6     | 8.9        | 3.4      | 5.9     | 3.3     | 4       | 4.3     | 6.2         | 4.7        | 3.1   |        | 3.9       |        | 6.5        | 7.4         | 6.8      | 3.5          | 6.7       | 4.7     | 5.6        | 5.3        |
|             | EC                           | 0.53     | 2      | 1.3     | 1.4       |              | 1.9     | 1.7        | 1.6      | 1.4     | 0.5     | 0.86    | 1.4     | 1.4         | 1.4        | 1.4   |        | 1.6       |        | 2.2        | 1.8         | 1.9      |              | 2.1       | 1.2     | 2.6        | 1.5        |
|             | WSOC                         | -        | 4.2    | 2.4     | 3.3       | -            | -       |            |          | 3.3     | 3.1     | 1.6     | 3.7     | 2.2         |            | -     | 4.8    | -         | 3.8    |            | 4.9         | 5.5      | -            |           |         | 5.3        |            |
|             |                              |          | 7.4    | 4.7     | ٥٠٥       |              |         |            |          | 0.0     | . 0.1   | 1.0     | 0.1     | 4.4         |            |       | , 7.0  |           | . 0.0  |            | 7.0         | . 0.0    |              |           |         | 0.0        |            |

|             | 4 7月26                       |          |        |          |          |         |         |         |            |         |         |         |         |            |            |           |         |        |          | ( PM2.5 |             | 分,イス     |         |         | 無機成       | 分:ng/m    |            |
|-------------|------------------------------|----------|--------|----------|----------|---------|---------|---------|------------|---------|---------|---------|---------|------------|------------|-----------|---------|--------|----------|---------|-------------|----------|---------|---------|-----------|-----------|------------|
| 自治          | 体名                           | 茨城県      | 栃木県    | 群馬県      | 群馬県      | 埼玉県     | 埼玉県     | 埼玉県     | さいたま市      | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市        | 東京都        | 東京都       | 神奈川県    | 横浜市    | 川崎市      | 相模原市    | 山梨県         | 山梨県      | 長野県     | 静岡県     | 静岡県       | 静岡市       | 浜松市        |
| 調査          | 地点名                          | 土浦       | 真岡     | 前橋       | 富岡       | 鴻巣      | 日高      | 秩父      | 城南         | 市原      | 勝浦      | 佐倉      | 富津      | 千葉         | 綾瀬         | 多摩        | 大和      | 横浜     | 川崎       | 相模原     | 甲府          | 東山梨      | 長野      | 富士      | 湖西        | 静岡        | 浜松         |
| 基本事項        | PM2.5濃度                      | 19.9     | 60     | 36.9     | 39.7     | 33.8    | 35.8    | 38.3    | 28.1       | 22.1    | 21.8    | 22.1    | 26.9    | 22.4       | 30.3       | 24.4      | 27      | 19.5   | 20.5     | 27.4    | -           | -        | 26.6    | 25.3    | 18.4      | 21.9      | 16.1       |
| イオン成分       | CI-                          | 0.044    | 0.31   | 0.06     | <0.055   | < 0.054 | < 0.054 | < 0.054 | 0.0053     | <0.027  | < 0.027 | < 0.027 | < 0.027 | < 0.0045   | < 0.07     | <0.07     | 0.06    | <0.02  | < 0.0091 | < 0.02  | < 0.0022    | <0.0022  | < 0.011 | < 0.014 | <0.014    | < 0.02    | < 0.00062  |
|             | NO3-                         | 0.025    | 0.8    | 1.4      | 0.3      | 0.11    | 0.11    | 0.13    | 0.096      | 0.076   | 0.0047  | 0.037   | 0.059   | < 0.017    | 0.12       | 0.14      | <0.18   | 0.08   | 0.069    | 0.11    | < 0.042     | 0.05     | <0.13   | 0.056   | 0.084     | <0.1      | < 0.05     |
|             | SO42-                        | 9        | 26     | 9.8      | 11       |         | 12      | 12      | 11         | 11      | 7.4     | 8.7     | 9.3     | 11         | 11         | 12        |         | 10     | 11       | 12      | 15          |          |         | 13      | 10        | 9.9       | 7.3        |
|             | Na <sup>+</sup>              | 0.25     | 0.37   | < 0.067  | 0.11     |         | 0.13    | 0.059   | 0.22       | 0.22    | 0.021   | 0.35    | 0.081   | 0.24       | 0.22       | 0.37      |         | 0.41   |          | 0.22    | 0.22        |          |         | 0.27    | 0.32      | 0.14      |            |
|             |                              | 2.5      |        | 40.007   | 3.7      |         | 0.10    | 4.6     |            |         |         |         | 2.3     |            |            |           |         |        |          |         | 4.2         | 4.2      |         |         |           | 2.9       |            |
|             | NH <sub>4</sub> <sup>+</sup> |          | 1.4    | 4        |          | 2.9     | 4       |         | 3.7        | 3.1     | 1.7     | 2.7     |         | 3.5        | 4.6        | 4.1       | 4.3     | 3.6    |          | 4.7     |             |          |         | 4.4     | 3.3       |           | 2.2        |
|             | K <sup>+</sup>               | 0.19     | 14     | 0.19     | 0.18     | 0.11    | 0.16    | 0.21    | 0.19       | 0.035   | 0.042   | 0.19    | 0.027   | 0.037      | 0.2        | 0.19      | 0.16    | 0.12   | 0.12     | 0.23    | <0.24       | <0.24    | 0.13    | 0.11    | 0.12      | 0.066     | 0.064      |
|             | Mq <sup>2+</sup>             | 0.027    | 1      | < 0.042  | < 0.042  | 0.019   | 0.011   | 0.01    | 0.029      | 0.028   | 0.0091  | 0.035   | 0.036   | 0.027      | 0.02       | 0.04      | <0.087  | 0.06   | 0.047    | 0.04    | < 0.15      | < 0.15   | 0.03    | 0.037   | 0.044     | 0.029     | 0.023      |
|             | Ca <sup>2+</sup>             | 0.02     | 0.11   | < 0.061  | < 0.061  | 0.017   | 0.019   | 0.038   | 0.05       | 0.071   | 0.029   | 0.086   | 0.66    | 0.047      | 0.04       | 0.05      | <0.28   | 0.1    | 0.058    | <0.1    | <0.16       | <0.16    | < 0.064 | <0.11   | <0.11     | < 0.026   | < 0.04     |
| 無機成分        | Na                           | -        | 360    | 77       | 88       |         | -       | -       | 240        | 170     | 220     | 230     | 290     | 290        | 270        | 440       |         | 280    |          | 240     | 120         |          |         | 110     | 260       | 310       | 110        |
| m 18213.273 | ΔΙ                           | 25       | 400    | 120      | 77       |         | -       | -       | <250       | 20      | 30      | 77      | 270     | 21         | 30         | 40        |         | 110    | 15       | 89      | 23          | 38       |         | 15      | 16        | 29        | 13         |
|             | C:                           | - 23     | 400    | 120      |          | -       |         | -       | 140        | 110     | 62      | 130     | 850     | 40         | 100        | 110       |         | 110    |          | 140     | 26          |          |         | 90      | 110       | 29        | - 13       |
|             | V                            |          | 11000  | 170      | 130      | 51      | 100     | 250     | 210        | 50      | 63      | 90      | 91      | 94         | 170        | 170       |         | 81     |          | 140     | 120         | 140      |         | 60      | 90        | 150       | 36         |
|             | Ca                           | -        | 460    | 140      | <87      | <1.2    | <1.2    | 13      | <460       | 41      | 25      | 110     | 270     | 39         | 30         | 50        |         | 80     |          | 72      | <49         |          |         | 18      | 45        | 65        | <20        |
|             | Sc                           | <0.010   | <0.71  | < 0.011  | <0.011   |         | <0.044  | <0.044  |            | <0.073  | < 0.073 |         | < 0.073 | <0.91      | 0.07       | 0.07      |         | <0.11  |          | <0.07   | 0.041       |          |         | <0.2    | <0.2      | < 0.019   | <1.1       |
|             | 3C                           | 2.3      | 49     | <0.011   | <0.011   | <1.4    | <0.044  | 4.2     | <0.33      |         |         | 5.5     | 25      | <4.2       | 0.07       | 5         | 13      | 5.2    |          |         | 1.6         |          |         | <0.2    |           | 0.91      | 2.2        |
|             | 11                           |          |        | - 0.5    | - 4.5    |         | 7.0     |         | 6.4        | 2.5     | 1.8     |         |         |            | 0.7        | ,         |         |        |          | 8.9     |             |          |         | 7.0     | <2        |           |            |
|             | V                            | 10       | 10     | 6.5      | 4.5      | 2.8     | 7.9     | 7.9     | 9.9<br>1.6 | 8.8     | 11      |         | 23      | 7.9<br>1.7 | 8.7<br>1.1 | 16<br>2.7 |         | <0.38  |          | 8.2     | 7.6<br><2.5 |          |         | 7.9     | 10<br>0.2 | 9.8       | 8.3<br>0.2 |
|             | Cr                           | 1        | 9      | 2.1      | 1.6      | -       | 0.98    | 1.4     |            | <1.1    | <1.1    | 4.1     | <1.1    |            |            |           |         |        |          |         |             |          |         | 0.4     |           |           |            |
|             | Mn                           | 4.2      | 10     | 7.9      | 6.6      |         | 4.2     | 5.7     | 6.3        | 2.7     | 1.3     | 5.5     | 9       | 3.9        | 3.8        | 6.6       |         | 2.1    |          | 3.6     | 2.2         | 3.1      |         | 0.61    | 1.3       | 1.6       | 0.79       |
|             | Fe                           | 87       | 150    | 150      | 120      |         | 49      |         | 140        | 67      | 38      | 160     | 260     | 98         | 70         | 130       |         | 81     |          | 90      | 34          | 52       |         | 18      | 32        | 24        | 13         |
|             | Co                           | 0.052    | <0.12  | 0.12     | 0.13     |         | 0.035   | 1.1     | 0.037      | 0.068   | < 0.05  | 0.065   | 0.14    | <0.14      | <0.08      | <0.08     |         | <0.83  |          | < 0.06  | 0.074       | 0.05     |         | < 0.02  | <0.2      | 0.03      | <0.039     |
|             | Ni                           | 3.1      | 5.3    | 3.4      | 2        | 0.49    | 2.4     | 3.9     | 3.6        | 4.1     | 3.3     | 3       | 6.9     | 2.9        | 2.8        | 6         | 0.1     | 3.2    | 3.7      | 2.8     | 2.4         | 2.3      |         | 2.1     | 2.5       | 3         | 1.5        |
|             | Cu                           | 2        | 360    | 6.9      | 3.7      |         | 3.3     | 5.1     | 4.7        | <1.4    | <1.4    | 1.9     | 1.8     | 1.1        | 6          | 4.4       |         | <4.4   |          | 4.1     | 2.9         | 4.5      |         | 0.86    | 2.3       | 2.3       | 0.64       |
|             | Zn                           | 20       | 50     | 44       | 38       |         | 11      |         | <33        | 18      | 5.4     | 20      | 13      | 18         | 21         | 27        |         | 7.7    |          | 22      | 5.9         |          |         | -2      | 8         | <28       | 4.5        |
|             | As                           | 0.57     | 1.8    | 1.2      | 1        | 0.64    | 0.9     | 0.85    | 0.8        | 0.46    | 0.47    | 0.51    | 0.63    | 0.57       | 0.7        | 1         | 0.48    | 0.74   |          | 0.59    | 0.56        | 0.75     |         | <0.7    | <0.7      | 0.71      | 0.25       |
|             | Se                           | 0.19     | 2.2    | 2.4      | 2.2      |         | 1.4     | 1.4     | 1.9        | <1      | <1      | <1      | <1      | 1.2        | 1          | 2         | < 0.96  | <1.1   | 0.51     | 0.8     | 0.54        | 0.66     |         | <0.3    | <1        | 0.59      | 0.43       |
|             | Rb                           | -        | 1.8    | 0.43     | 0.35     |         | 0.24    | 0.6     | 0.9        | 0.16    | 0.18    | 0.33    | 0.31    | 0.34       | 0.25       | 0.3       |         | <1.1   |          | 0.22    | 0.18        | 0.17     |         | 0.07    | <0.1      | 0.19      | 0.096      |
|             | Mo                           | 0.82     | <2.3   | 1.3      | 0.9      |         | 0.83    | 1.1     | 1.5        | 0.31    | 0.23    | 0.71    | 0.28    | 0.87       | <0.5       | 1.6       |         | <1.3   |          | 0.43    | 0.32        | 0.38     |         | <0.6    | <0.6      | 0.25      | < 0.74     |
|             | Sb                           | 0.76     | 2.6    | -        | -        | 2.7     | 2.1     | 2.2     | 1.1        | 0.26    | 0.17    | 0.43    | 0.19    | 0.41       | 0.8        | 0.7       |         | <6.3   | 0.27     | 0.92    | 0.58        | 1        | 1.2     | <0.3    | < 0.3     | 0.41      | 0.14       |
|             | Cs                           | 0.029    | 0.053  | 0.06     | 0.055    |         | 0.043   | 0.055   | 0.037      | <0.02   | < 0.02  | 0.047   | 0.027   | < 0.067    | < 0.05     | < 0.05    |         | <9.1   |          | <0.06   | 0.055       |          |         | <0.1    | <0.1      | 0.0087    | <0.029     |
|             | Ва                           | 3        | 870    | 7        | 5        | 5.5     | 2.2     | 6       | 14         | 1.3     | 1.4     | 2       | 2.2     | 1.6        | 12         | 9.2       |         | <10    |          | 6.4     | 3.9         | 7.8      |         | 1.7     | 6         | 5.7       | 1.3        |
|             | La                           | 0.058    | 0.13   | 0.18     | 0.12     |         | <0.043  | < 0.043 | 0.11       | 0.23    | 0.034   | 0.19    | 0.086   | < 0.39     | 0.08       | 0.14      |         | <11    |          | 0.1     | 0.076       | 0.043    |         | < 0.07  | <0.07     | 0.027     | < 0.035    |
|             | Ce                           | 0.063    | 0.15   | 0.19     | 0.13     |         | <0.023  | < 0.023 | 0.15       | 0.067   | 0.033   | 0.088   | 0.14    | < 0.34     | 0.1        | 0.1       | < 0.32  | <13    |          | 0.15    | 0.1         | 0.065    | -       | <0.08   | <0.08     | 0.033     | 0.028      |
|             | Sm                           | < 0.0095 | <0.15  | 0.005    | 0.003    |         | <0.027  | < 0.027 | < 0.013    | < 0.021 | <0.021  |         | <0.021  | < 0.062    | <0.1       | <0.1      | < 0.56  | <19    |          | <0.08   | 0.033       | 0.0026   | -       | <0.2    | <0.2      | <0.0083   | < 0.034    |
|             | Hf                           | -        | <0.19  | < 0.012  | <0.012   |         | <0.048  | 0.07    | <0.0066    | < 0.059 | < 0.059 |         | < 0.059 | < 0.41     | <0.08      | <0.08     | -       | <0.018 | <0.04    | < 0.03  | 0.094       | 0.0015   | -       | <0.2    | <0.2      | < 0.0012  | < 0.49     |
|             | W                            | 0.12     | < 0.31 | 0.62     | 0.19     | 0.26    | 0.38    | 0.36    | 0.64       | 0.081   | 0.15    |         | 0.12    | <0.38      | 0.2        | 0.6       | 0.0.    | 0.21   | 0.45     | 0.22    | 0.15        | 0.089    | -       | <0.5    | <0.7      | 0.085     | < 0.054    |
|             | Та                           | -        | <0.23  | < 0.0031 | < 0.0031 | <0.045  | < 0.045 | < 0.045 | < 0.0022   | <0.02   | < 0.02  | < 0.02  | < 0.02  | < 0.30     | < 0.07     | <0.07     | -       | <0.019 | <0.014   | <0.022  | 0.0052      | < 0.012  | -       | <0.7    | <0.5      | < 0.00022 | < 0.63     |
|             | Th                           | < 0.0074 | <0.22  | 0.028    | 0.024    | <0.029  | <0.029  | <0.029  | <0.0082    | < 0.016 | < 0.016 | < 0.016 | < 0.016 | <0.21      | < 0.2      | <0.2      | -       | <3.4   |          | < 0.07  | 0.036       | <0.00069 |         | <0.1    | <0.1      | < 0.0076  | <0.078     |
|             | Pb                           | 3.8      | 35     | 11       | 7.3      | 6.6     | 5.5     | 6.6     | 5.7        | 2.3     | 1.6     | 4.4     | 1.8     | 4.9        | 4.6        | 6.7       | 2.7     | 2.5    | 2        | 4.6     | 2.6         | 2.9      | 5.5     | 1       | 2         | 2.5       | 1.1        |
|             | その他(Be)                      | -        | <0.18  | -        | -        | -       | -       | -       | -          | < 0.015 | <0.015  | < 0.015 | <0.015  | -          | -          | -         | -       | -      | -        | -       | -           | -        | -       | -       | -         | -         | -          |
|             | その他(Cd)                      | -        | 0.22   | -        | -        | -       | -       | -       | -          | < 0.063 | 0.063   | 0.11    | < 0.063 | -          | -          | -         | -       | -      | -        | -       | -           | -        | 0.12    | < 0.05  | <0.2      | -         | -          |
|             | その他(Sr)                      | -        | -      | -        | -        | -       | -       | -       | -          | -       | -       | -       | -       | -          | -          | -         | -       | -      | -        | -       | -           | -        | -       | -       | -         | -         | -          |
|             | その他(Y)                       | -        | -      | -        | -        | -       | -       | -       | -          | -       | -       | -       | -       | -          | -          | -         | -       | -      | -        | -       | -           | -        | -       | -       | -         | -         | -          |
|             | その他(TI)                      | -        | -      | -        | -        | -       | -       | -       | -          | -       | -       | -       | -       | -          | -          | -         | -       | -      | -        | -       | -           | -        | -       | -       | -         | -         | -          |
| 炭素成分        | OC1                          | 0.082    | <0.028 | 0.48     | 1.3      | 0       | 0       | 0.18    | 0          | 0.15    | < 0.046 | < 0.046 | < 0.046 | < 0.10     | < 0.4      | < 0.4     | < 0.042 | 0.13   | <0.08    | 0.13    | < 0.0070    | < 0.021  | 0.045   | <0.08   | < 0.04    | < 0.027   | < 0.023    |
|             | OC2                          | 0.8      | 1.2    | 2.4      | 2.8      | 1.9     | 3.8     | 4.6     | 1.6        | 2.8     | 0.95    | 0.88    | 1.2     | 4.6        | 1          | 1         | 1.3     | 0.85   | 1.4      | 2.3     | 1.6         | 1.5      | 1.2     | 1.2     | 0.93      | 0.86      | 0.58       |
|             | OC3                          | 0.36     | 1.5    | 1.4      | 1.7      | 0.81    | 1.6     | 2.1     | 0.78       | 0.63    | 0.52    | 0.74    | 0.48    | 0.63       | 0.6        | < 0.4     | 0.34    | 0.34   | 0.54     | 0.71    | 0.76        | 0.99     | 3.5     | 1       | 0.4       | 0.49      | 0.36       |
|             | OC4                          | 0.31     | 0.6    | 0.84     | 1.3      | 0.67    | 1.5     | 1.8     | 0.72       | 0.22    | 0.16    | 0.26    | 0.28    | 0.34       | 0.6        | 0.5       | 0.3     | 0.26   | 0.37     | 0.47    | 0.58        | 0.63     | 0.97    | 0.3     | 0.17      | 0.31      | 0.19       |
|             | Ocpyro                       | 0.49     | 1.7    | 2        | 2.6      | 1.3     | 2.2     | 2.6     | 1.3        | 0.94    | 0.58    | 1.2     | 0.85    | 1.3        | 1.3        | 0.9       | 1       | 0.54   | 0.69     | 1       | 1.3         | 1.3      | 2.1     | 0.63    | 0.57      | 0.78      | 0.6        |
|             | EC1                          | 0.82     | 2.9    | 2.8      | 3.7      |         | 3.3     | 4       | 1.9        | 1.2     | 0.49    | 1.6     | 0.79    | 1.8        | 1.5        | 1.3       | 1.2     | 0.87   | 1.3      | 1.8     | 1.3         | 1.3      | 2.5     | 0.97    | 0.6       | 0.8       | 0.59       |
|             | EC2                          | 0.18     | 0.77   | 1.2      | 1.1      | 0.77    | 0.92    | 0.88    | 0.89       | 0.59    | 0.52    | 0.69    | 0.63    | 0.53       | 0.69       | 0.52      | 0.68    | 0.15   | 0.31     | 0.38    | 1.5         | 1.8      | 0.56    | 0.68    | 0.45      | 0.93      | 0.57       |
|             | EC3                          | 0        | <0.038 | 0.09     | 0.1      | 0.04    | 0.055   | 0.07    | < 0.043    | 0.037   | 0.055   | 0.075   | 0.07    | < 0.017    | 0.07       | 0.04      |         | 0      | <0.026   | 0.07    | 0.032       | <0.028   | 0.11    | < 0.06  | 0.019     | <0.028    | <0.028     |
|             | OC                           | 2        | 5      | 7.1      | 9.7      | 4.7     | 9.1     | 11      | 4.4        | 4.7     | 2.2     | 3.1     | 2.8     | 6.9        | 3.5        | 2.4       | 2.9     | 2.1    | 3        | 4.6     | 4.2         | 4.4      | 7.8     | 3.1     | 2.1       | 2.4       | 1.7        |
|             | EC                           | 0.51     | 2      | 2.1      | 2.3      |         | 2.1     | 2.4     | 1.5        | 0.89    | 0.49    | 1.2     | 0.64    | 1          | 0.96       | 0.96      |         | 0.48   |          | 1.3     | 1.5         |          |         | 1       | 0.5       | 0.95      | 0.56       |
|             | WSOC                         | -        | 5.3    | 5.6      | 7        | -       | -       | -       | -          | 2.6     | 2.8     | 2.7     | 2.7     | 2          | -          | -         | 2.9     | -      | 2.1      | - "     | 3.7         | 4.7      |         | -       | -         | 1.8       | -          |
|             |                              |          |        |          |          |         |         |         |            |         |         |         |         |            |            |           |         |        |          |         |             |          |         |         |           |           |            |

| 表4-1-    |                              | <u>′日から</u>  |                |              |             |                  |                 |              |           |                   |                  |                   |              |              |              |             |             |              |        | ( PM2.5         |              | 分,イス         |         |                                                           | 無機別         | 分:ng/m         |            |
|----------|------------------------------|--------------|----------------|--------------|-------------|------------------|-----------------|--------------|-----------|-------------------|------------------|-------------------|--------------|--------------|--------------|-------------|-------------|--------------|--------|-----------------|--------------|--------------|---------|-----------------------------------------------------------|-------------|----------------|------------|
| 自治       | 体名                           | 茨城県          | 栃木県            | 群馬県          | 群馬県         | 埼玉県              | 埼玉県             | 埼玉県          | さいたま市     | 千葉県               | 千葉県              | 千葉県               | 千葉県          | 千葉市          | 東京都          | 東京都         | 神奈川県        | 横浜市          | 川崎市    | 相模原市            | 山梨県          | 山梨県          | 長野県     | 静岡県                                                       | 静岡県         | 静岡市            | 浜松市        |
| 調査       | 地点名                          | 土浦           | 真岡             | 前橋           | 富岡          | 鴻巣               | 四副              | 秩父           | 城南        | 市原                | 勝浦               | 佐倉                | 富津           | 羊羊           | 綾瀬           | 多摩          | 大和          | 横浜           | 川崎     | 相模原             | 甲府           | 東山梨          | 長野      | 富士                                                        | 湖西          | 静岡             | 浜松         |
| 基本事項     | PM2.5濃度                      | 8.5          | 9.2            | 6.2          | 7.6         | 8.2              | 9.2             | 10.9         | 10.1      | 17                | 15.6             | 14.3              | 22.1         | 15.7         | 10           | 12          | 14.4        | 14.5         | 13     | 12.8            | -            | -            | 5.7     | 19.7                                                      | 12.5        | 19.9           | 14.1       |
| イオン成分    | CI-                          | 0.016        | 0.067          | < 0.055      | < 0.055     | < 0.054          | < 0.054         | < 0.054      | 0.0054    | < 0.027           | < 0.027          | <0.027            | < 0.027      | 0.0084       | < 0.07       | <0.07       | -           | < 0.02       | 0.025  | < 0.02          | < 0.0022     | <0.0022      | < 0.011 | 0.018                                                     | 0.048       | 0.083          | < 0.00062  |
|          | NO3-                         | 0.054        | <0.10          | <0.08        | 0.11        | 0.064            | 0.071           | 0.14         | 0.094     | 0.073             | 0.022            | 0.11              | 0.17         | 0.063        | 0.14         | 0.18        | -           | 0.14         | 0.18   | 0.19            | 0.045        | 0.088        | < 0.13  | 0.089                                                     | 0.12        | <0.1           | < 0.05     |
|          | SO42-                        | 2.4          | 2.2            | 1.1          | 1.9         | 2                | 2.4             | 2.4          | 2.5       | 5.8               | 4.7              | 3.4               | 5.8          | 5            | 2.5          | 3.6         |             | 4.8          | 4.6    | 3.1             | 3.3          | 3.9          |         | 6.9                                                       | 4.4         | 5.3            | 4          |
|          | Na⁺                          | 0.12         | 0.1            | < 0.067      | < 0.067     | 0.032            | 0.039           | 0.058        | 0.1       | 0.19              | 0.036            | 0.16              | 0.1          | 0.23         | 0.12         | 0.21        |             | 0.21         | 0.2    | 0.1             | <0.020       |              |         | 0.32                                                      | 0.2         | 0.16           | 0.092      |
|          |                              | 0.87         | 0.77           | 0.39         | 0.46        |                  | 0.88            |              | 0.82      |                   | 1.4              |                   | 1.7          | 1.7          |              | 1.2         |             | 1.5          | 1.5    | 1.1             | 1.1          | 1.3          |         | 2.2                                                       | 1.4         | 1.7            | 1.4        |
|          | NH <sub>4</sub> <sup>+</sup> |              |                |              |             |                  |                 | 0.87         |           | 1.8               |                  | 1.1               |              |              | 0.95         |             |             |              |        |                 |              |              |         |                                                           |             |                |            |
|          | K <sup>+</sup>               | 0.032        | 0.082          | 0.044        | < 0.035     | 0.035            | 0.061           | 0.068        | 0.058     | 0.046             | 0.09             | 0.13              | 0.047        | 0.05         | 0.09         | 0.17        | -           | 0.16         | 0.12   | 0.13            | <0.24        | <0.24        | < 0.035 | 0.13                                                      | 0.15        | 0.16           | 0.094      |
|          | Mg <sup>2+</sup>             | 0.01         | 0.017          | < 0.042      | < 0.042     | 0.013            | 0.0048          | 0.0075       | 0.014     | 0.021             | 0.0077           | 0.027             | 0.026        | < 0.021      | < 0.005      | 0.02        | -           | 0.04         | 0.041  | 0.03            | < 0.15       | < 0.15       | 0.013   | 0.039                                                     | 0.055       | 0.012          | 0.011      |
|          | Ca <sup>2+</sup>             | 0.011        | <0.018         | < 0.061      | < 0.061     | 0.0091           | 0.021           | 0.052        | 0.041     | 0.036             | 0.032            | 0.067             | 0.44         | <0.028       | 0.04         | 0.03        | -           | 0.09         | 0.093  | <0.1            | <0.16        | <0.16        | < 0.064 | 0.13                                                      | 0.43        | < 0.026        | < 0.04     |
| 無機成分     | Na                           | -            | 170            | 41           | 48          | -                | -               | -            | 100       | 210               | 320              | 170               | 350          | 290          | 120          | 240         | 220         | 140          |        | 120             | 37           |              |         | 220                                                       | 94          | 160            | 91         |
| (AL)-X)3 | ΔΙ                           | 15           | <32            | 88           | <33         |                  |                 | -            | <250      | 41                | 40               | 54                | 290          | 20           | <9           | 50          |             | 74           |        | 88              | <18          |              |         | 28                                                        | 13          | 41             | 38         |
|          | Çi                           | - 10         | - 102          | - 00         | - 100       | _                |                 | _            | 100       | 120               | 84               | 130               | 770          | 43           | 40           | 70          |             | 95           |        | 100             | 17           |              |         | 100                                                       | 90          | 19             |            |
|          | V V                          |              | 110            | 66           | <11         | 430              | 47              | 120          | 66        | 76                | 65               |                   | 130          | 110          | 60           | 160         |             | 130          |        | 91              | 69           |              |         | 90                                                        | 90          | 140            | 77         |
|          | Ca                           | -            | 110            | <87          | <87         | 17               | <1.2            | 15           | <460      | 54                | 36               | 60                | 240          | 40           | 16           | 40          |             | 62           |        | 66              | <49          |              |         | 64                                                        | 17          | 50             | 39         |
|          | Sc                           | <0.010       | <0.71          | <0.011       | <0.011      | <0.044           | <0.044          | <0.044       | <0.33     | < 0.073           | <0.073           | 0.095             | 0.084        | <0.91        | 0.06         | 0.06        |             | <0.11        |        | <0.07           | 0.026        |              | <0.0050 | <0.2                                                      | <0.2        | <0.019         | <1.1       |
|          | Ti                           | 2.9          | <9.6           | <0.011       | <0.011      | 2.8              | <1.4            | 1.4          | <6.2      | 3.2               | 2.2              | 4.1               | 25           | <4.2         | <2           | 0.06        | 8.8         | 5.1          |        | 7.1             | 1.1          | 2.4          |         | ۷.۷.۷                                                     | <0.2        | 1.1            | 5.1        |
|          | V                            | 2.9          | < 9.0          | 0.73         | 0.72        | 2.8              | 0.92            | 4.3          | 2.5       | 4.9               | 4.4              | 4.1               | 12           | 4.2          | 1.7          | 3.8         |             | 8.2          |        | 2.2             | 0.91         | 1.5          |         | 5.1                                                       | 0.8         | 2.7            | 1.7        |
|          | V<br>Cr                      | <0.39        | < 0.60         | 0.73         | 0.72        | 1.6              | <0.29           | 0.54         | 2.5       | <1.1              | 4.4<br><1.1      | 1.5               | <1.1         | 3.3          | <0.9         | 1.4         |             | <0.38        |        |                 | <2.5         |              |         | 0.7                                                       | 0.8         | <1.5           | 0.53       |
|          | Mn                           | <0.39<br>1.5 | 0.86           | 1.3          | 0.75        | 3.7              | <1.6            | <1.6         | 3.4       |                   | 1.1              | 4.1               | 9.2          | 4.6          | <0.9<br>1.2  | 4.7         |             | 2.6          |        | 2.3             | <2.5         | 1.5          |         | 2.2                                                       | 2.1         | <1.5           | 2.6        |
|          | Fe                           | 41           | <21            | 56           | 25          |                  | 4.5             | 7.2          | 3.4<br>81 | 3.8<br>90         | 39               | 110               | 300          | 100          | 30           | 80          |             | 92           |        | 2.3<br>96       | 13           |              |         | 43                                                        | 40          | 23             | 35         |
|          | Co                           | 0.012        | <0.12          | <0.06        | 0.09        | 0.041            | <0.027          | 0.042        | < 0.034   | 0.06              | < 0.05           | <0.05             | 0.13         | <0.14        | <0.08        | <0.08       |             | < 0.83       |        | < 0.06          | 0.035        |              |         | 0.09                                                      | <0.2        | 0.019          | < 0.039    |
|          | Ni                           | 0.012        | 4.8            | 0.67         | 0.09        | 5.9              | <0.027          | 1.8          | 0.72      | 1.5               |                  |                   |              |              | 0.3          | 1.3         |             | 2.3          | 3.2    | 1.1             | 0.035        | 0.024        |         | 2.1                                                       | <0.4        | 0.019          |            |
|          | C                            | 2.5          | <2.3           | <2.4         | 7.3         | 9.6              | 0.72            | 3.2          | 2.6       | <1.4              | 1.5<br>1.6       | 1.2<br>2.2        | 3.5<br>3.2   | 2.2          | 2.5          | 6.1         |             | <4.4         |        | 2.4             | 1.5          |              |         | 2.1                                                       | 1.6         | 3.3            | 0.93       |
|          | Zn                           | 13           | <2.3<br>45     |              |             |                  |                 |              | <33       | 27                | 5.7              | 18                | 19           | 18           | 2.5          | 36          |             | 11           |        |                 | <5.2         | <41          |         | 2.2                                                       | 1.0         | <28            |            |
|          | Δ11<br>Δ =                   | 0.95         | 0.22           | 7.2<br>0.2   | 8.6<br>0.21 | 1.2              | <1.1<br>0.24    | 13<br>0.3    | 0.74      | 0.75              | 0.72             | 0.78              | 0.86         | 1.1          | 0.3          | 0.9         |             | 1.1          |        | 14<br>0.59      | 0.27         | 0.38         |         | <0.7                                                      | <0.7        | <20            | 15<br>0.56 |
|          | Se                           | 0.95         | 0.22           | 0.26         | 0.46        | 1.7              | < 0.49          | < 0.49       | 0.74      | <u>0.75</u><br><1 | <1               | <u>0.76</u><br><1 | <1           | 0.99         | 0.5          | 0.9         | 1.2         | <1.1         | 0.79   | 0.59            | 0.27         | 0.36         |         | 0.6                                                       | <1          | 0.66           | 0.56       |
|          | Rb                           | - 0.057      | 0.91           | 0.36         | 0.46        | 0.38             | 0.085           | 0.29         | <0.75     | 0.18              | 0.17             |                   | 0.37         | 0.99         | 0.13         | 0.22        |             | <1.1         |        | 0.9             | 0.26         |              |         | 0.35                                                      | <0.1        | 0.86           | 0.77       |
|          |                              |              |                |              |             |                  |                 |              |           |                   |                  |                   |              |              |              |             |             |              |        |                 |              |              |         |                                                           |             |                | <0.74      |
|          | Mo                           | 0.091        | <2.3           | <0.009       | <0.009      | 0.9              | <0.081          | 0.23         | 0.47      | 0.27              | 0.14             | 0.26<br>0.36      | 0.54<br>0.87 | 0.44         | < 0.5        | <0.5        | 0.7<br>2.7  | <1.3         | 0.38   | 0.34            | 0.089        | 0.12<br>0.34 |         | 0.8                                                       | 0.9         | 0.25           | 0.5        |
|          | Sb                           | 0.31         | 0.64           | 0.040        | 0.016       | 3.6              | 0.52            | 0.044        | 0.7       | 0.48              | 0.025            |                   | 0.041        | 0.69         | 0.4          | 0.8         |             | <6.3         |        | 2.9<br><0.06    |              |              |         | 0.7                                                       | 0.9         |                | <0.029     |
|          | Cs<br>Ba                     | 1.1          | <0.034<br>4.4  | 0.016<br>2.7 | 1.8         | 0.032            | <0.017<br><0.85 | 0.041<br>5.6 | 0.019     | 3.5               | 1.2              | 0.028             | 3.3          | 0.077<br>1.7 | <0.05<br>3.8 | <0.05       |             | <9.1<br><10  |        | 4.7             | 0.036<br>2.6 |              |         | 3.1                                                       | <0.1        | 0.028          | 3.3        |
|          | ва                           |              |                |              |             |                  |                 |              | 0.004     |                   |                  |                   |              |              |              |             |             |              |        |                 |              |              |         |                                                           | 0.07        |                |            |
|          | La                           | 0.023        | <0.11          | 0.024        | 0.022       | <0.043           | <0.043          | <0.043       | <0.034    | 0.15              | 0.038            | 0.095             | 0.081        | < 0.39       | < 0.03       | 0.07        |             | <11          |        | 0.07            | 0.032        | 0.019        |         | < 0.07                                                    | < 0.07      | 0.026          | 0.028      |
|          | Ce                           | 0.03         | <0.079         | 0.036        | 0.026       | <0.023           | <0.023          | <0.023       | <0.15     | 0.1               | 0.03             | 0.045             | 0.15         | < 0.34       | <0.04        | 0.08        |             | <13          |        | 0.07            | 0.038        | 0.029        | -       | <0.08                                                     | <0.08       | 0.034          | 0.055      |
|          | Sm<br>Hf                     | <0.0095      | <0.15          | 0.0044       | <0.0005     | <0.027<br><0.048 | < 0.027         | <0.027       | <0.013    | <0.021            | <0.021<br><0.059 |                   | <0.021       | < 0.062      | <0.1         | <0.1        | <0.56       | <0.018       |        | <0.08           | <0.028       | 0.0033       | -       | <0.2                                                      | <0.2        | <0.0083        | <0.034     |
|          | HI                           | 0.17         | <0.19          | <0.012       | <0.012      |                  | <0.048          | <0.048       |           |                   |                  | 0.4               |              | <0.41        | <0.08        | 0.08        | - 0.40      | 0.018        | <0.04  |                 | 0.061        | <0.00092     | -       | 0.6<br>2.4                                                | 0.3         | 0.049          | <0.49      |
|          | VV                           | 0.17         | <0.31          |              | < 0.012     | 0.84             | 0.056           | 0.1          | 0.059     | 0.093             | 0.095            | 0.057             | 0.11         | <0.38        |              |             |             |              | 0.33   | 0.08            | 0.066        | 0.017        | -       |                                                           | 2.2         | 0.0037         | 0.1        |
|          | Ta<br>Th                     | -0.0074      | <0.23<br><0.22 | <0.0031      | < 0.0031    | <0.045           | <0.045          | <0.045       | <0.0022   | <0.02             | < 0.02           | < 0.02            | < 0.02       | < 0.30       | < 0.07       | <0.07       | -           | <0.019       |        | <0.022<br><0.07 | < 0.0051     | <0.012       |         | 1.6<br>0.1                                                | 0.8         |                | < 0.63     |
|          | Pb                           | <0.0074      | <0.22<br>1.1   | 0.02         | < 0.02      | <0.029<br>7.7    | <0.029          | <0.029       | <0.0082   | <0.016<br>3.6     | <0.016<br>2.1    | <0.016<br>4.1     | <0.016       | <0.21<br>5.7 | <0.2<br>2.1  | <0.2<br>6.4 | 3.9         | <3.4<br><2.1 | <0.014 | <0.07<br>3.2    | 0.024        |              |         | U.1                                                       | <0.1<br>3.6 | <0.0076<br>4.7 | <0.078     |
|          | PD<br>その他(Be)                | 2.1          | <0.18          | 1.3          | 1.5         | 1.1              | 1.3             | 3.4          | 4         | <0.015            | <0.015           |                   | < 0.015      | 5.7          | 2.1          | 0.4         | 3.9         | <2.1         | 3.4    | 3.2             | 1.5          | 1.9          | 1.8     | 3                                                         | 3.0         | 4./            | 3.8        |
|          | その他(Cd)                      | -            | <0.19          |              |             | -                |                 | -            | -         | 0.13              | 0.097            | 0.18              | 0.15         | -            | -            |             | <del></del> |              | -      | -               | -            | -            | 0.033   | 0.16                                                      | <0.2        | -              |            |
|          | その他(Sr)                      |              | - <0.19        | -:-          |             | -                | -               |              |           | - 0.13            | 0.031            | - 0.10            | - 0.13       | -            |              |             |             |              |        | -               |              | -            | - 0.033 | - 0.10                                                    | ₹0.2        |                | -          |
|          | その他(SI)                      | -            |                |              | -           | -                |                 | -            |           |                   | -                |                   | -            |              | -            |             | -           |              | -      | -               |              | -            | -       | -                                                         | -           |                |            |
|          | その他(TI)                      | -            | -              |              | -           | -                | -               | <del></del>  | -         | ÷                 | -                | -                 | -            | -            | -            |             | -           | -            | -      | -               | -            | -            | -       | -                                                         |             | -              |            |
| 炭素成分     | OC1                          | 0.062        | <0.028         | <0.05        | 0.07        | - 0              | - 0             | - ^          | - 0       | 0.081             | 0.11             |                   | <0.046       | <0.10        | <0.4         | <0.4        |             | 0.16         |        | 0.12            | 0.0084       | <0.021       | <0.039  | <0.08                                                     | <0.04       | <0.027         | <0.023     |
| 灰条成刀     | OC2                          | 0.63         | 0.87           | 0.38         | 0.55        |                  | 1.2             | 1.5          | 0.72      | 2.4               | 2                | 0.030             | 0.88         | 3.3          | 0.7          | 0.7         |             | 1.1          |        | 1.6             | 1.2          | 1.4          |         | 1.6                                                       | 1           | 1.6            | 0.94       |
|          | OC3                          | 0.53         | 0.71           | 0.9          | 0.62        |                  | 1.2             | 1.2          | 0.72      | 0.75              | 0.68             | 1.3               | 0.8          | 0.73         | 0.5          | 0.7         |             | 0.72         |        | 0.98            | 0.82         | 0.95         | 0.0     | 1.2                                                       | 0.7         | 1.1            | 0.66       |
|          | OC4                          | 0.33         | 0.41           | 0.32         | 0.36        |                  | 0.51            | 0.56         | 0.54      | 0.73              | 0.00             | 0.44              | 0.34         | 0.73         | 0.4          | 0.4         |             | 0.72         |        | 0.46            | 0.52         |              |         | 0.5                                                       | 0.36        | 0.89           | 0.5        |
|          | Ocpyro                       | 0.39         | 1.2            | 0.36         | 0.53        | 1.4              | 0.85            | 0.82         | 0.63      | 1.2               | 0.9              | 1.3               | 1.3          | 1.4          | 1.1          | 0.82        |             | 0.68         | 0.78   | 0.74            | 1.1          |              |         | 1.7                                                       | 0.84        | 1.7            | 0.99       |
|          | EC1                          | 0.59         | 1.5            | 0.36         | 0.55        | 2.3              | 0.00            | 1.1          | 0.63      | 1.4               | 0.9              | 1.5               | 1.3          | 2.2          | 0.81         | 0.62        |             | 1.2          |        | 1.3             | 1.1          | 1.3          |         | 1.7                                                       | 1.1         | 1.7            | 0.33       |
|          | EC2                          | 0.57         | 0.75           | 0.44         | 0.83        | 0.83             | 0.48            | 0.47         | 0.76      | 0.59              | 0.77             | 0.51              | 0.66         | 0.54         | 0.61         | 0.88        |             | 0.24         |        | 0.39            | 0.67         | 0.75         |         | 0.61                                                      | 0.41        | 1.0            | 0.66       |
|          | EC2<br>EC3                   | 0.15         | 0.75           | 0.025        | 0.38        | 0.83             | 0.48            | 0.47         | 0.049     | 0.59              | 0.48             | 0.06              | 0.66         | 0.025        | 0.41         | 0.33        |             | 0.24         |        | 0.39            | 0.035        |              |         | < 0.06                                                    | 0.029       | <0.028         | <0.028     |
|          | OC                           | 1.9          | 3.2            | 0.025        | 2.1         | 5.3              | 3.6             | 4.1          | 2.6       | 4.7               | 3.9              | 4.1               | 3.3          | 5.9          | 2.7          | 2.6         |             | 3.2          | 3.3    | 3.9             | 3.6          |              |         | <u.u0< th=""><th>2.9</th><th>5.3</th><th>3.1</th></u.u0<> | 2.9         | 5.3            | 3.1        |
|          | EC                           | 0.33         | 1.1            | 0.44         | 0.54        | 1.8              | 0.66            | 0.78         | 0.72      | 0.83              | 0.38             | 0.77              | 0.83         | 1.3          | 0.15         | 0.2         |             | 0.77         |        | 3.9             | 0.7          | 0.85         |         | 0.91                                                      | 0.7         | 1.2            | 0.67       |
|          | WSOC                         | 0.33         | 1.1            | 0.44         | 1.3         |                  | 0.00            | 0.76         | 0.12      | 2.6               | 0.30             | 2.9               | 3.2          | 2.2          | 0.13         | 0.2         | +           | 0.77         | 2.7    |                 | 2.2          | 4 1          |         | 0.81                                                      | 0.7         | 1.2            | 0.07       |
|          | 117000                       | -            | 1.8            | 0.00         | 1.3         |                  | -               |              | -         | ∠.७               | . 3              | 2.9               | 3.2          | ۷.۷          | -            |             |             | -            | L 2.1  | _               | ۷.۷          | 4.1          | _       | -                                                         | -           | 4              |            |

| 表4-1-   |                              | <u>8日から</u> |              |             |          |         |              |             |             |          |             |         |             |             |            |         |             |             |            | ( PM2.5     |          |           | ナン成分     |         | 無機风     | 分:ng/m       |             |
|---------|------------------------------|-------------|--------------|-------------|----------|---------|--------------|-------------|-------------|----------|-------------|---------|-------------|-------------|------------|---------|-------------|-------------|------------|-------------|----------|-----------|----------|---------|---------|--------------|-------------|
| 自治      | 体名                           | 茨城県         | 栃木県          | 群馬県         | 群馬県      | 埼玉県     | 埼玉県          | 埼玉県         | さいたま市       | 千葉県      | 千葉県         | 千葉県     | 千葉県         | 千葉市         | 東京都        | 東京都     | 神奈川県        | 横浜市         | 川崎市        | 相模原市        | 山梨県      | 山梨県       | 長野県      | 静岡県     | 静岡県     | 静岡市          | 浜松市         |
| 調査      | 地点名                          | 土浦          | 真岡           | 前橋          | 富岡       | 鴻巣      | 四副           | 秩父          | 城南          | 市原       | 勝浦          | 佐倉      | 富津          | 千葉          | 綾瀬         | 多摩      | 大和          | 横浜          | 川崎         | 相模原         | 甲府       | 東山梨       | 長野       | 富士      | 湖西      | 静岡           | 浜松          |
| 基本事項    | PM2.5濃度                      | 10.3        | 11           | 11          | 9.8      | 11.2    | 9.3          | 11          | 12.1        | 9.8      | 9.5         | 10.5    | 10.5        | 9.7         | 10.5       | 11.6    | 12          | 11.2        | 10         | 10.4        | -        | -         | 11.2     | 11.3    | 11.1    | 10.4         | 11.1        |
| イオン成分   | CI-                          | < 0.013     | <0.048       | < 0.055     | <0.055   | < 0.054 | < 0.054      | < 0.054     | 0.0096      | <0.027   | < 0.027     | < 0.027 | <0.027      | < 0.0045    | < 0.07     | <0.07   | -           | <0.02       | < 0.0091   | < 0.02      | < 0.0022 | <0.0022   | 0.011    | < 0.014 | < 0.014 | 0.038        | <0.00062    |
|         | NO3-                         | 0.14        | 0.2          | 0.12        | 0.12     | 0.19    | 0.12         | 0.15        | 0.17        | 0.065    | 0.02        | 0.063   | 0.085       | 0.04        | 0.2        | 0.2     | -           | 0.18        | 0.093      | 0.17        | 0.097    | 0.087     | <0.13    | 0.059   | 0.065   | <0.1         | 0.11        |
|         | SO42-                        | 1.2         | 1.3          | 1.1         | 1.3      | 1.4     | 1.3          | 1.9         | 1.1         | 0.69     | 0.47        | 1.6     | 0.7         | 0.68        | 1.4        | 1.4     |             | 1.2         | 1.4        | 1.7         | 2.1      | 2.7       |          | 2.3     | 3       | 1.9          | 2.7         |
|         | Na <sup>+</sup>              | 0.073       | <0.058       | <0.067      | <0.067   | 0.069   | 0.046        | 0.08        | 0.093       | 0.078    | <0.0088     | 0.09    | 0.024       | 0.076       | 0.13       | 0.16    |             | 0.12        |            | 0.12        | <0.020   |           |          | 0.12    | 0.23    | 0.15         | 0.17        |
|         |                              |             |              |             |          |         |              |             |             |          |             |         |             |             |            |         |             |             |            | -           |          |           |          |         |         |              |             |
|         | NH <sub>4</sub> <sup>+</sup> | 0.48        | 0.55         | 0.47        | 0.36     | 0.57    | 0.51         | 0.72        | 0.34        | 0.14     | 0.15        | 0.53    | 0.15        | 0.2         | 0.59       | 0.57    |             | 0.38        | 0.45       | 0.59        | 0.73     | 0.97      |          | 0.86    | 1.1     | 0.64         | 0.88        |
|         | K <sup>+</sup>               | 0.075       | 0.041        | 0.06        | 0.047    | 0.078   | 0.053        | 0.14        | 0.11        | 0.085    | 0.029       | 0.15    | 0.061       | 0.042       | 0.08       | 0.11    | -           | 0.08        | 0.08       | 0.1         | < 0.24   | <0.24     | 0.045    | 0.095   | 0.076   | 0.095        | 0.083       |
|         | Mq <sup>2+</sup>             | 0.01        | 0.0094       | < 0.042     | < 0.042  | 0.017   | 0.0056       | 0.0035      | 0.013       | 0.0095   | 0.0031      | 0.02    | 0.011       | < 0.021     | < 0.005    | < 0.005 | - 1         | 0.02        | 0.017      | 0.02        | < 0.15   | <0.15     | < 0.0069 | 0.015   | 0.025   | 0.011        | 0.019       |
|         | Ca <sup>2+</sup>             | 0.0094      | <0.018       | < 0.061     | < 0.061  | 0.0074  | 0.011        | 0.035       | 0.039       | 0.029    | 0.0069      | 0.064   | 0.13        | <0.028      | < 0.02     | <0.02   | -           | 0.17        | 0.061      | <0.1        | <0.16    |           |          | <0.11   | <0.11   | 0.041        | < 0.04      |
| 無機成分    | Na                           | 0.0004      | 150          | 44          | 54       | 0.0014  | -            | - 0.000     | 120         | 99       | 79          | 93      | 74          | 86          | 140        | 170     |             | 98          |            | 130         | 43       |           |          | 79      | 230     |              | 61          |
| 無り残り及り」 | Να                           | 11          | <32          | 83          | <33      |         | -            | -           | 260         | 43       | <7.9        | 45      | 46          | 9.3         | <9         | <9      |             | 40          |            | 29          | 21       |           |          | 18      | ×1      | 24           | 8.2         |
|         | AI                           |             | <32          | 0.0         | <33      |         |              | -           |             |          |             |         |             |             |            | 70      |             | 100         |            |             |          |           |          |         |         |              | 0.2         |
|         | SI                           | -           | -            | - 70        |          | -       |              | _           | 120         | 55       | 29          | 130     | 120         | 8.6         | 40         |         |             |             |            | 48          | 25       |           |          | 80      | <30     |              | - 40        |
|         | K                            | -           | 83           | 76          | 50       |         | 51           | 93          | 130         | 110      | 71          |         | 78          | 91          | 60         | 90      |             | 71          |            | 70          | 66       |           |          | 50      | 60      |              | 19          |
|         | Ca                           | -           | 120          | 120         | <87      | 1.2     | <1.2         | 6.6         | <460        | 75       | <25         | 64      | 70          | 18          | 15         | 30      |             | 120         |            | 34          | <49      |           |          | 150     | 37      |              | <20         |
|         | Sc                           | <0.010      | <0.71        | <0.011      | < 0.011  | <0.044  | <0.044       | <0.044      | < 0.33      | < 0.073  | < 0.073     |         | < 0.073     | < 0.91      | 0.07       | 0.06    |             | <0.11       |            | < 0.07      | 0.039    |           |          | <0.2    | <0.2    |              | <1.1        |
|         | Ti                           | 3.6         | <9.6         | -           | -        | <1.4    | 1.5          | <1.4        | 9.9         | 1.9      | <1.7        | 3.7     | 3.1         | <4.2        | <2         | <2      |             | 4.3         | 2.8        | 3.1         | 1.7      |           |          | 1.7     | <2      |              | 1.5         |
|         | V                            | 1.1         | 0.42         | 0.86        | 0.83     | 0.51    | 1.3          | 3.1         | 2.6         | 1.3      | 1.4         | 1.1     | 1.3         | 1.1         | 2          | 5.3     |             | 5.8         |            |             | 1.7      |           |          | 1.6     | 4       | 2.1          | 2.6         |
|         | Cr                           | 0.45        | <0.60        | 0.63        | 0.58     |         | <0.29        | 0.4         | 0.73        | 7.8      | <1.1        | <1.1    | <1.1        | < 0.39      | <0.9       | 0.9     |             | 0.62        |            | 0.6         | <2.5     |           |          | 2.1     | 0.2     |              | 1.4         |
|         | Mn                           | 6.8         | 1.4          | 2.4         | 3        | 1.8     | 2.1          | 2.7         | 4           | 9.3      | 0.25        | 3.3     | 1.9         | 0.53        | 2.9        | 4.3     |             | 4.7         |            | 3.3         | 1.5      |           |          | 1.6     | 1.9     |              | 2           |
|         | Fe                           | 74          | 21           | 64          | 52       |         | 37           | 130         | 110         | 120      | <14         | 79      | 56          | 19          | 50         | 120     |             | 120         | 67         | 75          | 25       |           |          | 31      | 28      |              | 17          |
|         | Co                           | 0.013       | <0.12        | < 0.06      | <0.06    | 0.066   | <0.027       | < 0.027     | 0.048       | < 0.05   | < 0.05      | < 0.05  | < 0.05      | < 0.14      | <0.08      | <0.08   |             | <0.83       |            | < 0.06      | 0.053    | 0.021     |          | 0.06    | <0.2    |              | < 0.039     |
|         | Ni                           | 0.67        | <4.0         | 0.52        | 0.47     | 3.5     | <0.12        | 0.94        | 1.1         | 0.9      | < 0.39      | 0.58    | 0.44        | <1.3        | 0.4        | 1.6     | 0.98        | 2.3         | 1.8        | 0.77        | 0.56     | 0.4       | 0.12     | <0.4    | 0.7     | 0.76         | 0.72        |
|         | Cu                           | 3.4         | <2.3         | <2.4        | <2.4     | 1.4     | 1.8          | 1.2         | 3.9         | 5.1      | <1.4        | <1.4    | 3.7         | 1.1         | 2.7        | 2.7     | <11         | <4.4        | 2          | 1.4         | 1.3      | 3.7       | 2.2      | 0.93    | 1.5     | 62           | 1.1         |
|         | Zn                           | 45          | <20          | 15          | 17       | 66      | <1.1         | 11          | <33         | 74       | <2.5        | 12      | 7.6         | 5.3         | 17         | 27      | 19          | 11          | 8.3        | 16          | 13       | <41       | 6        | 120     | 16      | 35           | 10          |
|         | As                           | 0.27        | 0.26         | 0.4         | 0.37     | 0.1     | 0.3          | 0.25        | 0.45        | 0.15     | 0.19        | 0.18    | 0.12        | < 0.38      | 0.3        | 0.4     | <0.48       | <0.8        | 0.2        | 0.34        | 0.33     | 0.42      | 0.097    | < 0.7   | < 0.7   | 0.61         | 0.28        |
|         | Se                           | 0.082       | 1.4          | 0.43        | 0.81     | < 0.49  | 0.74         | < 0.49      | 0.52        | <1       | <1          | <1      | <1          | < 0.23      | 0.8        | 1       | 2           | <1.1        | 0.57       | 2           | 0.27     | 0.44      | 0.11     | <0.3    | <1      | 0.28         | 0.13        |
|         | Rb                           | -           | 0.16         | 0.17        | 0.11     | 0.11    | 0.096        | 0.29        | 1.3         | 0.19     | 0.091       | 0.2     | 0.11        | 0.13        | 0.14       | 0.26    | <0.29       | <1.1        | 0.12       | 0.12        | 0.12     | 0.14      | 0.11     | 0.2     | <0.1    | 0.15         | 0.053       |
|         | Mo                           | 0.12        | <2.3         | < 0.009     | <0.009   | 0.22    | 0.16         | 0.18        | 0.74        | 1.5      | < 0.066     | 0.13    | 0.12        | 0.17        | < 0.5      | 0.7     | 0.35        | <1.3        | 0.86       | 0.3         | 0.16     | 0.21      | 0.062    | <0.6    | <0.6    | 0.16         | < 0.74      |
|         | Sb                           | 0.8         | 0.62         | -           | -        | 2.6     | 0.91         | 0.51        | 1.2         | 0.38     | 0.047       | 0.68    | 0.13        | 0.86        | 0.5        | 0.8     | 0.94        | <6.3        | 0.27       | 0.87        | 0.52     | 0.72      | 0.21     | 0.4     | 0.6     | 0.49         | 0.23        |
|         | Cs                           | 0.017       | < 0.034      | 0.017       | 0.02     | < 0.017 | < 0.017      | 0.023       | 0.028       | <0.02    | < 0.02      | < 0.02  | <0.02       | < 0.067     | < 0.05     | <0.05   | < 0.13      | <9.1        | 0.014      | < 0.06      | 0.037    | 0.019     | -        | <0.1    | <0.1    | 0.011        | < 0.029     |
|         | Ва                           | 2.2         | 1.9          | 2.5         | 2.4      | 5.5     | <0.85        | <0.85       | 14          | 2.1      | 2.2         | 3.6     | 1           | 2.2         | 4.3        | 3.3     |             | <10         |            | 3.5         | 1.4      | 2.8       | -        | 1.8     | 2.2     | 2.3          | 1.5         |
|         | La                           | 0.047       | <0.11        | 0.037       | 0.037    | < 0.043 | < 0.043      | < 0.043     | 0.13        | 0.069    | < 0.021     | 0.059   | < 0.021     | < 0.39      | 0.07       | 0.1     | < 0.37      | <11         | 0.028      | 0.07        | 0.043    | 0.025     | 0.014    | < 0.07  | < 0.07  | 0.06         | <0.025      |
|         | Ce                           | 0.032       | < 0.079      | 0.06        | 0.043    | <0.023  | <0.023       | <0.023      | 0.24        | 0.099    | < 0.023     | 0.072   | 0.033       | <0.34       | 0.09       | 0.1     |             | <13         |            | 0.07        | 0.047    | 0.03      |          | <0.08   | <0.08   |              | 0.041       |
|         | Sm                           | < 0.0095    | <0.15        | 0.005       | 0.0022   | <0.027  | <0.027       | <0.027      | 0.015       | < 0.021  | <0.021      |         | <0.021      | <0.062      | <0.1       | <0.1    | <0.56       | <19         |            | <0.08       | 0.031    | <0.0022   | -        | <0.2    | <0.2    |              | < 0.034     |
|         | Hf                           | -           | <0.19        | <0.012      | < 0.012  | < 0.048 | <0.048       | <0.048      | 0.014       | < 0.059  | < 0.059     | < 0.059 | < 0.059     | < 0.41      | <0.08      | <0.08   | -           | 0.02        | < 0.04     | < 0.03      | 0.078    | 0.0014    | -        | <0.2    | <0.2    |              | < 0.49      |
|         | w                            | 0.2         | <0.31        | <0.012      | <0.012   | 0.055   | 0.14         | 0.16        | 0.2         | 0.16     | < 0.037     |         | <0.037      | <0.38       | 0.08       | <0.06   | 0.45        | 2.6         | 0.099      | 0.14        | 0.082    | 0.023     | -        | 1.1     | 1       | 0.02         | 0.23        |
|         | Та                           | - 0.2       | <0.23        | < 0.0031    | < 0.0031 | <0.045  | < 0.045      | <0.045      | 0.0025      | <0.02    | < 0.02      | <0.02   | <0.02       | <0.30       | < 0.07     | <0.07   |             | < 0.019     |            | <0.022      | < 0.0051 | < 0.012   | -        | <0.7    | <0.5    | 0.0-         | < 0.63      |
|         | Th                           | < 0.0074    | <0.22        | <0.0031     | <0.0031  | <0.029  | <0.029       | <0.029      | 0.0023      | <0.016   | <0.016      |         | <0.016      | <0.21       | <0.07      | <0.07   |             | <3.4        |            | < 0.022     | 0.03     | < 0.00069 |          | <0.1    | <0.1    |              | <0.03       |
|         | Pb                           | 3.9         | 1.4          | 3.2         | 1.9      | 1.4     | 1.6          | 2.3         | 5.6         | 1.2      | 0.27        | 2.3     | 1.2         | 2.9         | 2.6        | 5.5     | 1.6         | <2.1        | 1.9        | 20.07       | 1.3      | 2.2       |          | 1       | 2.3     |              | 0.96        |
|         | その他(Be)                      | - 3.9       | <0.18        | - 0.2       | - 1.9    | - 1.4   | - 1.0        | - 2.3       | - 0.0       | <0.015   | <0.015      |         | <0.015      |             |            |         | 1.0         | ~4.1        | - 1.9      |             | - 1.3    | - 2.2     | - 0.00   | '       | - 2.3   |              | - 0.00      |
|         | その他(Cd)                      |             | <0.19        |             |          | -       |              |             |             | 0.091    | < 0.063     | < 0.063 | < 0.063     | -           | -          |         |             |             | -          |             | -        |           | 0.025    | < 0.05  | <0.2    | -            | -           |
|         | その他(Sr)                      |             |              | - :         |          |         | -            |             |             | 0.031    |             | -       | -           |             |            |         |             |             | -          |             |          | -         | - 0.023  | - <0.03 |         |              | -           |
|         | その他(SI)                      | -           |              |             |          |         | -            | -           |             |          |             |         |             |             | -          |         | -           |             | -          | -           |          | -         |          | -       |         |              |             |
|         | その他(TI)                      | -           | <del>-</del> |             |          | -       | <del>-</del> |             |             |          | -           |         |             | -           |            |         | <del></del> | <del></del> | -          |             |          | -         | -        | -       |         | -            |             |
| 炭素成分    | OC1                          | 0.062       | <0.028       | 0.19        | 0.19     | - 0     | - 0          | - 0         | - 0         | 0.056    | 0.076       | 0.051   | <0.046      | <0.10       | <0.4       | <0.4    |             | 0.24        |            | 0.13        | <0.0070  | <0.021    | 0.041    | <0.08   | <0.04   | 0.028        | <0.023      |
| 灰糸风刀    | OC2                          | 0.062       | 0.028        | 0.19        | 0.19     | 1.4     | 1.1          | 1.8         | 1.2         | 0.056    | 1.8         | 0.031   | 0.73        | 2.7         | 0.8        | 0.7     |             | 0.24        |            | 1.3         | 1.3      | 1.3       |          | 1.3     | <0.04   | 0.020        | 1.1         |
|         |                              | 4.1.4       | 0.9          |             |          |         |              |             |             | <u> </u> |             |         |             |             |            |         |             |             |            |             |          | 1.3       |          |         | 4.4     | 0.04         |             |
|         | OC3                          | 0.88        | 0.50         | 1.2<br>0.53 | 0.00     | 1.6     | 1.3<br>0.63  | 1.4<br>0.63 | 1.5<br>0.83 | 0.04     | 1.7<br>0.53 |         | 1.6<br>0.56 | 1.3<br>0.61 | 1.0<br>0.6 | 1.0     |             | 1.5<br>0.81 | 1.4<br>0.8 | 1.2<br>0.59 | 0.89     |           |          | 1.1     | 1.1     | 0.91<br>0.64 | 1.1<br>0.57 |
|         | OC4                          |             | 0.59         |             | 0.63     | 0.75    |              |             |             | 0.64     |             | 0.66    |             |             |            | 0.6     |             |             |            |             | 0.6      |           |          | 0.4     | 0.41    |              |             |
|         | Ocpyro                       | 0.42        | 1.3          | 0.74        | 0.66     | 0.8     | 0.86         | 0.89        | 0.78        | 0.65     | 0.7         | 0.84    | 0.82        | 1.2         | 0.71       | 0.73    |             | 0.56        |            | 0.56        | 1        | 1.1       |          | 1.1     | 0.87    | 0.89         | 0.78        |
|         | EC1                          | • •         | 2            | 1           | 1        | 1.4     | 1.1          | 1.3         | 1.4         | 1.2      | 0.88        | 1.4     | 1           | 2.4         | 0.98       | 0.99    |             | 1.2         |            | 1.2         | 1        | 1.1       |          | 1.5     | 1.1     | 0.9          | 0.84        |
|         | EC2                          | 0.16        | 0.93         | 0.59        | 0.54     | 0.5     | 0.46         | 0.49        | 0.43        | 0.37     | 0.35        | 0.46    | 0.46        | 0.52        | 0.45       | 0.4     | _           | 0.21        |            | 0.32        | 0.74     | 0.9       |          | 0.91    | 0.39    | 0.67         | 0.59        |
|         | EC3                          | 0           | 0.065        | 0.03        | 0.06     | 0.03    | 0.025        | 0.035       | < 0.043     | 0.02     | 0.03        | 0.05    | 0.06        | 0.022       | 0.03       | 0.01    | -           | 0.02        |            | 0.05        | 0.036    |           |          | 0.07    | 0.012   |              | <0.028      |
|         | OC .                         | 2.5         | 3.8          | 3.4         | 3.5      | 4.6     | 3.9          | 4.7         | 4.3         | 6.3      | 4.8         | 4.3     | 3.7         | 5.7         | 3.1        | 3       | -           | 4.1         | 3.9        | 3.8         | 3.8      | 4.1       |          | 3.9     | 3.4     | 3.5          | 3.6         |
|         | EC                           | 0.5         | 1.7          | 0.88        | 0.94     | 1.1     | 0.73         | 0.94        | 1.1         | 0.94     | 0.56        | 1.1     | 0.7         | 1.8         | 0.75       | 0.67    | -           | 0.87        |            | 1           | 0.78     | 0.9       |          | 1.4     | 0.63    | 0.68         | 0.65        |
|         | WSOC                         | -           | 3.1          | 2           | 1.9      | 3.1     | -            | -           | 3           | 3        | 3.9         | 2.9     | 4.2         | 2.8         | -          | -       | -           | 2.8         | 3.2        | -           | 2.3      | 3.7       | 2.9      | 1.8     | 1.7     | 2            | -           |

| 表4-1-       | 7 7月29                       | リロから     | /月30日        | コま ご     |          |         |         |         |         |         |         |         |         |         |         |         |          |         |          | ( PM2.5 | ,炭素成     | 分,イス      | 「ン成分:    | :μg/m~ | 無機成2    | 分:ng/m    | ř)       |
|-------------|------------------------------|----------|--------------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|----------|---------|----------|-----------|----------|--------|---------|-----------|----------|
| 自治          | 台体名                          | 茨城県      | 栃木県          | 群馬県      | 群馬県      | 埼玉県     | 埼玉県     | 埼玉県     | さいたま市   | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市     | 東京都     | 東京都     | 神奈川県     | 横浜市     | 川崎市      | 相模原市    | 山梨県      | 山梨県       | 長野県      | 静岡県    | 静岡県     | 静岡市       | 浜松市      |
| 調査          | 地点名                          | 十浦       | 直岡           | 前橋       | 富岡       | 鴻巣      | 日高      | 秩父      | 城南      | 市原      | 勝浦      | 佐倉      | 富津      | 千葉      | 綾瀬      | 多摩      | 大和       | 横浜      | 川崎       | 相模原     | 甲府       | 東山梨       | 長野       | 富士     | 湖西      | 静岡        | 浜松       |
| 基本事項        | PM2.5濃度                      | 22.2     | 23.4         | 24.4     | 24.5     | 22.2    | 21.9    | 22.9    | 20.1    | 21.5    | 20.9    | 22.1    | 27.2    | 21.5    | 20.8    | 21.9    | 20.9     | 19.6    | 19.7     | 21.2    | - 1 713  | -         | 20.5     | 18.2   | 16      | 17.5      | 16.6     |
| イオン成分       | CI-                          | < 0.013  | <0.048       | < 0.055  | < 0.055  | < 0.054 | < 0.054 | < 0.054 | <0.0052 | <0.027  | < 0.027 | < 0.027 | <0.027  | 0.0083  | < 0.07  | < 0.07  | <0.058   |         | < 0.0091 | <0.02   |          | <0.0022   | 0.013    | 0.12   | < 0.014 | <0.02     | 0.078    |
| 1/3/2/100/3 | NO3-                         | 0.069    | 0.46         | 0.44     | 0.14     | 0.14    | 0.076   | 0.14    | 0.071   | 0.048   | 0.03    | 0.063   | 0.097   |         | 0.15    | 0.17    | 0.27     | 0.1     | 0.062    | 0.11    | 0.052    | 0.1       | <0.13    | 0.054  | 0.049   | <0.02     | < 0.05   |
|             |                              |          |              |          |          |         | 1.8     |         |         |         |         |         |         |         |         | 2.3     |          | 1.9     |          | 1.7     | 0.052    |           |          |        |         |           |          |
|             | SO42-                        | 1.9      | 2.6          | 1.9      | 1.7      | 1.8     |         | 1.8     | 1.9     | 1.6     | 0.89    | 1.6     | 1.5     | 1.8     | 1.3     |         | 2.1      |         | 2.3      |         | U        | 3.1       | 3.7      | 2.4    | 3.1     | 2.6       | 2.6      |
|             | Na <sup>+</sup>              | 0.051    | 0.072        | <0.067   | < 0.067  | 0.065   | 0.031   | 0.027   | 0.07    | 0.033   | <0.0088 | 0.09    | 0.023   | 0.059   | 0.08    | 0.13    | <0.23    | 0.09    | <0.11    | 0.06    | <0.020   | <0.020    | 0.027    | 0.2    | 0.16    | 0.11      | 0.18     |
|             | NH <sub>4</sub> <sup>+</sup> | 0.98     | 1.1          | 0.92     | 0.62     | 0.84    | 0.8     | 0.72    | 0.73    | 0.54    | 0.31    | 0.53    | 0.33    | 0.65    | 0.81    | 1       | 0.83     | 0.64    | 0.96     | 0.67    | 1.1      | 1.2       | 1.4      | 0.96   | 1.1     | 0.93      | 0.95     |
|             | 1/2                          | 0.13     | 0.14         | 0.13     | 0.09     | 0.11    | 0.079   | 0.12    | 0.086   | 0.14    | 0.052   | 0.15    | 0.07    | 0.13    | 0.1     | 0.13    | 0.1      | 0.09    | 0.1      | 0.12    | <0.24    | <0.24     | <0.035   | 0.13   | 0.078   | 0.08      | 0.13     |
|             | 21                           |          |              |          |          |         |         |         |         |         |         |         |         |         |         |         | _        |         |          |         |          |           |          |        |         |           |          |
|             | Mg <sup>2+</sup>             | <0.0082  | 0.013        | < 0.042  | < 0.042  | 0.015   | 0.0047  | 0.0032  | 0.011   | 0.011   | 0.0033  | 0.02    | 0.021   | 0.026   | < 0.005 | < 0.005 |          | 0.02    | 0.015    | 0.01    | <0.15    | <0.15     | < 0.0069 | 0.013  | 0.02    | < 0.0037  | < 0.0033 |
|             | Ca <sup>2+</sup>             | 0.0089   | 0.036        | 0.08     | < 0.061  | 0.011   | 0.014   | 0.043   | 0.049   | 0.041   | 0.013   | 0.064   | 0.46    | 0.035   | < 0.02  | < 0.02  | <0.28    | 0.12    | 0.026    | <0.1    | < 0.16   | < 0.16    | < 0.064  | 0.17   | < 0.11  | < 0.026   | < 0.04   |
| 無機成分        | Na                           | -        | 210          | 93       | 58       | -       | -       | -       | 97      | 74      | 47      | 51      | 90      | 53      | 110     | 140     | 110      | 77      | 87       | 89      | 32       | 95        | 63       | 62     | 160     | 120       | 49       |
|             | Al                           | 14       | 33           | 120      | 58       | -       | -       | -       | <250    | 43      | 12      | 41      | 270     | 13      | <9      | <9      | 32       | 46      | 9.6      | 37      | 21       | 24        | 95       | 7      | 7       | 28        | <4.2     |
|             | Çi.                          | _ ``     |              |          | - 00     |         |         | _       | 110     | 42      | 14      | 70      | 440     | <7.2    | 40      | 100     | 02       | 89      | 0.0      | 56      | 26       | 24        | - 00     | 70     | <30     | <15       | - 11.2   |
|             | V                            |          | 180          | 110      | 120      | 74      | 99      | 170     | 96      | 200     | 110     | 130     | 140     | 150     | 90      | 100     | 100      | 95      | 86       | 96      | 57       | 110       | 100      | 70     | 70      | 87        | 19       |
|             | <u>^</u>                     | -        | 120          | 120      |          | 2.6     |         | 170     | <460    |         | <25     |         | 350     | 11      | 12      | 30      |          | 100     |          |         | <49      |           | 61       |        |         |           | <20      |
|             | Ca                           |          |              |          | <87      |         | <1.2    |         |         | 56      |         | 36      |         |         |         |         |          |         | 20       | 46      |          | <110      |          | 27     | <8      | <46       |          |
|             | SC                           | <0.010   | <0.71        | <0.011   | < 0.011  | <0.044  | 0.31    | <0.044  | <0.33   | < 0.073 | < 0.073 |         | < 0.073 | <0.91   | 0.06    | 0.06    |          | <0.11   | < 0.023  | < 0.07  | <0.022   | < 0.017   | 0.02     | <0.2   | <0.2    | < 0.019   | <1.1     |
|             | Ti                           | 1.1      | <9.6         | -        | -        | 16      | 20      | 1.7     | <6.2    | 1.9     | <1.7    | 2.1     | 18      | <4.2    | <2      | <2      |          | 3.9     | <1.2     | 3.5     | 1.5      | 2         | 6.9      | 1      | <2      | 0.64      | 1.4      |
|             | V                            | 2.2      | 3            | 1.3      | 1.1      | 1.2     | 1.7     | 2.2     | 3.6     | 2.1     | 0.96    | 1.3     | 4       | 1.4     | 2.6     | 6.2     | 3.3      | 10      | 12       | 2.4     | 1        | 1.4       | 1        | 1.7    | 1.6     | 1.2       | 1.5      |
|             | Cr                           | 1.5      | < 0.60       | 2.4      | 0.61     | 0.38    | 0.46    | 0.3     | 0.9     | 1.7     | <1.1    | <1.1    | <1.1    | < 0.39  | 1       | < 0.9   | 1        | <0.38   | 2.2      | 0.6     | <2.5     | <1.4      | 0.73     | 6      | <0.2    | 1.8       | 0.82     |
|             | Mn                           | 4        | 3.1          | 3.4      | 4.1      | <1.6    | 1.6     | 1.9     | 4.1     | 4.7     | 0.26    | 2       | 5.9     | < 0.30  | 1.9     | 3.5     | 3.4      | 2.9     | 4.5      | 2       | 1.5      | 1.8       | 6.2      | 2.7    | 1.2     | 1.3       | 1.1      |
|             | Fe                           | 76       | 58           | 150      | 70       | 14      | 32      | 21      | 100     | 65      | <14     | 44      | 200     | 10      | 30      | 80      | 77       | 88      | 110      | 49      | 27       | 30        | 99       | 23     | 14      | 15        | 7.2      |
|             | Co                           | 0.025    | <0.12        | 0.2      | < 0.06   | < 0.027 | 0.08    | < 0.027 | < 0.034 | < 0.05  | < 0.05  | < 0.05  | 0.08    | < 0.14  | <0.08   | <0.08   | < 0.082  | < 0.83  | 0.045    | < 0.06  | < 0.025  | 0.018     |          | < 0.02 | <0.2    | < 0.0076  | < 0.039  |
|             | Ni                           | 1.2      | 7.2          | 3.8      | 0.6      | 1.2     | 0.67    | 0.71    | 1.6     | 0.74    | 0.44    | < 0.39  | 1.5     | <1.3    | 0.6     | 2       | 1.1      | 2.8     | 4.2      | 0.9     | 0.28     | 0.41      | 0.49     | <0.4   | <0.4    | 0.53      | 0.36     |
|             | Cu                           | 2.8      | <2.3         | 160      | <2.4     | <0.20   | 1.5     | 0.68    | 2.2     | 55      | <1.4    | 3.5     | <1.4    | 1.1     | 2       | 1.7     | 15       | <4.4    | 2.8      | <0.9    | 1.1      | 3         | 3.2      | 0.72   | <0.2    | 1         | <0.16    |
|             | Zn                           | 22       | <20          | 38       | 20       | 55      | <1.1    | 15      | <33     | 41      | 4.6     | 7.9     | 12      | 7.2     | 14      | 18      | <17      | 9.5     | 10       | 8.5     | <5.2     | <41       | 18       | 0.12   | 5       | <28       | 7.8      |
|             |                              | 0.28     | 0.33         | 0.31     | 0.35     | 0.13    |         | 0.2     |         | 0.32    | 0.2     | 0.26    | 0.2     |         | 0.3     | 0.3     | <0.48    | <0.8    | 0.26     | 0.19    | 0.2      | 0.37      | 0.3      | <0.7   | <0.7    | 0.24      | 0.15     |
|             | As                           |          |              |          |          |         | 0.68    |         | 0.26    |         |         |         |         |         |         | 0.3     |          |         |          |         |          |           |          |        |         |           |          |
|             | Se                           | < 0.047  | 1.6          | 0.54     | 1.1      | 0.59    | 0.56    | < 0.49  | 0.76    | <1      | <1      | <1      | <1      | 0.59    | 0.7     |         | 10.00    | <1.1    | 0.29     | 0.8     | 0.3      | 0.34      | 0.49     | <0.3   | <1      | 0.29      | 0.18     |
|             | Rb                           | -        | 0.33         | 0.23     | 0.23     | 0.14    | 0.21    | 0.52    | 0.78    | 0.25    | 0.15    | 0.18    | 0.3     | 0.18    | 0.21    | 0.24    |          | <1.1    | 0.16     | 0.14    | 0.094    | 0.15      | 0.22     | 0.22   | <0.1    | 0.13      | 0.052    |
|             | Мо                           | 0.15     | <2.3         | 0.21     | <0.009   | 0.46    | 0.23    | 0.11    | 0.5     | 0.39    | <0.066  | 0.094   | <0.066  | <0.16   | < 0.5   | <0.5    | <0.21    | <1.3    | 0.8      | 0.11    | 0.076    | 0.14      | 0.28     | <0.6   | <0.6    | 0.063     | < 0.74   |
|             | Sb                           | 0.65     | 0.83         | -        | -        | 2.9     | 0.91    | 0.74    | 0.48    | 0.7     | 0.061   | 0.61    | 0.26    | 0.63    | 0.4     | 0.4     | 0.63     | <6.3    | 0.34     | 0.54    | 0.32     | 0.51      | 0.58     | < 0.3  | <0.3    | 0.22      | 0.13     |
|             | Cs                           | 0.039    | < 0.034      | 0.019    | 0.017    | < 0.017 | < 0.017 | 0.026   | 0.023   | <0.02   | < 0.02  | < 0.02  | < 0.02  |         | < 0.05  | < 0.05  | <0.13    | <9.1    | < 0.014  | < 0.06  | < 0.024  | 0.015     | -        | <0.1   | <0.1    | <0.0048   | < 0.029  |
|             | Ba                           | 1.6      | 5.3          | 3.7      | 5.5      | 2.1     | <0.85   | < 0.85  | 12      | 3.7     | 1.4     | 2.7     | 1.8     | 3.1     | 3.3     | 2.1     | 3.5      | <10     | <1.3     | 2.4     | 1.4      | 2.7       | -        | 1.5    | 0.93    | 0.82      | 0.62     |
|             | La                           | 0.061    | < 0.11       | 0.024    | 0.046    | < 0.043 | < 0.043 | < 0.043 | 0.073   | 0.053   | < 0.021 | 0.046   | 0.07    | < 0.39  | 0.04    | 0.07    | < 0.37   | <11     | 0.035    | < 0.05  | < 0.027  | 0.018     | 0.062    | < 0.07 | < 0.07  | < 0.01    | < 0.025  |
|             | Ce                           | 0.052    | 0.094        | 0.041    | 0.06     | < 0.023 | 0.042   | < 0.023 | 0.15    | 0.076   | < 0.023 | 0.029   | 0.13    | < 0.34  | 0.06    | 0.09    | < 0.32   | <13     | 0.058    | < 0.06  | 0.023    | 0.025     | -        | <0.08  | <0.08   | < 0.0092  | 0.021    |
|             | Sm                           | < 0.0095 | <0.15        | 0.0043   | 0.0026   | < 0.027 | < 0.027 | < 0.027 | < 0.013 | < 0.021 | < 0.021 | < 0.021 | < 0.021 | < 0.062 | <0.1    | <0.1    | < 0.56   | <19     | < 0.015  | <0.08   | <0.028   | < 0.0022  | -        | <0.2   | <0.2    | < 0.0083  | < 0.034  |
|             | Hf                           | -        | <0.19        | < 0.012  | < 0.012  | 0.31    | 1.6     | <0.048  | 0.0073  | < 0.059 | < 0.059 | < 0.059 | < 0.059 | <0.41   | <0.08   | <0.08   | -        | 0.021   | <0.04    | < 0.03  | < 0.059  | < 0.00092 | -        | <0.2   | <0.2    | < 0.0012  | <0.49    |
|             | W                            | 0.12     | <0.31        | <0.012   | < 0.012  | 0.11    | 0.11    | 0.045   | 0.3     | 0.06    | < 0.037 | 0.041   | < 0.037 | <0.38   | < 0.06  | 0.14    | < 0.055  | 1.8     | 0.16     | < 0.04  | < 0.054  | 0.016     | _        | 0.5    | <0.7    | 0.019     | < 0.054  |
|             | Ta                           | 0.12     | <0.23        | < 0.0031 | < 0.0031 | <0.045  | <0.045  | < 0.045 | 0.0028  | <0.02   | < 0.037 | <0.02   | <0.037  | <0.30   | <0.07   | < 0.07  | - <0.000 | < 0.019 | <0.014   | <0.022  | < 0.0051 | <0.012    |          | <0.7   | <0.5    | 0.00035   | < 0.63   |
|             | Th                           | < 0.0074 |              |          |          |         |         |         |         | <0.016  |         |         | < 0.016 |         |         |         | -        |         |          |         |          |           |          |        |         |           |          |
|             |                              |          | <0.22        | <0.02    | < 0.02   | <0.029  | <0.029  | <0.029  | <0.0082 | <0.016  | <0.016  | <0.016  |         | <0.21   | < 0.2   | <0.2    | - 0.04   | <3.4    | <0.014   | < 0.07  |          | <0.00069  | - 0.4    | <0.1   |         |           | <0.078   |
|             | Pb Z O (th (Day)             | 4.7      | 4.4<br><0.18 | 78       | 2.1      | 0.38    | 1.3     | 1.8     | 2.9     | < 0.015 | 0.56    | 3       | 1.3     | 2       | 1.1     | 3.5     | 0.94     | <2.1    | 1.4      | 1.1     | 1.2      | 2         | 2.1      | 1      | 1.1     | 1.4       | 0.57     |
|             | その他(Be)                      | -        |              | -        | -        | -       | -       | -       | -       |         | < 0.015 | < 0.015 | < 0.015 | -       | -       | -       |          |         | -        | -       | -        | -         |          |        |         |           |          |
|             | その他(Cd)                      | -        | <0.19        | -        | -        | -       | -       | -       | -       | 0.086   | < 0.063 | 0.095   | < 0.063 | -       | -       | -       | -        | -       | -        | -       | -        | -         | 0.085    | < 0.05 | <0.2    | -         | -        |
|             | その他(Sr)                      | -        | -            | -        | -        | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -       | -        | -       | -        | -         | -        | -      | -       | -         | -        |
|             | その他(Y)                       | -        | -            | -        | -        | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -       | -        | -       | -        | -         | -        | -      | -       | -         | -        |
|             | その他(TI)                      | -        | -            | -        | -        | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -       | -        | -       | -        | -         | -        | -      | -       | -         | -        |
| 炭素成分        | OC1                          | 0.13     | <0.028       | 0.32     | 0.67     | 0       | 0       | 0       | 0.058   | 0.061   | 0.15    | 0.081   | 0.071   | <0.10   | <0.4    | <0.4    | 0.15     | 0.44    | 0.084    | 0.23    | < 0.0070 | < 0.021   | 0.056    | <0.08  | < 0.04  | < 0.027   | < 0.023  |
|             | OC2                          | 1.3      | 1.5          | 1.9      | 1.9      | 2.3     | 2.2     | 3       | 1.7     | 2.6     | 2.7     | 1.2     | 1.7     |         | 1.0     | 1.0     |          | 1.7     | 1.9      | 2.6     | 1.7      | 1.5       | 1        | 1.7    | 1.3     | 1.2       | 1.4      |
|             | OC3                          | 1.9      | 2.1          | 2.9      | 3.1      | 3.2     | 3.2     | 3.7     | 2.6     | 3.8     | 3.1     | 3.6     | 3.6     | 2.6     | 2.0     | 3.0     | 2.7      | 2.8     | 2.9      | 3.1     | 1.7      | 1.4       | 2.5      | 2.3    | 1.7     | 1.5       | 1.6      |
|             | OC4                          | 1.2      | 0.94         | 1.1      | 1.1      | 1.4     | 1.4     | 1.5     | 1.5     | 0.81    | 0.82    | 0.88    | 0.9     |         | 1.0     | 1.0     |          | 1.1     | 1.6      |         | 1.1      | 0.98      | 0.84     | 0.7    | 0.79    | 1         | 0.92     |
|             | Ocpyro                       | 0.79     | 3.2          | 2.1      | 2.2      | 1.7     | 1.7     | 1.8     | 1.5     | 2.3     | 1.7     | 2.1     | 1.9     | 3.8     | 1.4     | 1.4     |          | 1.6     | 0.89     | 1.6     | 1.7      | 1.5       | 1.8      | 1.8    | 1.9     | 1.8       | 1.6      |
|             | EC1                          | 1.3      | 4.9          | 2.8      | 2.2      | 2.6     | 2.5     | 2.7     | 2.2     | 3.2     | 2.1     | 2.1     | 2.6     | 5.6     | 1.4     | 1.4     | 1.4      | 2.3     | 1.7      | 2.8     | 1.7      | 1.6       | 2.4      | 2.6    | 2.1     | 1.8       | 1.7      |
|             |                              |          |              |          |          |         |         |         |         |         |         |         |         |         |         |         | 0.53     |         |          |         |          |           |          |        |         | 1.8       |          |
|             | EC2                          | 0.14     | 1.1          | 0.63     | 0.69     | 0.55    | 0.58    | 0.56    | 0.46    | 0.46    | 0.49    | 0.52    | 0.65    | 0.53    | 0.44    | 0.37    | 0.57     | 0.24    | 0.33     | 0.38    | 0.99     | 0.85      | 0.4      | 0.58   | 0.42    | 1 0 0 0 0 | 0.56     |
|             | EC3                          | 0        | 0.078        | 0.06     | 0.08     | 0.05    | 0.05    | 0.04    | 0.05    | 0.055   | 0.05    | 0.05    | 0.095   | 0.019   | 0.05    | 0.02    | 0.069    | 0       | <0.026   | 0.06    | 0.033    | 0.032     | 0.054    | < 0.06 | 0.013   | <0.028    | <0.028   |
|             | OC                           | 5.3      | 7.7          | 8.3      | 9        | 8.6     | 8.5     | 10      | 7.4     | 9.6     | 8.5     | 7.9     | 8.2     | 11      | 5.4     | 6.4     | 7.5      | 7.6     | 7.4      | 8.7     | 6.2      | 5.4       | 6.2      | 6.5    | 5.7     | 5.5       | 5.5      |
|             | EC                           | 0.65     | 2.9          | 1.4      | 1.5      | 1.5     | 1.4     | 1.5     | 1.2     | 1.4     | 0.94    | 1.4     | 1.4     | 2.8     | 0.69    | 0.79    | 1.2      | 0.94    | 1.1      | 1.6     | 1.1      | 0.98      | 1.1      | 1.4    | 0.63    | 1         | 0.66     |
|             | WSOC                         | -        | 7.6          | 5.7      | 6.2      | 6.8     | -       | -       | 6.3     | 7.1     | 6.7     | 7.6     | 6.9     | 7.2     | -       | -       | 6.2      | 6.5     | 6.9      | -       | 4.2      | 5.2       | 4.2      | 4.6    | 3.3     | 4.6       | -        |

| ₹₹4-1-         | 0 1/30           | פינו חי  | <i>1</i> / J J I | п в с   |          |         |         |          |         |         |          |         |         |         |         |         |         |        |             | ( PM2.5 | ,灰糸瓜     | (jr) , 1 /  | 1 / 1111 / 11 | μg/m   | 無懱风     | 刀 . ng/m | <u>)                                    </u> |
|----------------|------------------|----------|------------------|---------|----------|---------|---------|----------|---------|---------|----------|---------|---------|---------|---------|---------|---------|--------|-------------|---------|----------|-------------|---------------|--------|---------|----------|----------------------------------------------|
| 自治             | 体名               | 茨城県      | 栃木県              | 群馬県     | 群馬県      | 埼玉県     | 埼玉県     | 埼玉県      | さいたま市   | 千葉県     | 千葉県      | 千葉県     | 千葉県     | 千葉市     | 東京都     | 東京都     | 神奈川県    | 横浜市    | 川崎市         | 相模原市    | 山梨県      | 山梨県         | 長野県           | 静岡県    | 静岡県     | 静岡市      | 浜松市                                          |
| 調査             | 地点名              | 土浦       | 真岡               | 前橋      | 富岡       | 鴻巣      | 日高      | 秩父       | 城南      | 市原      | 勝浦       | 佐倉      | 富津      | 千葉      | 綾瀬      | 多摩      | 大和      | 横浜     | 川崎          | 相模原     | 甲府       | 東山梨         | 長野            | 富士     | 湖西      | 静岡       | 浜松                                           |
| 基本事項           | PM2.5濃度          | 17.7     | 22.9             | 24.7    | 26.1     | 20.1    | 19.9    | 25.1     | 20.1    | 17.1    | 10.3     | 15.5    | 17      | 15.6    | 20.2    | 19.2    | 19.3    | 15.6   | 16.9        | 20.3    |          | -           | 26.7          | 27.4   | 15.8    | 21.4     | 16                                           |
| イオン成分          | CI-              | <0.013   | <0.048           | < 0.055 | 0.26     |         | < 0.054 | < 0.054  | 0.0072  | <0.027  | <0.027   |         | <0.027  | 0.016   | < 0.07  | < 0.07  |         | <0.02  |             | <0.02   | <0.0022  | <0.0022     |               | 0.015  | < 0.014 | < 0.02   | 0.02                                         |
| コカン成力          |                  |          |                  |         |          |         |         |          |         |         |          |         |         |         |         |         |         |        |             |         |          |             |               |        |         |          |                                              |
|                | NO3-             | 0.074    | 0.32             | 0.4     | <0.08    | 0.11    | 0.085   | 0.11     | 0.13    | 0.062   | 0.0072   | 0.037   | 0.051   | 0.052   | 0.3     | 0.2     | <0.18   | 0.06   |             | 0.17    | 0.083    | 0.073       |               | 0.043  | 0.052   | <0.1     | < 0.05                                       |
|                | SO42-            | 2.9      | 4.9              | 3.7     | 4        | 4.5     | 3.8     | 4.2      | 5       | 3.8     | 1.4      | 2.2     | 2.6     | 3.6     | 4.2     | 5.4     | 4.9     | 4.6    | 5.1         | 4.9     | 8.1      | 7.5         |               | 9.5    | 4.7     | 6.3      | 4.3                                          |
|                | Na <sup>+</sup>  | 0.063    | 0.13             | < 0.067 | < 0.067  | 0.079   | 0.049   | 0.048    | 0.12    | 0.11    | <0.0088  | 0.11    | 0.05    | 0.1     | 0.12    | 0.16    | <0.23   | 0.15   | 0.18        | 0.13    | < 0.020  | < 0.020     | 0.046         | 0.13   | 0.19    | 0.042    | 0.13                                         |
|                | NH₄ <sup>+</sup> | 1.1      | 1.6              | 1.6     | 1.5      | 1.7     | 1.4     | 1.5      | 1.8     | 1.2     | 0.42     | 0.77    | 0.61    | 1.2     | 1.7     | 2.1     | 1.7     | 1.5    | 1.8         | 1.8     | 2.9      | 2.8         | 1.1           | 3.4    | 1.6     | 2        | 1.5                                          |
|                | 11114            |          |                  |         |          |         |         |          |         |         |          |         |         |         |         |         |         |        | _           |         |          |             |               |        |         |          |                                              |
|                | K <sup>+</sup>   | 0.072    | 0.12             | 0.11    | 0.1      | 0.072   | 0.066   | 0.15     | 0.096   | 0.078   | 0.034    | 0.16    | 0.036   | 0.052   | 0.1     | 0.12    | 0.087   | 0.1    | 0.1         | 0.16    | <0.24    | <0.24       | 0.077         | 0.08   | 0.09    | 0.037    | 0.088                                        |
|                | Mq <sup>2+</sup> | < 0.0082 | 0.013            | < 0.042 | < 0.042  | 0.017   | 0.0051  | < 0.0012 | 0.015   | 0.013   | 0.0044   | 0.016   | 0.019   | < 0.021 | < 0.005 | < 0.005 | < 0.087 | 0.02   | 0.023       | 0.02    | < 0.15   | < 0.15      | 0.0098        | 0.015  | 0.022   | 0.0076   | 0.0088                                       |
|                | Ca <sup>2+</sup> | 0.0086   | 0.033            | < 0.061 | < 0.061  | 0.0079  | 0.014   | 0.029    | 0.047   | 0.058   | 0.01     | 0.047   | 0.45    | <0.028  | < 0.02  | 0.04    | <0.28   | 0.07   | 0.046       | <0.1    | <0.16    | <0.16       | < 0.064       | <0.11  | <0.11   | < 0.026  | < 0.04                                       |
| 100 +60 ct; /\ | Ca<br>N-         | -        | 110              | 54      |          | -       | - 0.014 | -        |         | 110     | 72       | 75      | 86      | 92      | 160     | 220     | 170     | 110    |             | 120     |          |             |               | 99     | 180     |          |                                              |
| 無機成分           | Na               |          |                  |         | 61       | -       |         |          | 130     |         |          | _       |         |         |         |         | _       |        |             |         | 50       | 120         |               |        | 180     | 150      | 68                                           |
|                | Al               | 18       | <32              | 150     | 41       | -       | -       | -        | <250    | 27      | <7.9     | 33      | 140     | 15      | <9      | 13      |         | 54     |             | 30      | 28       |             |               | 18     | 1       | <18      | 7.8                                          |
|                | Si               | -        | -                | -       | -        | -       | -       | -        | 110     | 45      | 17       |         | 630     | 11      | 50      | 50      | -       | 41     |             | 44      | 31       | 37          |               | 60     | <30     | <15      | -                                            |
|                | K                | -        | 140              | 120     | 89       | 98      | 71      | 200      | 98      | 110     | 33       | 90      | 59      | 110     | 90      | 110     | 88      | 70     | 74          | 82      | 88       | 160         | 130           | 60     | 90      | 95       | 26                                           |
|                | Ca               | -        | <54              | 120     | <87      | 3.7     | <1.2    | 6.3      | <460    | 60      | <25      | 58      | 180     | 24      | 14      | 50      | <11     | 43     | 20          | 29      | <49      | <110        | 62            | 50     | <8      | <46      | <20                                          |
|                | Sc               | < 0.010  | <0.71            | < 0.011 | <0.011   | < 0.044 | < 0.044 | < 0.044  | < 0.33  | < 0.073 | < 0.073  | < 0.073 | < 0.073 | < 0.91  | 0.07    | 0.06    | < 0.79  | <0.11  | < 0.023     | < 0.07  | <0.022   | < 0.017     | 0.019         | <0.2   | <0.2    | < 0.019  | <1.1                                         |
|                | Ti               | 2.1      | <9.6             | _       | -        | <1.4    | 2.5     | 3.7      | <6.2    | <1.7    | <1.7     | 3.2     | 11      | <4.2    | 2       | <2      |         | 3.3    |             | 2.9     | 2.4      | 2.8         |               | 1.3    | <2      | 0.6      | 1.6                                          |
|                | 11               | 2.9      | 3.3              | 1.7     | 1.5      | 2.1     | 2.8     | 5.4      | 4.5     | 6.6     | 2.2      | 2.2     | 9.3     | 3.1     |         | 9.4     |         | 9.2    |             | 2.3     | 1.2      |             |               | 4.8    | 3.7     | 1.5      | 1.6                                          |
|                | V                |          |                  | 1.2     |          |         |         |          |         |         | <1.1     | .4.4    |         | <0.39   | 1.2     |         |         |        |             | .0.0    |          |             |               |        |         |          | 1.7                                          |
|                | Cr               | 0.88     | <0.60            |         | 0.82     | <0.29   | 0.31    | 0.67     | 0.57    | <1.1    |          |         | <1.1    |         |         | 1.4     |         | <0.38  |             | <0.6    | <2.5     |             |               | 4.6    | <0.2    | <1.5     |                                              |
|                | Mn               | 3        | 3.6              | 5.5     | 4        | 3.5     | 3.4     | 3.4      | 4.4     | 3.5     | 0.29     | 2.7     | 4.6     | 2.4     | 3.3     | 4.8     |         | 2.2    |             |         | 1.7      |             |               | 2.4    | 2.5     | 2        | 2.7                                          |
|                | Fe               | 55       | 61               | 130     | 60       |         | 37      | 36       | 88      | 89      | 48       | 71      | 110     | 71      | 40      | 100     |         | 70     |             | 42      | 30       |             |               | 33     | 40      | 20       | 15                                           |
|                | Co               | 0.041    | < 0.12           | 0.06    | < 0.06   | < 0.027 | 0.045   | < 0.027  | < 0.034 | 0.099   | < 0.05   | < 0.05  | 0.06    | < 0.14  | <0.08   | <0.08   | <0.082  | <0.83  | 0.063       | < 0.06  | < 0.025  | 0.027       | -             | < 0.02 | <0.2    | < 0.0076 | < 0.039                                      |
|                | Ni               | 1.2      | <4.0             | 0.9     | 0.69     | 1.3     | 0.48    | 2        | 1.4     | 5.3     | 0.62     | 0.73    | 1.9     | <1.3    | 1       | 3.2     | 1.4     | 2.7    | 5.4         | 1       | 0.39     | 0.71        | 0.72          | 1.8    | < 0.4   | 0.63     | 0.71                                         |
|                | Cu               | 2.2      | 4                | 3.3     | <2.4     | 1.2     | 2.1     | 1.5      | 4.5     | -       | <1.4     | 4.1     | <1.4    | 0.97    | 2.8     | 2.5     | <11     | <4.4   | 5.1         | 1.8     | 1.3      | 3.8         | 3.6           | 1.7    | 0.8     | 1.4      | 0.55                                         |
|                | Zn               | 15       | <20              | 28      | 16       |         | 4.5     | 14       | <33     | 76      | <2.5     | 9.9     | 11      | 20      | 26      | 23      |         | 7.4    |             | 12      | 14       |             |               | 26     | 22      | <28      | 13                                           |
|                | Δο.              | 0.32     | 0.41             | 0.54    | 0.38     |         | 0.4     | 0.61     | 0.51    | 0.31    | 0.14     | 0.29    | 0.22    | <0.38   | 0.4     | 0.6     |         | <0.8   | 0.48        | 0.31    | 0.3      | 0.58        |               | <0.7   | <0.7    | 0.59     | 0.19                                         |
|                | AS .             |          |                  |         | 0.30     |         |         |          |         |         |          |         |         |         |         | 0.0     |         |        |             |         |          |             |               |        |         |          |                                              |
|                | Se               | 0.091    | 2.2              | 0.85    | 1        | 0.59    | 0.66    | 0.58     | 0.67    | 1.5     | <1       | <1      | <1      | 1       | 0.9     | 1       | 0.96    | <1.1   | 0.53        | 1.8     | 0.41     | 0.52        |               | <0.3   | <1      | 0.5      | <0.13                                        |
|                | Rb               | -        | 0.25             | 0.28    | 0.2      |         | 0.14    | 0.63     | <0.75   | 0.26    | 0.05     | 0.19    | 0.19    | 0.27    | 0.22    | 0.29    |         | <1.1   |             | 0.15    | 0.14     | 0.25        |               | 0.21   | <0.1    | 0.19     | 0.066                                        |
|                | Mo               | 0.22     | <2.3             | 0.13    | < 0.009  | <0.081  | 0.16    | 0.24     | 0.42    | 0.21    | 0.079    | 0.19    | <0.066  | 0.2     | <0.5    | < 0.5   | 0.22    | <1.3   | 5.5         | 0.11    | 0.098    | 0.17        |               | <0.6   | <0.6    | 0.1      | < 0.74                                       |
|                | Sb               | 0.64     | 0.8              | -       | -        | 12      | 1       | 0.84     | 1.1     | 0.39    | 0.051    | 0.42    | 0.089   | 0.53    | 0.6     | 0.6     | 0.94    | <6.3   | 0.36        | 0.7     | 0.96     | 1.4         |               | 0.4    | < 0.3   | 0.29     | 0.31                                         |
|                | Cs               | 0.021    | < 0.034          | 0.029   | 0.026    | < 0.017 | 0.02    | 0.024    | 0.022   | 0.029   | < 0.02   | < 0.02  | < 0.02  | < 0.067 | < 0.05  | < 0.05  | < 0.13  | <9.1   | 0.015       | < 0.06  | < 0.024  | 0.024       | -             | <0.1   | <0.1    | 0.016    | < 0.029                                      |
|                | Ba               | 1.3      | 3.2              | 4.3     | 2.4      | 4.4     | < 0.85  | 1.2      | 9.9     | 3       | 0.59     | 1.5     | 1       | 1.9     | 3.8     | 3.4     | 3.8     | <10    | <1.3        | 2.4     | 2.1      | 3.3         | -             | 1.7    | 2.4     | 1.3      | 1.1                                          |
|                | La               | 0.048    | <0.11            | 0.047   | 0.043    | < 0.043 | < 0.043 | < 0.043  | 0.065   | 0.039   | < 0.021  | 0.046   | 0.038   | < 0.39  | 0.06    | 0.09    | < 0.37  | <11    | < 0.021     | 0.06    | <0.027   | 0.03        | 0.074         | < 0.07 | < 0.07  | 0.013    | < 0.025                                      |
|                | Ce               | 0.046    | < 0.079          | 0.09    | 0.07     | <0.023  | <0.023  | < 0.023  | <0.15   | 0.04    | < 0.023  | 0.045   | 0.07    | < 0.34  | 0.08    | 0.1     | <0.32   | <13    | 0.043       | 0.1     | 0.036    | 0.04        |               | <0.08  | <0.08   | 0.022    | 0.018                                        |
|                | Sm               | < 0.0095 | <0.15            | 0.006   | 0.0027   | <0.027  | <0.027  | <0.027   | <0.013  | <0.021  | <0.021   |         | <0.021  | <0.062  | <0.1    | <0.1    | <0.56   | <19    |             | <0.08   | <0.028   | 0.0029      |               | <0.2   | <0.2    | < 0.0083 | <0.034                                       |
|                | Hf               | -        |                  |         |          | <0.027  |         |          | 0.0072  | < 0.059 | <0.059   |         | <0.021  |         |         | <0.08   |         | <0.018 |             | 10100   |          | 0.0029      |               |        |         | < 0.0012 |                                              |
|                | п                |          | <0.19            | <0.012  | <0.012   |         | 0.052   | <0.048   |         |         |          |         |         | <0.41   | <0.08   |         |         | <0.018 | < 0.04      | < 0.03  | < 0.059  |             |               | <0.2   | <0.2    |          | <0.49                                        |
|                | W                | <0.10    | <0.31            | <0.012  | < 0.012  | 0.069   | 0.063   | 0.054    | 0.41    | < 0.037 | < 0.037  | 0.14    | < 0.037 | <0.38   | < 0.06  | 0.3     |         | 2      | 0.79        | < 0.04  | < 0.054  | 0.026       | -             | <0.5   | <0.7    | 0.034    | 0.11                                         |
|                | Та               | -        | <0.23            | <0.0031 | < 0.0031 | <0.045  | < 0.045 | <0.045   | <0.0022 | <0.02   | < 0.02   | < 0.02  | < 0.02  | < 0.30  | < 0.07  | <0.07   | -       | <0.019 |             | < 0.022 | < 0.0051 | <0.012      | -             | 1.7    | <0.5    | 0.00048  | < 0.63                                       |
|                | Th               | < 0.0074 | <0.22            | 0.023   | < 0.02   | < 0.029 | < 0.029 | < 0.029  | <0.0082 | < 0.016 | < 0.016  | < 0.016 | < 0.016 | <0.21   | <0.2    | <0.2    | -       | <3.4   | < 0.014     | < 0.07  | < 0.021  | <0.00069    |               | <0.1   | <0.1    | < 0.0076 | <0.078                                       |
|                | Pb               | 5.9      | 4.5              | 3.9     | 3        | 1.9     | 2.1     | 2.3      | 7.6     | 3       | 0.6      | 3.5     | 0.9     | 4.9     | 2.1     | 6.3     | 1.8     | <2.1   | 3.9         | 2       | 1.7      | 2.9         | 5.4           | 2      | 1.5     | 2.5      | 1                                            |
|                | その他(Be)          | -        | <0.18            | -       | -        | -       |         | -        | -       | < 0.015 | < 0.015  | <0.015  | < 0.015 | -       |         | -       | -       | -      | -           | -       | -        | -           | -             | -      | -       | -        | -                                            |
|                | その他(Cd)          | -        | <0.19            | -       | -        | -       | -       | -        | -       | 0.082   | < 0.063  | 0.079   | < 0.063 | -       | -       | -       | -       | -      | -           | -       | -        | -           | 0.13          | < 0.05 | <0.2    | -        | -                                            |
|                | その他(Sr)          | _        | - 10.110         |         |          |         | -       | _        | _       | -       | - 10.000 | -       | -       |         | -       |         | -       |        | -           | _       |          | -           | - 0.10        | -      | - 10.2  |          |                                              |
|                | その他(Y)           |          |                  |         |          |         | _       |          |         |         |          | _       |         |         |         |         |         |        |             |         |          |             |               |        |         |          |                                              |
|                |                  |          |                  | -       | -        | -       | -       | -        |         |         |          | -       | -       |         |         |         | -       |        | <del></del> |         |          | <del></del> | -             | -      |         | -        |                                              |
|                | その他(TI)          | -        |                  |         |          |         |         |          |         | -       | -        |         |         | -       | -       | -       |         | -      |             |         |          |             |               |        | -       |          | -                                            |
| 炭素成分           | OC1              | 0.062    | <0.028           | 0.42    | 1        | 0       | 0       | 0        | 0.056   | 0.081   | 0.061    | 0.076   | < 0.046 | <0.10   | <0.4    | <0.4    |         | 0.2    |             | 0.15    | < 0.0070 | <0.021      | 0.064         | <0.08  | < 0.04  | < 0.027  | < 0.023                                      |
|                | OC2              | 0.94     | 1.6              | 2.1     | 1.9      | 1.9     | 2       | 3.2      | 1.5     | 2.5     | 1.7      | 1.4     | 0.95    | 3.4     | 1.0     | 1.0     | 1.4     | 1.1    | 1.4         | 2.2     | 2        | 1.8         | 1.1           | 1.7    | 1       | 1.2      | 1.2                                          |
|                | OC3              | 0.93     | 1.5              | 2.3     | 2.2      | 1.6     | 2       | 2.7      | 1.4     | 1.5     | 1.2      | 1.8     | 1.4     | 1.1     | 1.0     | 0.8     | 1.3     | 0.97   | 1.2         | 1.6     | 1.3      | 1.3         | 2.2           | 1.3    | 1       | 0.97     | 1.2                                          |
|                | OC4              | 0.55     | 0.7              | 1.2     | 1.1      | 1       | 1.1     | 1.5      | 0.86    | 0.51    | 0.38     | 0.65    | 0.5     | 0.52    | 0.8     | 0.7     | 0.63    | 0.62   | 0.77        | 0.59    | 0.66     | 0.97        | 0.64          | 0.4    | 0.44    | 0.63     | 0.56                                         |
|                | Ocpyro           | 0.74     | 3                | 2.1     | 2.3      | 1.7     | 1.8     | 2        | 1.5     | 1.5     | 0.81     | 1.5     | 1.3     | 2.1     | 1.4     | 1.2     |         | 1.1    | 1           | 1.5     | 1.7      |             |               | 2.4    | 1.4     | 1.3      | 1.2                                          |
|                | EC1              | 1.1      | 4.4              | 2.8     | 2.0      | 2.2     | 2.3     | 2.9      | 2.1     | 2.2     | 0.77     | 2       | 1.4     | 3.3     | 1.6     | 1.5     |         | 1.7    |             | 2.7     | 1.7      |             |               | 2.8    | 1.4     | 1.3      | 1.2                                          |
|                | EC2              | 0.13     | 1.1              | 0.69    | 0.82     | 0.56    | 0.59    | 0.57     | 0.89    |         | 0.77     | 0.55    | 0.61    | 0.6     | 0.4     | 0.44    |         | 0.23   |             | 0.33    | 1.8      |             |               | 0.68   | 0.51    | 1.6      | 0.88                                         |
|                |                  |          |                  |         |          |         |         |          |         | 0.5     |          |         |         |         |         |         |         |        |             |         |          |             |               |        |         |          |                                              |
|                | EC3              | 0        | 0.054            | 0.07    | 0.09     | 0.05    | 0.05    | 0.05     | 0.065   | 0.04    | 0.03     | 0.055   | 0.085   | <0.017  | 0.02    | 0.02    |         | 0      |             | 0.06    | <0.028   |             |               | <0.06  | 0.012   | <0.028   | <0.028                                       |
|                | OC               | 3.2      | 6.8              | 8.1     | 8.5      | 6.2     | 6.9     | 9.4      | 5.3     | 6.1     | 4.2      | 5.4     | 4.2     | 7.1     | 4.2     | 3.7     |         | 4      |             | 6       | 5.7      |             |               | 5.8    | 3.8     | 4.1      | 4.2                                          |
|                | EC               | 0.49     | 2.6              | 1.5     | 1.6      | 1.1     | 1.1     | 1.5      | 1.6     | 1.2     | 0.43     | 1.1     | 0.8     | 1.7     | 0.62    | 0.76    | 1.4     | 0.83   | 0.95        | 1.6     | 1.8      | 1.4         |               | 1.1    | 0.52    | 1.6      | 0.88                                         |
|                | WSOC             | -        | 4.2              | 5       | 5.9      | 4.4     | -       | -        | 3.6     | 4.1     | 3.8      | 3.8     | 4.1     | 3.8     | -       | -       | 4.4     | 3.2    | 3.9         | -       | 4.6      | 6           | 6.1           | 3.5    | 2.4     | 3.6      | -                                            |

| ₹₹4-1-   | 9 / H3                       | 1 口 <i>か</i> ら | ᆼ거ㆍㅁ    | <u>م ر</u> |         |         |         |         |         |         |         |         |         |          |        |             |         |        |         | ( PMZ.5 | ,灰系风     | л,11      | ノ成カ.    | :μg/m   | 無 機 ) (2) | ற∵: ng/ா | 1)                 |
|----------|------------------------------|----------------|---------|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|--------|-------------|---------|--------|---------|---------|----------|-----------|---------|---------|-----------|----------|--------------------|
| 自治       | 台体名                          | 茨城県            | 栃木県     | 群馬県        | 群馬県     | 埼玉県     | 埼玉県     | 埼玉県     | さいたま市   | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市      | 東京都    | 東京都         | 神奈川県    | 横浜市    | 川崎市     | 相模原市    | 山梨県      | 山梨県       | 長野県     | 静岡県     | 静岡県       | 静岡市      | 浜松市                |
| 調査       | 地点名                          | 土浦             | 真岡      | 前橋         | 富岡      | 鴻巣      | 日高      | 秩父      | 城南      | 市原      | 勝浦      | 佐倉      | 富津      | 千葉       | 綾瀬     | 多摩          | 大和      | 横浜     | 川崎      | 相模原     | 甲府       | 東山梨       | 長野      | 富士      | 湖西        | 静岡       | 浜松                 |
| 基本事項     | PM2.5濃度                      | 9.3            | 15.5    | 26.9       | 31.1    | 16.1    | 18.4    | 28.1    | 16      | 11.4    | 6.7     | 11.2    | 12.2    | 12.2     | 14.7   | 12.7        | 12.9    | 9.4    | 10.6    | 16.3    | -        | -         | 15.3    | 17      | 8         | 13       | 7                  |
| イオン成分    | CI-                          | < 0.013        | <0.048  | < 0.055    | < 0.055 | < 0.054 | < 0.054 | < 0.054 | 0.0053  | 0.047   | < 0.027 | <0.027  | 0.037   | < 0.0045 | <0.07  | < 0.07      | <0.058  | < 0.02 | <0.0091 | < 0.02  | < 0.0022 | < 0.0022  | 0.014   | < 0.014 | < 0.014   | < 0.02   | 0.0071             |
|          | NO3-                         | 0.045          | <0.10   | 0.35       | 0.2     | 0.1     | 0.12    | 0.15    | 0.14    | 0.14    | 0.016   | 0.069   | 0.088   | 0.038    | 0.2    | 0.2         | <0.18   | 0.12   | 0.098   | 0.16    | 0.062    | 0.085     | <0.13   | 0.06    | 0.068     | <0.1     | 0.083              |
|          | SO42-                        | 2.8            | 6       | 5.4        | 5.8     | 4.9     | 5.5     | 6.5     | 4.2     | 3.9     | 1.5     | 3.4     | 2.9     | 4.1      | 1      | 4.4         | 4.2     | 3.7    | 4.2     | 4.8     | 4.5      | 5.1       | 7.3     | 6.8     | 3.2       | 3.2      | 2.1                |
|          |                              |                |         |            |         |         |         |         |         |         |         |         |         |          | 0.40   |             |         |        |         |         |          |           |         |         |           |          |                    |
|          | Na <sup>+</sup>              | 0.058          | 0.15    | <0.067     | 0.11    | 0.097   | 0.074   | 0.067   | 0.12    | 0.095   | 0.018   | 0.19    | 0.06    | 0.095    | 0.13   | 0.2         | <0.23   | 0.18   | 0.14    | 0.14    | <0.020   | <0.020    | 0.079   | 0.17    | 0.22      | 0.027    | 0.13               |
|          | NH <sub>4</sub> <sup>+</sup> | 0.96           | 2       | 2.1        | 2       | 1.8     | 1.9     | 2.2     | 1.4     | 1.2     | 0.65    | 1       | 0.75    | 1.5      | 1.5    | 1.5         | 1.2     | 1      | 1.3     | 1.7     | 1.6      | 1.9       | 2.7     | 2.2     | 1         | 1.1      | 0.69               |
|          | K <sup>+</sup>               | 0.047          | 0.062   | 0.13       | 0.13    | 0.095   | 0.088   | 0.16    | 0.095   | 0.061   | < 0.01  | 0.065   | 0.019   | 0.054    | 0.09   | 0.09        | 0.049   | 0.06   | 0.073   | 0.12    | < 0.24   | < 0.24    | 0.098   | 0.04    | 0.045     | < 0.017  | 0.033              |
|          | Mg <sup>2+</sup>             | <0.0082        | 0.014   | <0.042     | <0.042  | 0.025   | 0.0074  | 0.019   |         | <0.0006 | 0.0017  | 0.013   | 0.014   | <0.021   | <0.005 | <0.005      | <0.087  | 0.03   | 0.03    | 0.02    | <0.15    | <0.15     | 0.022   | 0.022   | 0.022     | <0.0037  | 0.0063             |
|          |                              |                |         |            |         |         |         |         |         |         |         |         |         |          |        |             |         |        |         |         |          |           |         |         |           |          |                    |
|          | Ca <sup>2+</sup>             | 0.008          | 0.029   | <0.061     | < 0.061 | 0.014   | 0.026   | 0.062   | 0.055   | 0.039   | 0.0066  | 0.03    | 0.42    | <0.028   | <0.02  | 0.07        | <0.28   | 0.14   | 0.037   | <0.1    | <0.16    | <0.16     | <0.064  | <0.11   | <0.11     | 0.078    | <0.04              |
| 無機成分     | Na                           | -              | 120     | 74         | 67      | -       | -       | -       | 150     | 130     | 100     | 65      | 150     | 77       | 170    | 230         | 160     | 120    | 91      | 160     | 41       | 100       | 46      | 140     | 200       | 160      | 100                |
|          | Al                           | 18             | <32     | 140        | 38      | -       | -       | -       | <250    | 48      | <7.9    | 29      | 320     | 6.4      | <9     | <9          | 35      | 53     | 6.6     | 55      | 30       | 32        | 68      | 5       | <1        | 26       | 9.3                |
|          | Si                           | - 1            | -       | -          | - 1     | -       | -       | -       | 150     | 130     | 12      | 64      | 680     | 16       | 50     | 40          | -       | 100    | -       | 77      | 31       | 37        | -       | 50      | <30       | 42       | 1 -                |
|          | K                            | - 1            | 79      | 120        | 93      | 48      | 68      | 170     | 100     | 89      | 19      | 42      | 53      | 92       | 80     | 80          | 59      | 41     | 31      | 81      | 58       | 110       | 61      | 20      | 30        | 82       | 18                 |
|          | Ca                           | -              | <54     | 93         | <87     | 3.1     | <1.2    | 11      | <460    | 86      | <25     | 60      | 380     | 25       | 20     | 40          | <11     | 100    | 14      | 51      | <49      | <110      | 48      | 42      | 81        | 130      | 28                 |
|          | Sc                           | <0.010         | <0.71   | < 0.011    | <0.011  | <0.044  | <0.044  | <0.044  | <0.33   | < 0.073 | < 0.073 | < 0.073 | 0.084   | < 0.91   | 0.07   | 0.06        | <0.79   | <0.11  | <0.023  | < 0.07  | <0.022   | < 0.017   | 0.012   | <0.2    | <0.2      |          |                    |
|          | Ti                           | 2.6            | <9.6    | VO.011     | 10.011  | <1.4    | 5.7     | 2.8     | 7.5     | 3.4     | <1.7    | 3.2     | 21      | <4.2     | 0.07   | <2          | 5.8     | 4.6    | 1.4     | 5.4     | 1.7      | 2.6       | 5.7     | 1.4     | <2        | 1.4      | 2 2                |
|          | V                            | 4.6            | 5.3     | 2.3        | 1.9     | 5.2     | 4.1     | 6.3     | 11      | 7.9     | 5.4     | 5.2     | 13      | 5.7      | 5.5    | 20          | 5.9     | 10     | 1.4     | 5.8     | 1.7      | 1.7       | 0.8     | 24      | 7         |          | 2.3<br>5.3<br>0.33 |
|          | V                            | 1.7            | 0.99    | 1.4        | 1.3     | 0.3     | 0.71    | 1.2     | 2.5     |         | <1.1    |         | <1.1    | 2.4      | 1.5    | 20          | 0.77    | <0.38  | 1.1     | 0.6     | <2.5     | <1.4      | 0.61    | 2.3     | <0.2      |          | 0.0                |
|          | Cr                           |                |         |            |         |         | 0.71    |         |         | <1.1    |         | <1.1    |         |          |        | _           |         |        |         |         |          |           |         |         |           |          | 0.33               |
|          | Mn                           | 5.8            | 4.5     | 6.8        | 5.2     | 2.7     | 5       | 8.2     | 5.9     | 4.9     | < 0.16  | 2.9     | 6.8     | 4.3      | 4.8    | 5.7         | 4.9     | 2.8    | 5.3     | 4.1     | 1.7      | 2.5       | 2.9     | 1.1     | 1.3       | 2.1      | 3.8<br>24          |
|          | Fe                           | 90             | 74      | 140        | 69      | 84      | 150     | 640     | 160     | 160     | <14     | 86      | 250     | 130      | 60     | 130         | 78      | 81     | 85      | 73      | 29       | 38        | 59      | 33      | 38        |          |                    |
|          | Со                           | 0.039          | <0.12   | 0.07       | < 0.06  | 0.036   | 1.6     | 0.062   | 0.037   | 0.14    | < 0.05  | < 0.05  | 0.14    | <0.14    | <0.08  | <0.08       | <0.082  | <0.83  | 0.034   | <0.06   | 0.025    | 0.023     | -       | 0.02    | <0.2      |          | < 0.039            |
|          | Ni                           | 1.8            | <4.0    | 1.1        | 0.9     | 3.5     | 2.1     | 2.3     | 3.8     | 2.8     | 1.5     | 1.3     | 3.7     | 1.6      | 1.6    | 6.5         | 2.2     | 3.5    | 3.8     | 2.1     | 0.41     | 0.72      | 0.52    | 9.5     | 1.1       | 1.9      | 1.3                |
|          | Cu                           | 1.4            | <2.3    | 6          | 2.7     | 1.3     | 2.2     | 2.4     | 5.6     | 2.4     | <1.4    | 2.4     | 2.5     | 1.1      | 4.1    | 3.3         | <11     | <4.4   | 3.2     | 3.2     | 1.4      | 5.5       | 2.1     | 0.99    | 0.5       | 1.8      | 1.2                |
|          | Zn                           | 14             | <20     | 45         | 22      | 52      | 88      | 14      | <34     | 55      | <2.5    | 11      | 16      | 21       | 17     | 24          | <17     | 5.9    | 8.6     | 18      | <5.2     | <41       | 13      | 7       | 24        | <28      | 8.8                |
|          | As                           | 0.28           | 0.46    | 0.7        | 0.57    | 0.24    | 0.48    | 0.59    | 0.41    | 0.33    | 0.06    | 0.17    | 0.18    | < 0.38   | 0.4    | 0.6         | < 0.48  | <0.8   | 0.27    | 0.51    | 0.3      | 0.54      | 0.33    | < 0.7   | < 0.7     | 0.46     | 0.068              |
|          | Se                           | < 0.047        | 1.4     | 0.86       | 1.3     | 0.74    | 1.2     | 0.84    | 0.83    | 1.1     | <1      | <1      | <1      | 0.99     | 0.6    | 2           | < 0.96  | <1.1   | 0.48    | 2.5     | 0.35     | 0.47      | 0.36    | < 0.3   | <1        | 0.28     | 0.21               |
|          | Rb                           | -              | 0.18    | 0.32       | 0.21    | 0.077   | 0.14    | 0.55    | 1.1     | 0.25    | < 0.042 | 0.15    | 0.16    | 0.51     | 0.18   | 0.23        | < 0.29  | <1.1   | 0.054   | 0.12    | 0.11     | 0.18      | 0.17    | 0.08    | <0.1      | 0.12     |                    |
|          | Мо                           | 0.38           | <2.3    | 0.25       | 0.07    | 0.31    | 0.23    | 0.25    | 0.73    | 0.17    | <0.066  | 0.27    | 0.078   | 0.35     | <0.5   | 0.7         | 0.25    | <1.3   | 0.58    | 0.24    | 0.098    | 0.16      | 0.26    | <0.6    | <0.6      | 0.23     | < 0.74             |
|          | Sb                           | 0.57           | < 0.62  |            | - 0.07  | 1.7     | 2.1     | 1.2     | 1.3     | 0.32    | <0.024  | 0.26    | 0.057   | 0.29     | 0.9    | 0.7         | 0.84    | <6.3   | 0.34    | 1.1     | 0.42     | 0.77      | 0.69    | 0.4     | 0.6       |          | 0.2                |
|          | Ce                           | 0.04           | < 0.034 | 0.033      | 0.026   | <0.017  | < 0.017 | 0.039   | 0.027   | 0.02    | <0.02   | 0.024   | <0.02   | 0.097    | <0.05  | <0.05       | < 0.13  | <9.1   | < 0.014 | <0.06   | <0.024   | 0.018     | - 0.00  | <0.1    | <0.1      |          | <0.029             |
|          | Ba                           | 0.04           | 20.004  | 4.6        | 2.5     | 7.9     | <0.85   | 1.5     | 13      | 0.03    | 0.54    | 1.1     | 3.7     | 1.7      | 5.9    | 3.5         | 10      | <10    | <1.3    | 4.5     | 1.5      | 2.7       |         | 2.4     | 20.1      | 2.1      | 0.92               |
|          | Lo                           | 0.095          | <0.11   | 0.1        | 0.043   | <0.043  | <0.043  | < 0.043 | 0.084   | 0.11    | <0.021  | 0.038   | 0.086   | <0.39    | 0.05   | 0.11        | <0.37   | <11    | 0.023   | 0.07    | 0.041    | 0.025     | 0.042   | <0.07   | < 0.07    | 0.018    | <0.025             |
|          | Ce                           | 0.093          | <0.11   | 0.14       | 0.043   | <0.043  | <0.043  | <0.043  | 0.064   | 0.071   | <0.021  | 0.036   | 0.086   | <0.39    | 0.05   | 0.11        | <0.37   | <13    | 0.023   | 0.07    | 0.041    | 0.023     | - 0.042 | <0.07   | <0.07     | 0.016    | 0.038              |
|          |                              |                |         |            |         |         |         |         |         |         |         |         |         |          |        |             |         |        |         | •       |          |           | -       |         |           |          |                    |
|          | Sm                           | <0.0095        | <0.15   | 0.011      | 0.0024  | <0.027  | <0.027  | < 0.027 | <0.013  | <0.021  | <0.021  | <0.021  | <0.021  | <0.062   | <0.1   | <0.1        | < 0.56  | <19    | < 0.015 | <0.08   | <0.028   | 0.0022    | -       | <0.2    | <0.2      | <0.0083  | < 0.034            |
|          | Hf                           | -              | <0.19   | < 0.012    | < 0.012 | <0.048  | 0.25    | <0.048  | 0.0075  | <0.059  | <0.059  | < 0.059 | < 0.059 | <0.41    | <0.08  | <0.08       | -       | <0.018 | <0.04   | < 0.03  | <0.059   | 0.00097   | -       | <0.2    | <0.2      | <0.0012  | <0.49              |
|          | W                            | 0.12           | < 0.31  | < 0.012    | < 0.012 | 0.084   | 0.14    | 0.1     | 0.22    | < 0.037 | < 0.037 | 0.13    | < 0.037 | <0.38    | < 0.06 | 0.12        | < 0.055 | 2.7    | 0.5     | 0.21    | < 0.054  | 0.014     | -       | <0.5    | <0.7      | 0.072    | < 0.054            |
|          | Та                           | -              | <0.23   | < 0.0031   | <0.0031 | < 0.045 | <0.045  | < 0.045 | <0.0022 | <0.02   | < 0.02  | 0.051   | <0.02   | < 0.30   | < 0.07 | <0.07       | -       | <0.019 | < 0.014 | <0.022  | < 0.0051 | < 0.012   | -       | <0.7    |           |          | < 0.63             |
|          | Th                           | < 0.0074       | <0.22   | <0.02      | < 0.02  | < 0.029 | < 0.029 | < 0.029 | <0.0082 | < 0.016 | < 0.016 | < 0.016 | 0.017   | <0.21    | <0.2   | <0.2        | -       | <3.4   | < 0.014 | < 0.07  | < 0.021  | < 0.00069 | -       | <0.1    | <0.1      |          | <0.078             |
|          | Pb                           | 4.9            | 5.8     | 7.8        | 3.3     | 2.7     | 3.6     | 4.2     | 7       | 3.7     | <0.14   | 2.2     | 0.51    | 6.2      | 2.4    | 8.1         | 1.2     | <2.1   | 2       | 2.6     | 1.3      | 2.5       | 4.5     | <1      | 0.42      | 3.2      | 0.44               |
|          | その他(Be)                      | -              | <0.18   | -          | -       | -       | -       | -       | -       | < 0.015 | < 0.015 | < 0.015 | < 0.015 | -        | -      | -           | -       | -      | -       | -       | -        | -         | -       | -       | -         | -        | -                  |
|          | その他(Cd)                      | -              | < 0.19  | -          | -       | -       | -       | -       | -       | 0.079   | < 0.063 | < 0.063 | < 0.063 | -        | -      | -           | -       | -      | -       | -       | -        | -         | 0.08    | < 0.05  | <0.2      | -        | -                  |
|          | その他(Sr)                      | - 1            | -       | -          | - 1     | -       | -       | -       | -       | -       | -       | -       | -       | -        | -      | -           | -       | -      | -       | -       | -        | -         | -       | -       | -         | -        | -                  |
|          | その他(Y)                       | - 1            | -       | -          | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -      | -           | -       | -      | -       | -       | -        | -         |         | -       | -         | -        | -                  |
|          | その他(TI)                      | - 1            | -       | -          | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -      | -           | -       | -      | -       | -       | -        | -         | -       | -       | -         | -        | -                  |
| 炭素成分     | OC1                          | 0.027          | <0.028  | 0.78       | 1.2     | 0       | 0       | 0       | 0       | 0.056   | 0.12    | 0.046   | <0.046  | <0.10    | <0.4   | <0.4        | < 0.042 | 0.17   | <0.08   | 0.14    | < 0.0070 | < 0.021   | < 0.039 | <0.08   | < 0.04    | <0.027   | < 0.023            |
| 22212273 | OC2                          | 0.76           | 1       | 1.9        | 2.5     | 1.8     | 1.9     | 3.7     | 1.1     | 2.7     | 1.3     | 1       | 0.78    | 3.3      | 1      | 0.7         | 0.92    | 0.82   | 1.1     | 2       | 1.7      | 1.6       | 0.61    | 1.1     | 0.65      | 1        | 0.39               |
|          | OC3                          | 0.39           | 0.64    | 1.9        | 2.3     | 1.4     | 1.0     | 2.4     | 0.95    | 0.7     | 0.5     | 0.87    | 0.63    | 0.51     | 0.6    | 0.4         | 0.56    | 0.45   | 0.69    | 0.93    | 1.2      | 1.0       | 1.2     | 0.8     | 0.3       | 0.74     | 0.43               |
|          | OC4                          | 0.39           | 0.84    | 1.9        | 1.1     | 0.78    | 0.78    | 1.3     | 0.95    | 0.25    | 0.15    | 0.29    | 0.63    | 0.51     | 0.6    | <0.4        | 0.36    | 0.43   | 0.89    | 0.93    | 0.64     | 0.93      | 0.41    | 0.8     | 0.17      | 0.74     | 0.43               |
|          |                              |                |         | 2.0        |         |         |         | 1.3     |         |         |         | 0.29    | 0.25    |          | 0.5    | <0.4<br>0.8 |         | 0.42   |         |         | 1.2      |           |         |         |           |          |                    |
|          | Ocpyro                       | 0.46           | 1.7     | 2.2        | 2.5     | 1.3     | 1.5     | 2       | 0.96    | 0.67    | 0.33    | 1       |         | 1.1      | 1      |             | 0.66    |        | 0.58    | 0.91    |          | 1.6       | 1.3     | 0.93    | 0.46      | 0.78     | 0.34               |
|          | EC1                          | 0.75           | 2.2     | 3.1        | 3.1     | 2       | 2       | 2.8     | 1.4     | 1       | 0.24    | 1       | 0.58    | 1.8      | 1      | 0.88        | 0.72    | 0.76   | 1.1     | 1.9     | 1.2      | 1.7       | 1.1     | 1.2     | 0.37      | 0.79     | 0.36               |
|          | EC2                          | 0.18           | 0.98    | 0.77       | 1.2     | 0.66    | 0.68    | 0.69    | 0.93    | 0.65    | 0.25    | 0.61    | 0.58    | 0.54     | 0.44   | 0.55        | 0.88    | 0.21   | 0.34    | 0.36    | 1.3      | 1.1       | 0.6     | 0.69    | 0.34      | 0.96     | 0.42               |
|          | EC3                          | 0              | 0.072   | 0.08       | 0.1     | 0.05    | 0.045   | 0.06    | 0.067   | 0.055   | 0.02    | 0.06    | 0.055   | <0.017   | 0.02   | 0.015       | 0.05    | 0      | <0.026  | 0.07    | <0.028   | 0.037     | 0.13    | <0.06   | 0.01      | <0.028   | <0.028             |
|          | OC                           | 1.9            | 3.7     | 7.8        | 9.6     | 5.3     | 5.5     | 9.4     | 3.7     | 4.4     | 2.4     | 3.2     | 2.5     | 5.2      | 3.1    | 1.9         | 2.4     | 2.2    | 2.7     | 4.5     | 4.7      | 5.3       | 3.5     | 3       | 1.6       | 3.1      | 1.4                |
|          | EC                           | 0.47           | 1.6     | 1.8        | 1.9     | 1.4     | 1.2     | 1.6     | 1.4     | 1       | 0.18    | 0.67    | 0.43    | 1.2      | 0.46   | 0.65        | 0.99    | 0.55   | 0.86    | 1.4     | 1.3      | 1.2       | 0.53    | 0.96    | 0.26      | 0.97     | 0.44               |
|          | WSOC                         | -              | 2.6     | 5.3        | 6.6     | 3.5     | -       | -       | 2.7     | 1.8     | 2.1     | 2       | 2.5     | 1.4      | -      | -           | 2.3     | 1.6    | 2       | -       | 3        | 5.3       | 2.6     | 1.5     | 0.7       | 2.3      | -                  |

| ₹₹4-1- | 10 0/31          | פיתם     | ᅃᄱᅩ         | 197      |          |         |         |         |          |         |          |         |         |          |         |        |         |        |         | ( PM2.5 | ,灰糸瓜     | រភ , ។ ។  | ン成分:     | . μg/m  | 無懱风    | 刀 . ng/m  | , )     |
|--------|------------------|----------|-------------|----------|----------|---------|---------|---------|----------|---------|----------|---------|---------|----------|---------|--------|---------|--------|---------|---------|----------|-----------|----------|---------|--------|-----------|---------|
| 自治     | 体名               | 茨城県      | 栃木県         | 群馬県      | 群馬県      | 埼玉県     | 埼玉県     | 埼玉県     | さいたま市    | 千葉県     | 千葉県      | 千葉県     | 千葉県     | 千葉市      | 東京都     | 東京都    | 神奈川県    | 横浜市    | 川崎市     | 相模原市    | 山梨県      | 山梨県       | 長野県      | 静岡県     | 静岡県    | 静岡市       | 浜松市     |
| 調査     | 地点名              | 土浦       | 真岡          | 前橋       | 富岡       | 鴻巣      | 日高      | 秩父      | 城南       | 市原      | 勝浦       | 佐倉      | 富津      | 千葉       | 綾瀬      | 多摩     | 大和      | 横浜     | 川崎      | 相模原     | 甲府       | 東山梨       | 長野       | 富士      | 湖西     | 静岡        | 浜松      |
| 基本事項   | PM2.5濃度          | 12       | 12.2        | 18.1     | 22.6     | 14.4    | 13.1    | 14.5    | 15.7     | 10.2    | 5.1      |         | 13.7    | 12.1     | 12.6    | 13.1   | 11.5    | 10.2   | 12      | 10.6    |          | -         | 11       | 7.9     | 6      | 7         | 4.2     |
| イオン成分  | CI               | < 0.013  | <0.048      | <0.055   | 0.21     |         | < 0.054 | < 0.054 | 0.0053   | <0.027  | <0.027   |         | 0.044   | < 0.0045 | < 0.07  | <0.07  |         | < 0.02 |         | <0.02   | <0.0022  | <0.0022   |          | < 0.014 | 0.1    | <0.02     | 0.14    |
| コカン成力  | NO2              |          |             |          |          |         |         |         |          |         |          |         |         |          |         |        |         |        |         |         |          |           |          |         |        |           |         |
|        | NO3-             | 0.056    | 0.21        | 0.15     | 0.38     |         | 0.085   | 0.091   | 0.16     | 0.096   | 0.017    | 0.08    | 0.16    | 0.069    | 0.16    | 0.3    |         | 0.12   |         | 0.09    | 0.083    | 0.11      |          | 0.062   | 0.17   | 0.28      | 0.13    |
|        | SO42-            | 2.6      | 2.7         | 3.4      | 4.9      | 3.1     | 3.1     | 3.2     | 2.7      | 2.4     | 1.2      | 2.8     | 1.7     | 3.2      | 2.5     | 3.2    | 2.8     | 2.8    | 3.2     | 2.2     | 1.9      |           | 2.5      | 1.7     | 1.8    | 1.5       | 1.2     |
|        | Na⁺              | 0.053    | <0.058      | < 0.067  | < 0.067  | 0.043   | 0.031   | 0.047   | 0.11     | 0.13    | 0.05     | 0.13    | 0.067   | 0.16     | 0.11    | 0.21   | <0.23   | 0.2    | 0.18    | 0.1     | < 0.020  | < 0.020   | 0.022    | 0.14    | 0.45   | 0.13      | 0.22    |
|        | NH₄ <sup>+</sup> | 1        | 0.98        | 1.3      | 1.4      | 1.2     | 1.2     | 1.1     | 0.87     | 0.66    | 0.26     | 0.81    | 0.46    | 1.1      | 0.92    | 1.1    | 0.66    | 0.81   | 0.97    | 0.69    | 0.7      | 0.77      | 0.95     | 0.59    | 0.41   | 0.42      | 0.29    |
|        | 11114            |          |             |          |          |         |         |         |          |         |          |         |         |          |         |        |         |        |         |         |          |           |          |         |        |           | -       |
|        | K⁺               | 0.065    | 0.049       | 0.09     | 0.041    | 0.051   | 0.034   | 0.076   | 0.075    | 0.057   | 0.09     | 0.13    | 0.029   | 0.093    | 0.1     | 0.12   | 0.07    | 0.14   | 0.16    | 0.13    | <0.24    | <0.24     | < 0.035  | 0.037   | 0.059  | <0.017    | 0.061   |
|        | Mq <sup>2+</sup> | < 0.0082 | 0.0067      | < 0.042  | < 0.042  | 0.019   | 0.003   | 0.0027  | 0.014    | 0.013   | < 0.0006 | 0.02    | 0.013   | < 0.021  | < 0.005 | 0.008  | < 0.087 | 0.04   | 0.034   | 0.02    | < 0.15   | < 0.15    | < 0.0069 | 0.012   | 0.041  | 0.017     | 0.024   |
|        | Ca <sup>2+</sup> | 0.012    | <0.018      | 0.07     | 0.11     | 0.011   | 0.021   | 0.031   | 0.068    | 0.042   | < 0.0021 | 0.12    | 0.27    | <0.028   | < 0.02  | 0.08   | <0.28   | 0.07   | 0.06    | <0.1    | <0.16    | <0.16     | < 0.064  | <0.11   | <0.11  | < 0.026   | < 0.04  |
| 無機成分   | Na               | - 0.012  | 42          | 23       | <5.4     | 0.011   | - 0.021 | -       | 160      | 180     | 160      | 200     | 210     | 110      | 140     | 200    | 200     | 130    |         | 120     | 25       |           |          | 78      | 360    | 260       | 140     |
| 無愧况刀   | iva              |          |             |          |          | -       |         |         |          |         |          |         |         | _        | _       |        |         |        |         |         |          |           |          |         |        |           |         |
|        | Al               | 38       | <32         | 57       | 110      | -       | -       | -       | <250     | 51      | 9.9      | 130     | 280     | 16       | <9      | 24     |         | 36     |         |         | <18      |           |          | <1      | 25     | <18       | 3.5     |
|        | Si               | -        | -           | -        | -        | -       | -       | -       | 190      | 130     | 37       | 450     | 790     | 54       | 50      | 80     | -       | 46     |         | 69      | 17       | 23        | -        | <30     | 30     | 17        | -       |
|        | K                | -        | 67          | <11      | <11      | <9.2    | 72      | 120     | 100      | 79      | 68       | 60      | 94      | 140      | 90      | 80     | 94      | 88     | 67      | 110     | 30       | 73        | 45       | <10     | 60     | 72        | 21      |
|        | Ca               | -        | <54         | <87      | 200      | <1.2    | <1.2    | 4.5     | <460     | 110     | <25      | 130     | 280     | 49       | 20      | 30     | <11     | 34     | 25      | 41      | <49      | <110      | 22       | 43      | 28     | 52        | <20     |
|        | Sc               | < 0.010  | < 0.71      | < 0.011  | < 0.011  | 0.085   | < 0.044 | < 0.044 | < 0.33   | < 0.073 | < 0.073  | < 0.073 | 0.086   | <0.91    | 0.07    | 0.07   | < 0.79  | <0.11  | < 0.023 | < 0.07  | <0.022   | < 0.017   | 0.0056   | <0.2    | <0.2   | < 0.019   | <1.1    |
|        | Ti               | 1.7      | <9.6        | -        | -        | 8.5     | 1.4     | <1.4    | 11       | 5       | <1.7     | 14      | 24      | <4.2     | 3       | 2      | 8.5     | 3.4    |         | 4.9     | 1.1      |           |          | 2.3     | <2     | 0.97      | 1.2     |
|        | 1/               | 1.7      | 2.1         | - 1      | 1.6      |         | 1.7     | 2.8     | 5.1      | 9.3     | 4.3      | 5.4     | 12      | 6.1      | 2.5     | 7.5    |         | 11     |         | 1.8     | 1.1      |           |          | 4.3     | 4.2    | 4.1       | 2.7     |
|        | V                | 0.45     | <0.60       | <0.37    | 1.0      |         | 0.44    | 0.44    | 1.5      | <1.1    | <1.1     | 1.3     | <1.1    | 6.1      | 1.7     | 1.4    |         | <0.38  |         |         | <2.5     |           |          | 0.8     | <0.2   | <1.5      | 0.13    |
|        | Cr               |          |             |          | 1.2      |         |         |         |          |         |          |         |         |          |         |        |         |        |         | 0.7     |          |           |          |         |        |           | 0.13    |
|        | Mn               | 3.7      | 2.6         | 1.3      | 5        | <1.6    | <1.6    | 1.8     | 7.3      | 5.2     | 0.28     | 7.2     | 7.8     | 9        | 3.6     | 6      |         | 2.7    |         | 2.5     | 1        | 1.4       |          | 0.34    | 1.3    | 1.6       | 3       |
|        | Fe               | 56       | 47          | 34       | 110      | <2.8    | 4.3     | 11      | 190      | 150     | <14      | 210     | 240     | 210      | 50      | 90     |         | 87     |         | 52      | 19       |           |          | 10      | 41     | 19        | 16      |
|        | Co               | 0.024    | < 0.12      | 0.18     | 0.08     | < 0.027 | < 0.027 | < 0.027 | 0.11     | 0.18    | < 0.05   | 0.079   | 0.12    | < 0.14   | < 0.08  | <0.08  | < 0.082 | < 0.83 | 0.024   | < 0.06  | < 0.025  | 0.017     | -        | < 0.02  | < 0.2  | 0.0096    | < 0.039 |
|        | Ni               | 0.89     | <4.0        | 0.4      | 1        | <0.12   | 0.52    | 1       | 2.7      | 3.2     | 1.3      | 1.6     | 3.8     | 2.3      | 0.6     | 2.5    | 1.4     | 3.1    | 2       | 0.69    | 0.3      | 0.34      | 0.45     | 1.1     | < 0.4  | 1.2       | 0.53    |
|        | Cu               | 3.2      | <2.3        | <2.4     | 2.5      | <0.20   | 3.8     | 2       | 7.4      | 2.9     | 3        | 3.1     | 2.5     | 2.3      | 4.5     | 4.6    | <11     | <4.4   | 4       | 3.4     | 1        | 2.5       | 1.7      | 0.31    | 0.4    | 2.3       | 0.63    |
|        | Zn               | 43       | <20         | 7.3      | 18       |         | 7.4     | 11      | 63       | 76      | <2.5     | 9.9     | 7.9     | 35       | 16      | 44     |         | 9.4    |         | 9.3     | <5.2     | <41       | 11       | 10      | 5      | <28       | 4.1     |
|        | Δο.              | 0.34     | 0.36        | 0.17     | 0.82     |         | 0.29    | 0.26    | 0.42     | 0.28    | 0.088    | 0.25    | 0.17    | 0.5      | 0.3     | 0.4    |         | <0.8   |         | 0.28    | 0.12     | 0.25      |          | <0.7    | <0.7   | 0.23      | <0.042  |
|        | AS .             |          |             |          | 0.02     |         |         |         |          |         |          |         |         |          | 0.3     | 0.4    |         |        |         |         |          |           |          |         |        |           |         |
|        | Se               | < 0.047  | 0.65        | 0.33     | - 1      | < 0.49  | 0.67    | < 0.49  | 1.3      | <1      | <1       | <1      | <1      | 1.9      | 1       | 1      | 1.1     | <1.1   | 1.2     | 2.4     | 0.14     | 0.25      |          | <0.3    | <1     | 0.21      | < 0.13  |
|        | Rb               | -        | 0.15        | 0.09     | 0.25     |         | 0.11    | 0.34    | <0.75    | 0.21    | <0.042   | 0.27    | 0.22    | 0.86     | 0.14    | 0.2    |         | <1.1   |         | 0.07    | < 0.039  | 0.095     |          | 0.05    | <0.1   | 0.052     | < 0.034 |
|        | Mo               | 0.27     | <2.3        | < 0.009  | <0.009   | <0.081  | 0.38    | 0.16    | 0.53     | 0.3     | <0.066   | 0.56    | 0.097   | 0.74     | < 0.5   | < 0.5  | 0.46    | <1.3   | 1.2     | 0.17    | 0.073    | 0.092     | 0.2      | <0.6    | <0.6   | 0.24      | < 0.74  |
|        | Sb               | 1.1      | 0.84        | -        | -        | < 0.037 | 0.88    | 0.91    | 1.9      | 0.7     | 0.14     | 0.17    | 0.26    | 0.82     | 1.2     | 1.1    | 1.3     | <6.3   | 0.84    | 2.1     | 0.4      | 0.41      | 12       | < 0.3   | 0.8    | 0.58      | 0.22    |
|        | Cs               | 0.017    | < 0.034     | 0.015    | 0.045    | < 0.017 | < 0.017 | 0.017   | 0.023    | 0.027   | < 0.02   | 0.043   | < 0.02  | 0.15     | < 0.05  | < 0.05 | <0.13   | <9.1   | < 0.014 | < 0.06  | < 0.024  | 0.0072    | -        | < 0.1   | < 0.1  | < 0.0048  | < 0.029 |
|        | Ba               | 2.3      | 1.9         | 1.1      | 2.6      | < 0.85  | < 0.85  | < 0.85  | 11       | 3.5     | 3.5      | 1.3     | 2.4     | 2.1      | 6.2     | 4.1    | 5.3     | <10    | 2       | 6.5     | 1.2      | 1.6       |          | 1.7     | 2.9    | 3.3       | 1.2     |
|        | La               | 0.052    | <0.11       | 0.015    | 0.07     | < 0.043 | < 0.043 | < 0.043 | 0.12     | 0.22    | <0.021   | 0.041   | 0.072   | <0.39    | 0.04    | 0.11   | < 0.37  | <11    | <0.021  | 0.05    | <0.027   | 0.013     | 0.022    | < 0.07  | < 0.07 | 0.023     | < 0.025 |
|        | Ce               | 0.066    | < 0.079     | 0.028    | 0.24     | <0.023  | < 0.023 | < 0.023 | 0.2      | 0.13    | < 0.023  | 0.067   | 0.14    | < 0.34   | 0.08    | 0.2    |         | <13    |         | 0.08    | <0.022   | 0.024     | - 0.022  | <0.08   | <0.08  | 0.035     | <0.0082 |
|        | Sm               | < 0.0095 | <0.15       | 0.0033   | 0.005    | <0.027  | <0.027  | <0.027  | <0.013   | <0.021  | <0.021   |         | <0.021  | <0.062   | <0.1    | <0.1   | <0.56   | <19    |         | <0.08   | <0.028   | <0.0022   |          | <0.2    | <0.2   | <0.0083   | < 0.034 |
|        |                  |          |             |          |          |         |         |         |          |         |          |         |         |          |         |        |         |        |         | 10100   |          |           |          |         |        |           |         |
|        | Hf               | -        | <0.19       | <0.012   | <0.012   | 0.78    | <0.048  | <0.048  | 0.011    | < 0.059 | < 0.059  | < 0.059 | < 0.059 | < 0.41   | <0.08   | <0.08  |         | <0.018 | < 0.04  | < 0.03  | < 0.059  | <0.00092  | -        | <0.2    | <0.2   | <0.0012   | < 0.49  |
|        | W                | 0.11     | < 0.31      | < 0.012  | < 0.012  | 0.022   | 0.065   | 0.086   | 0.14     | 0.07    | < 0.037  | 0.078   | < 0.037 | <0.38    | <0.06   | 0.13   |         | 4.1    | 0.46    | 0.07    | < 0.054  | 0.01      | -        | <0.5    | <0.7   | 0.022     | < 0.054 |
|        | Та               | -        | <0.23       | < 0.0031 | < 0.0031 | < 0.045 | < 0.045 | < 0.045 | < 0.0022 | <0.02   | < 0.02   | <0.02   | < 0.02  | <0.30    | < 0.07  | <0.07  | -       | <0.019 | < 0.014 | < 0.022 | < 0.0051 | < 0.012   | -        | <0.7    | <0.5   | < 0.00022 | < 0.63  |
|        | Th               | < 0.0074 | <0.22       | 0.034    | 0.06     | <0.029  | < 0.029 | < 0.029 | < 0.0082 | < 0.016 | < 0.016  | < 0.016 | < 0.016 | <0.21    | < 0.2   | < 0.2  | -       | <3.4   | < 0.014 | < 0.07  | < 0.021  | < 0.00069 | -        | <0.1    | <0.1   | < 0.0076  | < 0.078 |
|        | Pb               | 3.2      | 2.3         | 1.3      | 2.9      | < 0.19  | 2.1     | 2.1     | 6.8      | 5.4     | 0.28     | 3.2     | 0.86    | 11       | 2.3     | 6      | 3.6     | <2.1   | 2.4     | 2.6     | 1.2      | 1.2       | 4.3      | <1      | 0.36   | 1.3       | 0.41    |
|        | その他(Be)          | -        | <0.18       | -        | -        | -       | -       | -       | -        | <0.015  | < 0.015  | <0.015  | <0.015  | -        |         | -      | -       | -      | -       | -       | -        | -         | -        | -       | -      | -         | -       |
|        | その他(Cd)          | -        | <0.19       | -        | -        | -       | -       | -       | -        | 0.083   | < 0.063  | 0.12    | 0.067   | -        |         | -      | -       | -      | -       | -       | -        | -         | 0.051    | < 0.05  | <0.2   | -         | -       |
|        | その他(Sr)          |          | 10.10       |          |          | t       | -       |         |          | -       | 40.000   |         | 0.007   |          |         |        | -       |        | -       |         |          | -         | 0.001    | 10.00   | 10.2   |           |         |
|        | その他(Y)           |          |             |          |          |         |         |         |          |         |          |         |         |          |         |        |         |        |         |         |          |           |          |         |        |           |         |
|        |                  |          |             |          |          | -       |         |         |          |         |          |         | -       |          |         |        |         |        |         |         |          |           |          |         |        | -         |         |
|        | その他(TI)          | -        | <del></del> |          |          |         | -       | -       |          |         | -        | -       | -       | -        | -       |        | -       | -      | -       |         |          | -         |          | -       | -      |           |         |
| 炭素成分   | OC1              | 0.091    | <0.028      | 0.29     | 0.26     | 0       | 0       | 0       | 0.055    | 0.051   | 0.19     |         | <0.046  | <0.10    | <0.4    | <0.4   |         | 0.22   |         | 0.11    | <0.0070  | <0.021    | < 0.039  | <0.08   | < 0.04 | < 0.027   | < 0.023 |
|        | OC2              | 0.93     | 1.1         | 1.4      | 1.7      |         | 1.9     | 2.1     | 1.2      | 2.3     | 1.7      | 1.6     | 0.88    | 2        | 0.9     | 1      | 1.1     | 1.1    |         | 1.5     | 1.2      |           | 0.58     | 0.92    | 0.5    | 0.8       | 0.28    |
|        | OC3              | 0.66     | 0.84        | 1.4      | 1.7      | 1.3     | 1.4     | 1.5     | 1.2      | 0.93    | 0.76     | 1.5     | 0.82    | 0.65     | 0.8     | 0.8    | 0.91    | 0.78   | 0.99    | 1.1     | 1.1      | 0.98      | 1.2      | 0.7     | 0.4    | 0.61      | 0.25    |
|        | OC4              | 0.4      | 0.53        | 0.66     | 1.2      | 0.72    | 0.72    | 0.71    | 0.83     | 0.3     | 0.31     | 0.54    | 0.37    | 0.32     | 0.5     | 0.5    | 0.43    | 0.4    | 0.57    | 0.38    | 0.54     | 0.65      | 0.44     | 0.2     | 0.15   | 0.41      | 0.14    |
|        | Ocpyro           | 0.48     | 1.4         | 1.3      | 1.5      | 1.1     | 1.2     | 1.1     | 0.81     | 0.66    | 0.41     | 1.2     | 0.88    | 1.3      | 1.1     | 0.8    | 0.66    | 0.57   |         | 0.64    | 0.78     | 0.9       |          | 0.49    | 0.15   | 0.43      | <0.14   |
|        | EC1              | 0.40     | 2.2         | 1.5      | 1.6      |         | 1.6     | 1.7     | 1.4      | 1       | 0.36     | 1.7     | 0.98    | 2.5      | 0.88    | 1.2    |         | 1      |         | 1.1     | 0.76     | 0.9       |          | 0.43    | 0.2    | 0.46      | 0.16    |
|        |                  | 0.87     | 1.1         | 1.0      |          |         | 0.64    | 0.53    | 0.8      | 0.55    | 0.30     |         | 0.96    | 0.6      |         | 0.52   |         | 0.21   |         |         | 0.70     | 0.87      |          |         |        | 0.40      | 0.10    |
|        | EC2              |          |             | 0.07     | 1.6      | 0.69    |         |         |          | 0.55    |          | 0.64    |         |          | 0.42    |        |         |        |         | 0.32    |          |           |          | 0.68    | 0.25   |           |         |
|        | EC3              | 0        | 0.094       | 0.07     | 0.23     | 0.05    | 0.06    | 0.04    | <0.043   | 0.04    | 0.055    | 0.07    | 0.055   | 0.022    | 0.03    | 0.02   |         | 0      |         | 0.05    | <0.028   | 0.044     |          | <0.06   | 0.01   | <0.028    | <0.028  |
|        | OC               | 2.6      | 3.9         | 5.1      | 6.4      |         | 5.2     | 5.4     | 4.1      | 4.2     | 3.4      | 4.9     | 3       | 4.3      | 3.3     | 3.1    | 3.1     | 3.1    |         | 3.7     | 3.6      | 3.5       | 3.2      | 2.3     | 1.2    | 2.2       | 0.67    |
|        | EC               | 0.6      | 2           | 1.3      | 1.9      | 1.2     | 1.1     | 1.2     | 1.4      | 0.93    | 0.26     | 1.2     | 0.76    | 1.8      | 0.23    | 0.94   | 0.9     | 0.64   |         | 0.83    | 0.77     | 0.91      | 0.4      | 0.8     | 0.31   | 0.47      | 0.37    |
|        | WSOC             | -        | 3.7         | 3.1      | 4        | 4       | -       | -       | 3        | 1.8     | 2.5      | 3.4     | 3       | 1.8      | -       | -      | 2.6     | 2.3    | 2.5     | -       | 2.3      | 4.1       | 2.3      | 1.1     | 0.52   | 1.4       | -       |

| 表4-1-          |                              | <u>2日から</u> |     |          |          |         |         |         |          |         |         |         |         |         |        |        |        |        |         | ( PM2.5 |          | 分,イス     |         |        |        | 分:ng/m    |          |
|----------------|------------------------------|-------------|-----|----------|----------|---------|---------|---------|----------|---------|---------|---------|---------|---------|--------|--------|--------|--------|---------|---------|----------|----------|---------|--------|--------|-----------|----------|
| 自治             | 体名                           | 茨城県         | 栃木県 | 群馬県      | 群馬県      | 埼玉県     | 埼玉県     | 埼玉県     | さいたま市    | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市     | 東京都    | 東京都    | 神奈川県   | 横浜市    | 川崎市     | 相模原市    | 山梨県      | 山梨県      | 長野県     | 静岡県    | 静岡県    | 静岡市       | 浜松市      |
| 調査             | 地点名                          | 土浦          | 真岡  | 前橋       | 富岡       | 鴻巣      | 日高      | 秩父      | 城南       | 市原      | 勝浦      | 佐倉      | 富津      | 千葉      | 綾瀬     | 多摩     | 大和     | 横浜     | 川崎      | 相模原     | 甲府       | 東山梨      | 長野      | 富士     | 湖西     | 静岡        | 浜松       |
| 基本事項           | PM2.5濃度                      | 16.2        | -   | 16.1     | 16.3     | 18.7    | 18.2    | 18.2    | 18.7     | 14.8    | 6.2     | 11.6    | 8.2     | 12.9    | 18.2   | 13.8   | 14.3   | 10.5   | 13.6    | 15.9    | -        | -        | 10.9    | 7.3    | 4.4    | 5.2       | 4        |
| イオン成分          | CI-                          | < 0.013     | -   | < 0.055  | < 0.055  | < 0.054 | < 0.054 | < 0.054 | 0.06     | 0.098   | < 0.027 | < 0.027 | <0.027  | 0.0098  | < 0.07 | <0.07  | <0.058 | 0.02   | 0.0098  | < 0.02  | < 0.0022 | <0.0022  | < 0.011 | 0.015  | 0.054  | <0.02     | 0.088    |
|                | NO3-                         | 0.18        | -   | 0.18     | 0.17     | 0.17    | 0.14    | 0.12    | 0.48     | 0.25    | 0.11    | 0.083   | 0.1     | 0.066   | 0.4    | 0.3    | 0.37   | 0.29   | 0.38    | 0.26    | 0.075    | 0.077    | <0.13   | 0.18   | 0.18   | 0.13      | 0.14     |
|                | SO42-                        | 3.8         | -   | 2.6      | 2.6      | 3.2     | 2.9     | 3.1     | 3.5      | 3.3     | 1.4     | 2.3     | 1.8     | 3.2     | 2.8    | 3.3    |        | 2.3    | 3.2     | 2.8     | 1.8      |          |         | 2      | 0.74   | 0.8       | 0.76     |
|                | Na⁺                          | 0.095       |     | < 0.067  | < 0.067  | 0.075   | 0.052   | 0.0062  | 0.22     | 0.24    | 0.13    | 0.15    | 0.055   | 0.14    | 0.12   | 0.21   |        | 0.17   |         | 0.1     | 0.22     | < 0.020  | 0.017   | 0.27   | 0.12   | 0.054     | 0.15     |
|                |                              |             | -   | 40.007   |          |         | 0.002   |         |          |         |         |         | 0.47    |         |        | 0.21   |        | 0.45   | _       | -       |          |          |         |        |        |           |          |
|                | NH <sub>4</sub> <sup>+</sup> | 1.2         | -   | - 1      | 0.81     | 1.1     | - 1     | 1.1     | 0.82     | 0.96    | 0.31    | 0.67    |         | 1.1     | 0.99   | - 1    | 0.74   |        |         | 0.85    | 0.45     | 0.52     |         | 0.55   | 0.18   | 0.19      | 0.17     |
|                | K <sup>+</sup>               | 0.31        | -   | 0.13     | 0.08     | 0.4     | 0.17    | 0.16    | 0.65     | 0.089   | 0.04    | 0.2     | 0.026   | 0.082   | 0.36   | 0.22   | 0.33   | 0.36   | 0.45    | 0.27    | <0.24    | <0.24    | < 0.035 | 0.14   | 0.33   | 0.13      | 0.21     |
|                | Mq <sup>2+</sup>             | 0.024       | -   | < 0.042  | < 0.042  | 0.029   | 0.0087  | 0.0039  | 0.077    | 0.022   | 0.011   | 0.024   | 0.01    | < 0.021 | 0.02   | 0.02   | <0.087 | 0.06   | 0.066   | 0.03    | < 0.15   | < 0.15   | 0.0079  | 0.047  | 0.021  | 0.0046    | 0.015    |
|                | Ca <sup>2+</sup>             | 0.012       | -   | < 0.061  | < 0.061  | 0.016   | 0.02    | 0.026   | 0.17     | 0.098   | 0.017   | 0.07    | 0.2     | 0.042   | < 0.02 | 0.06   | <0.28  | 0.09   | 0.055   | <0.1    | <0.16    | <0.16    | < 0.064 | 0.13   | <0.11  | < 0.026   | 0.058    |
| 無機成分           | Na                           |             | _   | 27       | <5.4     | -       | -       | -       | 160      | 190     | 140     | 100     | 110     | 180     | 140    | 420    |        | 130    |         | 120     | 46       |          |         | 190    | 86     |           | 30       |
| ***\1%(1)& / J | ΛI                           | 37          |     | 110      | <33      |         | -       | -       | <240     | 50      | 36      | 55      | 27      | 55      | 27     | 720    | 56     | 91     |         | 64      | <18      |          |         | 10     | <1     | <18       | 50       |
|                | AI<br>C:                     | - 31        |     | 110      | <33      |         |         | -       | 200      | 130     | 37      | 130     | 270     | 42      | 60     | -      | 36     | 81     |         | 80      | <12      |          |         | 30     | 30     |           |          |
|                | 01                           | -           | -   | 96       | 59       | <9.2    | 160     | 130     | 660      | 110     | 68      |         | 34      | 210     | 340    | 220    | 300    | 380    |         | 240     | <17      |          |         | 100    | 240    |           | - 22     |
|                | <u>^</u>                     |             | -   | 110      |          | <9.2    |         |         |          | 95      | 42      |         | 69      |         | 20     | 220    | 11     | 73     |         |         |          |          |         |        |        |           | 32<br>35 |
|                | Ca                           |             | -   |          | <87      |         | <1.2    | 4.3     | <460     |         |         |         |         | 48      |        | - 0.4  |        |        |         | 56      | <49      |          |         | 31     | <8     |           |          |
|                | Sc                           | 0.087       | -   | <0.011   | <0.011   | <0.044  | <0.044  |         | <0.33    | <0.073  | <0.073  |         | < 0.073 | <0.91   | 0.06   | 0.1    |        | <0.11  |         | < 0.07  | <0.022   |          |         | <0.2   | <0.2   |           | <1.1     |
|                | II .                         | 10          | -   | - 4.0    |          | <1.4    | 2.5     | 5.3     | 11       | 5.5     | 5.9     | 4.8     | 4       | <4.2    | 3      | 6      | 11     | 5.9    |         | 5.4     | 0.72     | 1.2      |         | 1.7    | <2     |           | 1.2      |
|                | V                            | 6.4         | -   | 1.8      | 1.2      | 4.4     | 2       | 2.8     | 11       | 9.4     | 4.3     | 4.9     | 16      | 6.4     | 3.1    | 19     |        | 5      |         | 2.5     | 1.9      |          |         | 8.2    | 1      | 1.7       | 0.82     |
|                | Cr                           | 2           | -   | 0.77     | 0.58     | <0.29   | 0.48    |         | 1.5      | <1.1    | <1.1    | 1.3     | <1.1    | 4.4     | 1.6    | 2.6    |        | <0.38  |         | 0.7     | <2.5     |          |         | 3.7    | <0.2   | <1.5      | 0.13     |
|                | Mn                           | 4.7         | -   | 3.5      | 2.1      | 3.8     | 3.2     |         | 8.2      | 5.4     | 0.57    | 5.3     | 1.7     | 7       | 5      | 10     |        | 7.5    |         | 3.3     | 1.1      | 1.5      |         | 1.6    | 1      | 1         | 0.48     |
|                | Fe                           | 85          | -   | 81       | 38       |         | 47      |         | 220      | 170     | 29      | 140     | 33      | 240     | 80     | 190    |        | 140    | 380     | 82      | <2.0     | 18       |         | 28     | 25     |           | 42       |
|                | Co                           | 0.052       | -   | 0.06     | <0.06    |         | < 0.027 |         | 0.089    | 0.12    | < 0.05  | < 0.05  | < 0.05  | <0.14   | <0.08  | 0.09   |        | <0.83  |         | < 0.06  | < 0.025  | 0.026    |         | < 0.02 | <0.2   |           | <0.039   |
|                | Ni                           | 3.2         | -   | 0.64     | 0.44     | 0.77    | 0.29    | 0.89    | 3.8      | 2.7     | 2.1     | 1.7     | 2.8     | 3.2     | 1      | 7.1    | 1.2    | 1.2    | 5.4     | 0.98    | 0.6      |          |         | 4      | <0.4   |           | 0.92     |
|                | Cu                           | 11          | -   | 2.9      | <2.4     |         | 4.9     | 1.5     | 17       | 2.8     | <1.4    | 2       | <1.4    | 3.4     | 10     | 7.4    |        | 11     |         | 6       | 2.1      | 10       |         | 2.2    | 3.6    |           | 0.73     |
|                | Zn                           | 40          | -   | 14       | 14       |         | 14      |         | 38       | 45      | 8.1     | 20      | 3.9     | 35      | 26     | 70     |        | 16     |         | 16      | <5.2     | <41      |         | 24     | 7      | <28       | <2.4     |
|                | As                           | 0.49        | -   | 0.46     | 0.4      | 0.62    | 0.66    | 0.39    | 0.7      | 0.37    | 0.12    | 0.33    | 0.2     | 0.53    | 0.7    | 0.8    | <0.48  | <0.8   |         | 0.57    | 0.14     | 0.31     |         | < 0.7  | <0.7   |           | < 0.042  |
|                | Se                           | 0.13        | -   | 0.65     | 0.63     | 1.4     | 0.96    | < 0.49  | 0.99     | 2       | <1      | <1      | <1      | 2.1     | 1      | 1      | 1.3    | <1.1   |         | 3       | < 0.11   | 0.26     | 0.19    | < 0.3  | <1     | 0.086     | < 0.13   |
|                | Rb                           | -           | -   | 0.18     | 0.1      | 0.19    | 0.15    | 0.34    | 3.7      | 0.22    | 0.076   | 0.21    | 0.05    | 0.63    | 0.23   | 0.3    | < 0.29 | <1.1   | 0.35    | 0.16    | 0.046    | 0.1      | 0.12    | 0.09   | <0.1   | 0.08      | < 0.034  |
|                | Mo                           | 0.28        | -   | 0.09     | < 0.009  | 0.54    | 0.28    | 0.19    | 0.63     | 0.54    | < 0.066 | 1       | 0.085   | 2.3     | < 0.5  | 0.6    | 0.35   | <1.3   | 1.7     | 0.26    | 0.074    | 0.15     | 0.16    | 0.6    | <0.6   | 0.12      | < 0.74   |
|                | Sb                           | 2.4         | -   | -        | -        | 1.8     | 2.5     | 0.94    | 6.4      | 0.69    | 0.28    | 1.9     | 0.14    | 0.82    | 2.4    | 2      | 2.6    | <6.3   | 3.3     | 3       | 0.43     | 0.5      | 0.73    | 0.8    | 1.7    | 0.24      | 0.4      |
|                | Cs                           | 0.025       |     | 0.021    | 0.016    | 0.036   | < 0.017 | < 0.017 | 0.035    | 0.035   | < 0.02  | 0.026   | <0.02   | 0.11    | < 0.05 | 0.07   | < 0.13 | <9.1   | 0.063   | < 0.06  | < 0.024  | 0.0087   | -       | <0.1   | <0.1   | <0.0048   | < 0.029  |
|                | Ва                           | 13          | -   | 4.7      | 2.6      | <0.85   | 5.4     | 2.2     | 47       | 4.8     | 2.7     | 2.3     | 1.5     | 8.3     | 24     | 15     | 17     | <10    | 23      | 15      | 4.5      | 7        |         | 5      | 8.8    | 4.4       | 1.4      |
|                | La                           | 0.072       | -   | 0.043    | 0.012    | < 0.043 | < 0.043 | < 0.043 | 0.18     | 0.23    | < 0.021 | 0.18    | < 0.021 | < 0.39  | 0.08   | 0.2    | < 0.37 | <11    | 0.1     | 0.11    | < 0.027  | 0.014    | 0.022   | < 0.07 | < 0.07 | < 0.01    | < 0.025  |
|                | Ce                           | 0.072       |     | 0.08     | 0.036    | < 0.023 | < 0.023 | < 0.023 | 0.33     | 0.093   | < 0.023 | 0.084   | < 0.023 | < 0.34  | 0.1    | 0.3    | < 0.32 | <13    | 0.25    | 0.19    | < 0.022  | 0.022    | -       | < 0.08 | <0.08  | < 0.0092  | < 0.0082 |
|                | Sm                           | < 0.0095    | -   | 0.005    | < 0.0005 | < 0.027 | < 0.027 | < 0.027 | < 0.013  | < 0.021 | < 0.021 | < 0.021 | < 0.021 | < 0.062 | <0.1   | <0.1   | < 0.56 | <19    | < 0.015 | <0.08   | <0.028   | < 0.0022 |         | <0.2   | <0.2   | < 0.0083  | < 0.034  |
|                | Hf                           | -           | -   | < 0.012  | < 0.012  | <0.048  | <0.048  | 0.3     | 0.012    | < 0.059 | < 0.059 | < 0.059 | < 0.059 | < 0.41  | <0.08  | <0.08  | -      | <0.018 | < 0.04  | < 0.03  | < 0.059  | <0.00092 | -       | <0.2   | <0.2   | <0.0012   | < 0.49   |
|                | W                            | 0.38        | -   | < 0.012  | < 0.012  | 0.31    | 0.11    | 0.075   | 0.22     | 0.098   | < 0.037 | 0.096   | < 0.037 | < 0.38  | 0.08   | 0.13   | 0.13   | 0.67   | 0.28    | 0.09    | < 0.054  | 0.021    | -       | <0.5   | <0.7   | < 0.011   | < 0.054  |
|                | Та                           | -           | -   | < 0.0031 | < 0.0031 | < 0.045 | < 0.045 | < 0.045 | < 0.0022 | < 0.02  | < 0.02  | < 0.02  | <0.02   | < 0.30  | < 0.07 | < 0.07 | -      | <0.019 | < 0.014 | < 0.022 | < 0.0051 | < 0.012  | -       | <0.7   | <0.5   | < 0.00022 | < 0.63   |
|                | Th                           | 0.059       | -   | <0.02    | < 0.02   | <0.029  | <0.029  | <0.029  | <0.0082  | < 0.016 | < 0.016 | < 0.016 | < 0.016 | <0.21   | <0.2   | <0.2   | -      | <3.4   | < 0.014 | < 0.07  | <0.021   | <0.00069 | -       | <0.1   | <0.1   | <0.0076   | <0.078   |
|                | Pb                           | 5           | -   | 3.1      | 1.4      | 5       | 3.7     | 2       | 8.5      | 4.5     | 0.81    | 3.9     | 0.28    | 10      | 4.7    | 12     | 3.1    | <2.1   | 13      | 5.4     | 1        | 1.2      | 1.8     | 2      | 0.47   |           | 0.37     |
|                | その他(Be)                      | - 1         | -   | -        | -        | - 1     | -       | -       |          | <0.015  | < 0.015 | < 0.015 | < 0.015 | -       | -      | -      | -      | -      | -       | -       | -        | -        | - 10    | - 1    | -      | - T       |          |
|                | その他(Cd)                      | -           | -   | -        | -        | -       | -       | -       | -        | 0.096   | < 0.063 | 0.099   | < 0.063 | -       |        | -      | -      | -      | -       | -       | -        | -        | 0.048   | < 0.05 | <0.2   | -         |          |
|                | その他(Sr)                      |             |     | -        | -        | -       | -       | -       | -        | -       | -       | -       | -       | -       | -      | -      | -      | -      | -       | -       | -        | -        | -       | -      | -      | . 1       | -        |
|                | その他(Y)                       | -           | -   | -        | -        | -       | -       | -       | -        | -       | -       | -       | -       | -       | -      | -      | -      | -      | -       | _       | -        | -        | -       | -      | -      | -         | -        |
|                | その他(TI)                      |             | -   |          | -        | - 1     | -       | -       |          |         | -       |         |         | -       |        |        | -      |        | -       |         | -        | -        |         | -      | -      | - 1       | -        |
| 炭素成分           | OC1                          | 0.084       | _   | 0.32     | 0.46     | 0       | ٥       | 0       | 0.03     | 0.061   | 0.12    | 0.081   | <0.046  | <0.10   | <0.4   | <0.4   | 0.15   | 0.43   | 0.088   | 0.22    | <0.0070  | <0.021   | <0.039  | <0.08  | <0.04  | <0.027    | <0.023   |
| 及示がり           | OC2                          | 1.3         | -   | 1.4      | 1.7      |         | 2.8     | 2.9     | 1.5      | 1.6     | 1.5     |         | 1.4     | 3.5     | 20.4   | 1      | 1.5    | 1.3    |         | 2.5     | 1.5      |          |         | 0.97   | 0.53   | 0.74      | 0.35     |
|                | OC3                          | 0.83        |     | 1.5      | 1.7      |         | 2.3     | 2.2     | 2        | 1.0     | 1.1     |         | 0.61    | 0.66    | 2      | 0.9    |        | 1.3    |         | 1.7     | 1.3      | 1.1      |         | 0.9    | 0.55   | ***       | 0.35     |
|                | OC4                          | 0.63        |     | 0.7      | 0.75     |         | 0.93    | 0.85    | 1.4      | 0.34    | 0.32    | 0.42    | 0.61    | 0.86    | 0.8    | 0.9    |        | 0.73   |         | 0.57    | 0.72     |          |         | 0.9    | 0.21   | 0.52      | 0.35     |
|                |                              | 0.40        |     | 1.2      | 1.3      | 1.3     | 1.4     | 1.3     | 1.4      | 0.91    | 0.32    | 0.42    | 0.23    | 1.4     | 1.1    | 0.89   | 0.39   | 0.73   |         | 0.89    | 1.1      |          |         | 0.58   | 0.06   | 0.32      | 0.20     |
|                | Ocpyro<br>EC1                | 0.38        |     | 1.7      | 1.5      |         | 2.1     | 1.3     | 2.3      | 1.3     | 0.41    | 1.3     | 0.47    | 2.5     | 1.1    | 1.2    |        | 0.49   |         | 1.9     | 1.1      | 0.98     | 0.67    | 0.58   | 0.06   | 0.42      | 0.18     |
|                |                              | 0.17        | -   |          |          |         |         | 0.71    |          |         | 0.35    |         | 0.55    |         |        | 0.47   |        | 0.97   |         |         | 0.04     |          |         | 0.68   |        | 0.44      |          |
|                | EC2                          | 0.17        | -   | 0.62     | 0.86     | 0.64    | 0.65    |         | 0.5      | 0.52    |         | 0.55    |         | 0.53    | 0.41   |        |        |        | 0.00    | 0.31    | 0.84     | 0.69     |         |        | 0.22   |           | 0.26     |
|                | EC3                          | 0           | -   | 0.05     | 0.09     | 0.04    | 0.04    |         | 0.093    | 0.065   | 0.01    | 0.06    | 0.045   | <0.017  | 0.04   | 0.03   |        | 0      |         | 0.03    | 0.038    | 0.031    | 0.094   | <0.06  | <0.009 |           | <0.028   |
|                | OC                           | 3.3         |     | 5.1      | 5.9      | 7.4     | 7.4     | 7.3     | 5.9      | 3.9     | 3.5     | 3.6     | 2.7     | 5.9     | 5.9    | 3.4    |        | 4.3    |         | 5.9     | 4.6      | 4.2      | 2.7     | 2.8    | 1.3    | 2.4       | 1.1      |
|                | EC                           | 0.59        | -   | 1.2      | 1.2      |         | 1.4     | 1.5     | 1.9      | 0.98    | 0.55    | 1       | 0.6     | 1.7     | 0.85   | 0.81   | 0.95   | 0.62   | 1.4     | 1.4     | 0.78     | 0.74     |         | 0.59   | 0.43   | 0.37      | 0.32     |
|                | WSOC                         | -           | -   | 3.2      | 3.5      | 5.3     | -       | -       | 2.4      | 2.3     | 3       | 2.7     | 2.4     | 2       | -      | -      | 3.7    | 2.6    | 3.3     | -       | 2.8      | 2.3      | 1.9     | 1.2    | 0.7    | 1.6       | , -      |

| रूप- । -   |                              | <u>מינו דו</u> |     |         |          |         |         |         |          |         |         |         |         |         |        |       |        |        |         | ( PMZ.3 |          | <b>ኒ</b> π , 1 ረ |         | :μg/m     | 無懱风     |          | )       |
|------------|------------------------------|----------------|-----|---------|----------|---------|---------|---------|----------|---------|---------|---------|---------|---------|--------|-------|--------|--------|---------|---------|----------|------------------|---------|-----------|---------|----------|---------|
| 自治         | 体名                           | 茨城県            | 栃木県 | 群馬県     | 群馬県      | 埼玉県     | 埼玉県     | 埼玉県     | さいたま市    | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市     | 東京都    | 東京都   | 神奈川県   | 横浜市    | 川崎市     | 相模原市    | 山梨県      | 山梨県              | 長野県     | 静岡県       | 静岡県     | 静岡市      | 浜松市     |
| 調査         | 地点名                          | 土浦             | 真岡  | 前橋      | 富岡       | 鴻巣      | 日高      | 秩父      | 城南       | 市原      | 勝浦      | 佐倉      | 富津      | 千葉      | 綾瀬     | 多摩    | 大和     | 横浜     | 川崎      | 相模原     | 甲府       | 東山梨              | 長野      | 富士        | 湖西      | 静岡       | 浜松      |
| 基本事項       | PM2.5濃度                      | 7.6            | -   | 17.4    | 9.4      | 15.4    | 16.6    | 12.6    | 11.4     | 8       | 2.9     | 8.7     | 21.4    | 7.6     | 7.5    | 6.3   | 5.4    | 3.4    | 3.7     | 6.6     | -        | -                | 4.9     | 7.7       | 3.9     | 2.8      | 3.2     |
| イオン成分      | CI-                          | -              | -   | < 0.055 | < 0.055  |         | < 0.054 | < 0.054 | 0.044    | 0.066   | 0.041   |         | 0.085   | 0.017   | < 0.07 | <0.07 |        | 0.3    |         | <0.02   | <0.0022  | <0.0022          |         | 0.051     | 0.11    |          | 0.081   |
| 1.32 1.223 | NO3-                         |                |     | 0.13    | 0.1      | 0.14    | 0.13    | 0.088   | 0.38     | 0.18    | 0.12    | 0.12    | 0.16    | 0.077   | 0.15   | 0.3   | 0.31   | 0.34   |         | 0.12    | 0.077    |                  |         | 0.16      | 0.15    | 0.12     | 0.081   |
|            | SO42-                        |                |     | 0.13    | 1.3      | 3.4     | 3.1     | 2.1     | 1.5      | 2.2     | 0.12    | 1.5     | 1.2     | 1.6     | 1.2    | 1.2   |        | 0.64   |         | 0.12    | 0.83     |                  |         | 2.5       | 0.78    | 0.12     | 0.64    |
|            |                              |                |     | 3       |          |         |         |         |          |         |         |         |         | _       |        |       |        |        |         |         |          |                  |         |           |         |          |         |
|            | Na <sup>+</sup>              | -              | -   | <0.067  | <0.067   | 0.049   | 0.035   | 0.00092 | 0.19     | 0.24    | 0.11    | 0.2     | 0.088   | 0.16    | 0.09   | 0.14  |        | 0.25   |         | 0.07    | <0.020   | +                |         | 0.29      | 0.31    | 0.043    | 0.12    |
|            | NH <sub>4</sub> <sup>+</sup> | -              | -   | 1.1     | 0.35     | 1.2     | 1.1     | 0.72    | 0.34     | 0.5     | 0.1     | 0.36    | 0.19    | 0.57    | 0.38   | 0.34  | <0.19  | 0.12   | 0.19    | 0.26    | 0.28     | 0.26             | 0.12    | 0.7       | 0.15    | 0.12     | 0.14    |
|            | K <sup>+</sup>               | -              | -   | 0.15    | 0.07     | 0.2     | 0.25    | 0.14    | 0.25     | 0.042   | 0.055   | 0.18    | < 0.01  | 0.094   | 0.17   | 0.16  | 0.061  | 0.1    | 0.11    | 0.12    | <0.24    | <0.24            | 0.066   | 0.085     | 0.065   | < 0.017  | 0.066   |
|            | Mg <sup>2+</sup>             |                |     | <0.042  | <0.042   | 0.021   | 0.011   | 0.0053  | 0.04     | 0.013   | 0.0074  | 0.021   | 0.018   | <0.021  | <0.005 | 0.009 |        | 0.04   | 0.024   | 0.02    | <0.15    | +                |         | 0.032     | 0.031   | <0.0037  | 0.014   |
|            | ivig                         | -              |     |         |          |         |         |         |          |         |         |         |         |         |        |       |        |        |         |         |          |                  |         |           |         |          |         |
|            | Ca <sup>∠+</sup>             | -              | -   | <0.061  | < 0.061  | 0.013   | 0.016   | 0.032   | 0.13     | 0.062   | 0.0048  | 0.066   | 0.52    | <0.028  | < 0.02 | 0.05  |        | 0.06   |         | <0.1    | <0.16    |                  |         | <0.11     | <0.11   | <0.026   | < 0.04  |
| 無機成分       | Na                           | -              | -   | 28      | <5.4     | -       | -       | -       | 150      | 220     | 64      | 94      | 200     | 170     | 110    | 160   | 110    | 120    | 22      | 94      | 45       | 87               | 13      | 180       | 270     | 94       | 100     |
|            | Al                           | 19             | -   | 88      | <33      | -       | -       | -       | <250     | 43      | <7.9    | 52      | 250     | 33      | <9     | 13    | 41     | 23     | <5.5    | 65      | <18      | <18              | 26      | 5         | <1      | <18      | 28      |
|            | Si                           | -              | -   |         | -        | -       |         | -       | 150      | 130     | 25      | 180     | 990     | 75      | 30     | 40    |        | 26     | -       | 73      | <12      | 17               |         | <30       | <30     | <15      |         |
|            | K                            | -              | -   | 150     | <11      | 170     | 270     | 170     | 270      | 76      | 19      |         | 60      | 130     | 160    | 160   |        | 57     |         | 120     | <17      |                  |         | 20        | 50      |          | 49      |
|            | Ca                           | -              | -   | <87     | <87      | 7.4     | 5.5     | 6.9     | <460     | 70      | <25     | 60      | 270     | 170     | 12     | 30    |        | 20     |         | 50      | <49      |                  |         | <7        | 25      |          | 46      |
|            | Sc                           | 0.086          |     | <0.011  | <0.011   | <0.044  | <0.044  |         | < 0.33   | < 0.073 | < 0.073 |         | < 0.073 | <0.91   | 0.06   | 0.06  |        |        |         | < 0.07  | <0.022   |                  | <0.0050 | <0.2      | <0.2    |          | <1.1    |
|            | T:                           | 11             |     | V0.011  | V0.011   | 2.6     | 17      | \0.044  | 9.7      | 3.9     | <1.7    | 3.9     | 29      | <4.2    | <2     | <2    |        | 1.4    |         | 5.1     | 0.45     |                  |         | 3.3       | <2      |          | 2.6     |
|            | 11<br>V                      | _              |     | - 4.0   | 0.07     | 8.7     | 1.7     |         |          |         |         |         |         |         |        | 3.9   |        |        |         |         |          |                  |         | 3.3<br>16 |         |          |         |
|            | V                            | 6.3            |     | 1.8     | 0.67     |         |         | 6.2     | 2.9      | 6.9     | 3.3     | 5.5     | 13      | 4.6     | 1.5    |       |        |        | 2.5     | 1.4     | 2.3      |                  |         |           | 3.7     |          | 2.5     |
|            | Cr                           | 1.7            | -   | 0.86    | < 0.37   | 0.9     | 0.33    | 0.39    | 0.97     | <1.1    | <1.1    | <1.1    | <1.1    | 1.7     | <0.9   | <0.9  |        |        |         | <0.6    | <2.5     |                  |         | 7.1       | <0.2    |          | 0.12    |
|            | Mn                           | 3.7            | -   | 3.6     | 0.67     |         | <1.6    | <1.6    | 5.3      | 2.9     | <0.16   | 4.2     | 8.8     | 5.1     | 1.4    | 3.4   |        | <1.4   |         | 1.6     | 0.75     |                  |         | 1.6       | 0.24    | 0.27     | 2       |
|            | Fe                           | 74             | -   | 100     | 13       |         | 11      | 10      | 170      | 90      | <14     | 130     | 210     | 150     | 40     | 80    |        | 29     |         | 57      | <2.0     |                  |         | 27        | <4      | 2.6      | 14      |
|            | Co                           | 0.034          | -   | < 0.06  | < 0.06   |         | < 0.027 | 0.028   | 0.047    | 0.14    | < 0.05  | < 0.05  | 0.15    | < 0.14  | <0.08  | <0.08 |        | <0.83  |         | <0.06   | < 0.025  |                  |         | < 0.02    | <0.2    |          | < 0.039 |
|            | Ni                           | 2.2            | -   | 0.73    | < 0.25   | 3.5     | 0.73    | 1.7     | 1.2      | 2.2     | < 0.39  | 1.7     | 3.6     | 1.5     | 0.3    | 1.2   | 0.5    | < 0.77 | <0.38   | 0.53    | 0.72     | 0.87             | 0.078   | 9.8       | <0.4    | 0.24     | 1.9     |
|            | Cu                           | 3.7            | -   | 4.6     | <2.4     | 4.7     | 7.3     | 4       | 8.4      | 1.7     | <1.4    | 2.5     | <1.4    | 2.4     | 5.5    | 6     | <11    | <4.4   | <0.68   | 2.7     | 1.8      | 4.1              | 2.2     | 6.1       | < 0.2   | 0.71     | 2.2     |
|            | Zn                           | 18             | -   | 19      | 4.2      | 35      | 18      | 9.8     | <33      | 15      | <2.5    | 16      | 4.7     | 13      | 9      | 18    | <17    | <1.9   | <1.3    | 6.4     | 15       | <41              | 3.2     | 34        | 11      | <28      | 7       |
|            | As                           | 0.24           | -   | 0.56    | 0.3      | 0.78    | 0.56    | 0.4     | 0.36     | 0.23    | < 0.052 | 0.43    | 0.17    | <0.38   | 0.2    | 0.3   | <0.48  | <0.8   | 0.14    | 0.19    | 0.11     | 0.3              | 0.15    | < 0.7     | <0.7    | 0.1      | 0.27    |
|            | Se                           | 0.091          | -   | 1       | 0.23     | 1.8     | 0.59    | < 0.49  | 0.82     | <1      | <1      | <1      | <1      | 1.3     | 0.5    | 0.7   |        | <1.1   |         | 0.5     | <0.11    | 0.16             | 0.084   | < 0.3     | <1      | < 0.019  | <0.13   |
|            | Rb                           | -              | -   | 0.21    | 0.051    | 0.35    | 0.19    | 0.29    | 1.7      | 0.2     | < 0.042 | 0.2     | 0.21    | 0.35    | 0.1    | 0.15  |        | <1.1   |         | 0.08    | < 0.039  |                  |         | 0.07      | <0.1    | 0.039    | < 0.034 |
|            | Мо                           | 0.41           |     | 0.14    | <0.009   | 1.2     | 0.2     | 0.19    | 0.45     | 0.56    | <0.066  | 0.32    | 0.078   | 0.61    | <0.5   | <0.5  | <0.21  | <1.3   |         | 0.11    | 0.077    |                  |         | <0.6      | <0.6    |          | <0.74   |
|            | Sb                           | 0.6            |     |         | -        | 2.4     | 2.9     | 1.4     | 2.1      | 0.43    | < 0.024 | 0.57    | 0.071   | 0.68    | 1.1    | 1.1   | 0.99   | <6.3   |         | 0.79    | 0.27     |                  |         | <0.3      | <0.3    |          | 0.77    |
|            | Cs                           | 0.03           |     | 0.023   | 0.011    | 0.043   | < 0.017 | 0.017   | 0.022    | 0.03    | <0.024  | 0.028   | <0.02   | <0.067  | <0.05  | <0.05 |        | <9.1   |         | < 0.06  | <0.024   |                  |         | <0.1      | <0.1    |          | <0.029  |
|            | Ba                           | 4.2            |     | 7.9     | 2.3      | 4.2     | 6.8     | 4.7     | 22       | 3.2     | 0.74    | 5.5     | <0.02   | 3.8     | 12     | 11    |        | <10    |         | <0.00   | 3.5      |                  |         | 2.1       | 1.9     |          | 3.8     |
|            | L a                          | 0.075          |     | 0.045   |          |         | <0.043  | < 0.043 |          | 0.46    |         | 0.14    | 0.064   |         |        | 0.07  | 0.0    | <11    |         | .0.05   |          |                  |         | < 0.07    | <0.07   |          |         |
|            | La                           |                |     |         | 0.007    |         |         |         | 0.12     |         | <0.021  |         |         | < 0.39  | 0.03   |       |        |        |         | < 0.05  | <0.027   |                  |         |           |         |          | <0.025  |
|            | Ce                           | 0.14           |     | 0.07    | 0.015    | <0.023  | <0.023  | <0.023  | 0.26     | 0.12    | <0.023  | 0.078   | 0.13    | <0.34   | 0.06   | 0.1   | <0.32  | <13    |         | 0.07    | <0.022   |                  | -       | <0.08     | <0.08   |          | 0.02    |
|            | Sm                           | <0.0095        | -   | 0.0049  | < 0.0005 | < 0.027 | < 0.027 | <0.027  | < 0.013  | < 0.021 | < 0.021 |         | <0.021  | < 0.062 | <0.1   | <0.1  | < 0.56 | <19    |         | <0.08   | <0.028   | <0.0022          | -       | <0.2      | <0.2    |          | < 0.034 |
|            | Hf                           | -              | -   | <0.012  | <0.012   | <0.048  | <0.048  | 0.15    | 0.014    | < 0.059 | < 0.059 |         | <0.059  | <0.41   | <0.08  | <0.08 |        | <0.018 | <0.04   | < 0.03  | < 0.059  | <0.00092         | -       | <0.2      | <0.2    |          | < 0.49  |
|            | W                            | 0.57           | -   | <0.012  | < 0.012  | 0.42    | 0.077   | 0.068   | 0.071    | < 0.037 | < 0.037 | < 0.037 | < 0.037 | <0.38   | <0.06  | 0.2   |        | 0.31   | 1       | < 0.04  | < 0.054  | 0.026            | -       | <0.5      | <0.7    |          | < 0.054 |
|            | Та                           | -              | -   | <0.0031 | < 0.0031 | <0.045  | < 0.045 | <0.045  | <0.0022  | <0.02   | < 0.02  | < 0.02  | < 0.02  | <0.30   | <0.07  | <0.07 | -      | <0.019 |         | <0.022  | < 0.0051 | <0.012           | -       | <0.7      | <0.5    |          | < 0.63  |
|            | Th                           | 0.064          | -   | < 0.02  | < 0.02   | < 0.029 | < 0.029 | < 0.029 | < 0.0082 | < 0.016 | < 0.016 | < 0.016 | < 0.016 | <0.21   | < 0.2  | <0.2  | -      | <3.4   | < 0.014 | < 0.07  | <0.021   | <0.00069         |         | <0.1      | <0.1    | < 0.0076 | <0.078  |
|            | Pb                           | 3.4            | -   | 4.1     | 1        | 7.8     | 3.2     | 2.4     | 6        | 3.5     | <0.14   | 4.2     | 0.3     | 5       | 1.8    | 3.6   | 0.91   | <2.1   | <0.13   | 1.1     | 0.56     | 0.93             | 0.99    | <1        | 0.03    | 0.34     | 0.64    |
|            | その他(Be)                      | -              | -   | -       | -        | -       | -       | _       | -        | < 0.015 | < 0.015 | < 0.015 | < 0.015 | -       | -      | -     | -      |        | -       | -       | -        | -                | -       | -         | -       | -        | -       |
|            | その他(Cd)                      | -              | -   | -       | -        | -       | -       | -       | -        | 0.097   | < 0.063 | 0.093   | < 0.063 | -       | -      | -     | -      | -      | -       | -       | -        | -                | 0.017   | < 0.05    | < 0.2   | -        | -       |
|            | その他(Sr)                      | -              | -   |         | -        | -       |         | -       | -        | -       |         |         | -       |         |        | -     |        | -      | -       | -       | -        | -                |         | -         | -       | - 1      |         |
|            | その他(Y)                       | -              | -   | -       | -        | - 1     | -       | -       | -        | -       | -       | -       | -       | -       | -      | -     | -      | -      | -       | -       | -        | -                | -       | -         | -       | - 1      | -       |
|            | その他(TI)                      | -              | -   | -       | -        | -       | -       | -       | -        | -       | -       | -       | -       | -       | -      | -     | -      | -      | -       | -       | -        | -                | -       | -         | -       | - 1      |         |
| 炭素成分       | OC1                          | n              | -   | 0.35    | 0.17     | 0       | n       | Λ       | n        | 0.056   | < 0.046 | 0.056   | <0.046  | <0.10   | <0.4   | <0.4  | <0.042 | 0.09   | <0.08   | 0.08    | < 0.0070 | <0.021           | < 0.039 | <0.08     | < 0.04  | <0.027   | <0.023  |
|            | OC2                          | 0.62           | -   | 1.6     | 0.92     |         | 2.4     | 2       | 0.99     | 2.1     | 0.75    | 0.87    | 10.070  | 1.7     | 0.6    | 0.6   |        | 0.56   |         | 1.4     | 0.99     |                  |         | 0.73      | 0.39    |          | 0.19    |
|            | OC3                          | 0.42           | -   | 1.5     | 1.1      |         | 2.1     | 1.8     | 1.4      | 0.93    | 0.73    | 1       | 0.66    | 0.47    | 0.8    | 0.9   |        | 0.45   |         | 0.95    | 0.85     |                  |         | 0.75      | 0.33    |          | 0.13    |
|            | OC4                          | 0.42           |     | 0.71    | 0.54     |         | 0.84    | 0.74    | 0.89     | 0.93    | 0.57    | 0.35    | 0.86    | 0.47    | <0.4   | 0.9   |        | 0.45   |         | 0.95    | 0.65     |                  |         | 0.6       | 0.11    | 0.31     | 0.22    |
|            |                              |                |     |         |          | -       |         | 0.74    |          |         |         |         |         |         |        |       |        |        |         |         |          |                  |         |           |         |          |         |
|            | Ocpyro                       | 0.24           |     | 1.3     | 0.59     | 1.1     | 1.4     | 1       | 0.61     | 0.49    | 0.1     | 0.51    | 0.56    | 0.69    | 0.37   | 0.38  |        | 0.13   |         | 0.3     | 0.65     |                  |         | 0.32      | <0.06   | 0.24     | <0.14   |
|            | EC1                          | 0.4            | -   | 1.8     | 0.82     |         | 2       | 1.5     | 1.3      | 0.65    | 0.17    | 0.8     | 0.69    | 1.1     | 0.44   | 0.58  |        | 0.19   |         | 0.69    | 0.6      |                  |         | 0.46      | 0.1     | 0.24     | 0.13    |
|            | EC2                          | 0.18           | -   | 0.61    | 0.61     | 0.6     | 0.61    | 0.5     | 0.42     | 0.47    | 0.088   | 0.6     | 0.52    | 0.44    | 0.32   | 0.45  |        | 0.07   |         | 0.23    | 0.52     |                  |         | 0.63      | 0.14    | 0.24     | 0.14    |
|            | EC3                          | 0              | -   | 0.07    | 0.07     |         | 0.05    | 0.04    | <0.043   | 0.06    | 0.005   | 0.06    | 0.035   | 0.027   | 0.015  | 0.03  |        | 0      |         | 0       | <0.028   |                  |         | <0.06     | < 0.009 | <0.028   | <0.028  |
|            | OC                           | 1.5            | -   | 5.5     | 3.3      |         | 6.7     | 5.5     | 3.9      | 3.8     | 1.6     | 2.8     | 2.5     | 3.1     | 1.8    | 2.3   | 1.6    | 1.4    |         | 3       | 3        | 3.4              |         | 1.9       | 0.7     |          | 0.55    |
|            | EC                           | 0.34           | -   | 1.2     | 0.91     | 1.4     | 1.3     | 1       | 1.1      | 0.69    | 0.16    | 0.95    | 0.69    | 0.91    | 0.41   | 0.68  | 0.49   | 0.13   | 0.46    | 0.62    | 0.47     | 0.64             | 0.4     | 0.77      | 0.24    | 0.24     | 0.27    |
|            | WSOC                         | -              | -   | 3.3     | 2.2      | 3.9     | -       | -       | 1.3      | 1.4     | 2       | 1.8     | 2.5     | 1.1     | -      | -     | 1      | 0.93   | 1.2     |         | 1.4      | 1.7              | 0.84    | 0.86      | 0.55    | 0.96     | -       |

|       | 13 8月4                       |          |     |         |              |              |            |              |        |         |         |        |            |                                                                                                                                                                                                |                |        |        |              |        | ( PM2.5       |                | は分,イス    |          |        | 無機风          | 分:ng/m   |         |
|-------|------------------------------|----------|-----|---------|--------------|--------------|------------|--------------|--------|---------|---------|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------|--------------|--------|---------------|----------------|----------|----------|--------|--------------|----------|---------|
| 自治    | 体名                           | 茨城県      | 栃木県 | 群馬県     | 群馬県          | 埼玉県          | 埼玉県        | 埼玉県          | さいたま市  | 千葉県     | 千葉県     | 千葉県    | 千葉県        | 千葉市                                                                                                                                                                                            | 東京都            | 東京都    | 神奈川県   | 横浜市          | 川崎市    | 相模原市          | 山梨県            | 山梨県      | 長野県      | 静岡県    | 静岡県          | 静岡市      | 浜松市     |
| 調査    | 地点名                          | 土浦       | 真岡  | 前橋      | 富岡           | 鴻巣           | 日高         | 秩父           | 城南     | 市原      | 勝浦      | 佐倉     | 富津         | 羊羊                                                                                                                                                                                             | 綾瀬             | 多摩     | 大和     | 横浜           | 川崎     | 相模原           | 甲府             | 東山梨      | 長野       | 富士     | 湖西           | 静岡       | 浜松      |
| 基本事項  | PM2.5濃度                      | 2.5      |     | 11.5    | 7.9          | 6.4          | 11.1       | 14.7         | 10.9   | 7.2     | 2.8     | 7.4    | 18.4       | 4.7                                                                                                                                                                                            | 3.9            | 4.1    | 4.9    | 3.7          | 3.3    | 4.3           | -              | -        | 3.3      | 8.3    | 3.8          | 2.2      | 2.8     |
| イオン成分 | CI-                          | 0.047    | -   | < 0.055 | < 0.055      | < 0.054      | < 0.054    | < 0.054      | 0.049  | 0.5     | 0.045   | 0.064  | 0.34       | 0.089                                                                                                                                                                                          | < 0.07         | < 0.07 | <0.058 | 0.22         | 0.03   | < 0.02        | < 0.0022       | <0.0022  | < 0.011  | 0.056  | 0.16         | 0.054    | 0.099   |
|       | NO3-                         | 0.27     |     | <0.08   | 0.11         | 0.13         | 0.19       | 0.13         | 0.33   | 0.55    | 0.087   | 0.16   | 0.24       | 0.12                                                                                                                                                                                           | 0.14           | 0.3    | 0.21   | 0.29         | 0.088  | 0.14          | 0.092          | 0.14     | < 0.13   | 0.12   | 0.11         | <0.1     | 0.06    |
|       | SO42-                        | 0.94     | -   | 1.1     | 0.66         | 0.78         | 0.87       | 1.4          | 0.87   | 2.1     | 0.79    | 1.1    | 1.7        | 0.84                                                                                                                                                                                           | 0.8            | 0.9    | 1      | 0.92         | 0.96   | 0.83          | 0.35           | 0.18     | 0.28     | 2.3    | 0.69         | 0.39     | 0.68    |
|       | Na⁺                          | 0.06     | -   | < 0.067 | < 0.067      | 0.042        | 0.026      | 0.051        | 0.17   | 0.51    | 0.13    | 0.25   | 0.3        | 0.13                                                                                                                                                                                           | 0.09           | 0.18   | < 0.23 | 0.33         | 0.18   | 0.09          | < 0.020        | <0.020   | 0.016    | 0.25   | 0.32         | 0.059    | 0.14    |
|       | NH <sub>4</sub> <sup>+</sup> | 0.15     |     | 0.42    | 0.11         | 0.31         | 0.33       | 0.53         | 0.21   | 0.33    | 0.11    | 0.25   | 0.16       | 0.36                                                                                                                                                                                           | 0.24           | 0.25   |        | 0.17         | 0.19   | 0.27          | 0.15           | 0.11     |          | 0.64   | 0.13         | 0.11     | 0.17    |
|       | NΠ <sub>4</sub>              |          | -   |         |              |              |            |              |        |         |         |        |            |                                                                                                                                                                                                |                |        |        |              |        |               |                | _        |          |        |              |          |         |
|       | K⁺                           | 0.012    | -   | 0.08    | 0.044        | 0.053        | 0.14       | 0.17         | 0.041  | 0.025   | 0.036   | 0.076  | 0.014      | 0.0087                                                                                                                                                                                         | 0.03           | 0.04   |        | 0.07         |        | 0.05          | <0.24          | <0.24    |          | 0.047  | 0.047        | 0.044    | 0.044   |
|       | Mg <sup>2+</sup>             | <0.0082  | -   | < 0.042 | < 0.042      | 0.013        | 0.0079     | 0.0042       | 0.025  | 0.042   | 0.011   | 0.017  | 0.037      | <0.021                                                                                                                                                                                         | < 0.005        | 0.01   | <0.087 | 0.04         | 0.017  | 0.01          | <0.15          | <0.15    | 0.0074   | 0.025  | 0.027        | <0.0037  | 0.0069  |
|       | Ca <sup>2+</sup>             | < 0.0063 | -   | < 0.061 | 0.08         | 0.0073       | 0.015      | 0.037        | 0.28   | 0.28    | 0.044   | 0.06   | 0.69       | <0.028                                                                                                                                                                                         | < 0.02         | 0.08   | <0.28  | 0.07         | 0.022  | <0.1          | < 0.16         | < 0.16   | < 0.064  | 0.14   | <0.11        | < 0.026  | < 0.04  |
| 無機成分  | Na                           | -        | -   | 34      | <5.4         | -            | -          | -            | 250    | 66      | 140     | 140    | 270        | 95                                                                                                                                                                                             | 110            | 180    | 120    | 160          | 150    | 99            | 18             | 42       | 20       | 210    | 220          | 44       | 43      |
|       | Al                           | 37       | -   | 96      | <33          | -            | -          | -            | <250   | 10      | 8.4     | 50     | 790        | 46                                                                                                                                                                                             | <9             | <9     |        | <17          |        | 72            | <18            |          |          | 5      | <1           | <18      | <4.2    |
|       | Si                           | - 0.     | -   | -       | -            | _            | -          | -            | 410    | 210     | 25      | 150    | 1600       | 170                                                                                                                                                                                            | 30             | 40     |        | 24           |        | 83            | <12            |          |          | 40     | <30          | <15      |         |
|       | K                            |          | -   | 75      | 52           | 72           | 80         | 120          | 86     | 9.6     | 23      | 140    | 82         | 21                                                                                                                                                                                             | 20             | 40     |        | 18           |        | 32            | 22             |          |          | 50     | 20           |          | <9.2    |
|       | Ca                           |          | -   | 110     | 96           |              | <1.2       | 11           | <460   | 33      | <25     | 62     | 940        | 34                                                                                                                                                                                             | 12             | 20     |        | 27           |        | 59            | <49            |          |          | 46     | <8           |          | <20     |
|       | Sc                           | 0.068    | _   | <0.011  | <0.011       | <0.044       | <0.044     | <0.044       | <0.33  | <0.073  | <0.073  |        | 0.19       | <0.91                                                                                                                                                                                          | 0.06           | 0.06   |        |              |        | <0.07         | <0.022         |          | < 0.0050 | <0.2   | <0.2         |          | <1.1    |
|       | Ti                           | 3.7      |     | V0.011  | VU.U11       | 3.5          | <1.4       | <1.4         | 20     | 1.7     | <1.7    | 5.1    | 44         | 8.7                                                                                                                                                                                            | <2             | <2     |        | 1.7          |        | 6.4           | 0.37           |          |          | 1.1    | <2           | <0.019   | <0.94   |
|       | V                            | 6.1      |     | 0.87    | 0.46         | 3.5          | 0.83       | <1.4<br>5.5  | 1.8    | 6.2     | 2.6     | 5.1    | 15         | 3.5                                                                                                                                                                                            | <z<br>4</z<br> | 1.2    |        | 1./          | 2.7    | 1.1           | 1.1            | 1.2      |          | 1.1    | 2.5          | 0.42     | <0.94   |
|       | V<br>Cr                      | 1.3      |     | 0.82    | < 0.46       | 1.8          | <0.29      | 0.31         | 0.97   | 2.4     | <1.1    | <1.1   | <1.1       | < 0.39                                                                                                                                                                                         | <0.9           | <0.9   |        | < 0.38       |        | <0.6          | <2.5           |          |          | 3.2    | <0.2         | <1.5     | 0.36    |
|       | Mn                           | 3.1      | -   | 2.9     | <0.37<br>1.7 |              | <1.6       | <1.6         | 7.3    | 1.5     | <0.16   | 6.5    | <1.1<br>15 | <u.39< th=""><th>&lt;0.9<br/>1.5</th><th>2.6</th><th></th><th>&lt;0.38</th><th></th><th>2.9</th><th>0.62</th><th>0.93</th><th></th><th>0.58</th><th>0.96</th><th>0.46</th><th>1.4</th></u.39<> | <0.9<br>1.5    | 2.6    |        | <0.38        |        | 2.9           | 0.62           | 0.93     |          | 0.58   | 0.96         | 0.46     | 1.4     |
|       | Fe                           | 61       | -   | 73      | 26           |              | <2.8       | 3.8          | 300    | 39      | <14     | 200    | 830        | 96                                                                                                                                                                                             | 30             | 40     |        | 28           | 25     | 71            | 6.6            | 13       |          | 24     | 10           | <2.1     | 5.4     |
|       | Co                           | 0.025    | -   | <0.06   |              |              |            |              |        | 0.074   |         |        | 0.21       |                                                                                                                                                                                                |                |        |        |              |        |               |                |          |          |        |              |          |         |
|       | Ni                           | 1.8      | -   | 0.43    | <0.06        | 0.029<br>4.2 | <0.027     | 0.036<br>1.4 | 0.11   |         | < 0.05  | < 0.05 | 4.3        | <0.14<br><1.3                                                                                                                                                                                  | <0.08<br><0.1  | <0.08  |        | <0.83<br>1.5 |        | <0.06<br>0.43 | <0.025<br>0.27 |          |          | <0.02  | <0.2<br><0.4 | 0.12     | <0.039  |
|       | NI<br>O                      |          | -   |         | 0.29         |              | 1.1<br>1.8 | 2.1          | 4.5    | 2.6     | 0.58    | 2.1    |            |                                                                                                                                                                                                |                | 0.1    | <0.34  |              |        |               | 0.27           | 0.34     |          | 7.8    |              |          | 0.2     |
|       | Cu<br>Z-                     | 1.4      | -   | 2.8     | <2.4         | 4            |            |              |        | - 0.4   | <1.4    | 3.3    | <1.4       | < 0.69                                                                                                                                                                                         | 1.9            | 2.5    |        | <4.4         |        | <0.9          | - 5.0          | 2.3      |          | 2      | <0.2         | 6.5      | <0.16   |
|       | Zn                           | 8.6      | -   | 16      | 7.8          | 53           | <1.1       | 11           | <33    | 8.4     | <2.5    | 25     | 11         | 4.4                                                                                                                                                                                            | 0              | 12     |        | 2.3          |        | 7.7           | <5.2           | <41      |          | 16     | <2           | <28      | <2.4    |
|       | As                           | 0.14     | -   | 0.38    | 0.21         | 1.1          | 0.15       | 0.31         | 0.17   | 0.13    | 0.055   | 0.38   | 0.19       | <0.38                                                                                                                                                                                          | <0.1           | 0.1    | <0.48  | <0.8         |        | 0.07          | <0.072         | 0.12     |          | <0.7   | <0.7         |          | <0.042  |
|       | Se                           | <0.047   | -   | 0.66    | 0.27         | 1.6          | <0.49      | < 0.49       | 0.19   | <1      | <1      | <1     | <1         | 0.36                                                                                                                                                                                           | 0.5            | < 0.3  | <0.96  | <1.1         |        | <0.4          | <0.11          | 0.067    |          | <0.3   | <1           | <0.019   | < 0.13  |
|       | Rb                           | -        | -   | 0.17    | 0.08         | 0.32         | 0.047      | 0.24         | <0.75  | <0.042  | <0.042  | 0.3    | 0.43       | 0.067                                                                                                                                                                                          | <0.09          | <0.09  | <0.29  | <1.1         |        | <0.06         | <0.039         |          |          | 0.03   | <0.1         | 0.036    | <0.034  |
|       | Mo                           | 0.24     | -   | 0.11    | <0.009       | 1.2          | <0.081     | 0.18         | 0.32   | 0.16    | < 0.066 | 0.56   | 0.12       | 0.17                                                                                                                                                                                           | <0.5           | < 0.5  | <0.21  | <1.3         | 0.18   | < 0.09        | <0.023         | 0.066    |          | <0.6   | <0.6         | < 0.013  | <0.74   |
|       | Sb                           | 0.25     | -   |         | -            | 3.5          | 0.72       | 1            | 0.99   | 0.044   | < 0.024 | 0.99   | 0.05       | < 0.13                                                                                                                                                                                         | 0.5            | 0.2    |        | <6.3         | 0.17   | 0.37          | 0.11           | 0.45     |          | <0.3   | <0.3         | 0.096    | 0.045   |
|       | Cs                           | 0.02     | -   | 0.018   | 0.014        | 0.058        | < 0.017    |              | 0.021  | <0.02   | < 0.02  | 0.05   | 0.031      | < 0.067                                                                                                                                                                                        | < 0.05         | < 0.05 |        | <9.1         |        | < 0.06        | < 0.024        | 0.0018   |          | <0.1   | <0.1         | <0.0048  | <0.029  |
|       | Ba                           | 1.5      | -   | 3.5     | 2.4          | 6.1          | 5.1        | 2.7          | 14     | 0.5     | 0.81    | 5.6    | 3.6        | 0.7                                                                                                                                                                                            | 3              | 2.2    |        | <10          |        | 2             | 0.73           | 3.1      |          | 4.3    | 1.3          | 0.55     | 0.5     |
|       | La                           | 0.067    | -   | 0.049   | 0.019        | < 0.043      | < 0.043    | < 0.043      | 0.074  | 0.079   | < 0.021 | 0.051  | 0.2        | < 0.39                                                                                                                                                                                         | < 0.03         | < 0.03 |        | <11          |        | < 0.05        | < 0.027        | 0.0065   |          | < 0.07 | < 0.07       |          | < 0.025 |
|       | Ce                           | 0.14     | -   | 0.06    | 0.035        | <0.023       | <0.023     | < 0.023      | 0.16   | 0.03    | <0.023  | 0.06   | 0.36       | < 0.34                                                                                                                                                                                         | 0.04           | 0.04   |        | <13          | 0.13   | 0.07          | <0.022         | 0.0097   | -        | <0.08  | <0.08        |          | 0.011   |
|       | Sm                           | <0.0095  | -   | 0.0038  | 0.0018       | <0.027       | <0.027     | < 0.027      | 0.013  | < 0.021 | < 0.021 |        | 0.043      | <0.062                                                                                                                                                                                         | <0.1           | <0.1   | < 0.56 | <19          |        | <0.08         | <0.028         | <0.0022  | -        | <0.2   | <0.2         |          | < 0.034 |
|       | Hf                           | -        | -   | <0.012  | <0.012       | <0.048       | <0.048     | <0.048       | 0.025  | < 0.059 | < 0.059 | <0.059 | < 0.059    | <0.41                                                                                                                                                                                          | <0.08          | <0.08  | -      | <0.018       | <0.04  | < 0.03        | < 0.059        | <0.00092 | -        | <0.2   | <0.2         |          | <0.49   |
|       | W                            | 0.45     | -   | <0.012  | < 0.012      | 0.65         | < 0.015    | 0.038        | 0.066  | < 0.037 | < 0.037 |        | < 0.037    | <0.38                                                                                                                                                                                          | <0.06          | <0.06  |        | 0.24         | 0.21   | < 0.04        | < 0.054        | 0.0076   | -        | <0.5   | <0.7         | <0.011   | < 0.054 |
|       | Та                           | -        | -   | <0.0031 | < 0.0031     | <0.045       | < 0.045    | <0.045       | 0.004  | <0.02   | < 0.02  | <0.02  | <0.02      | <0.30                                                                                                                                                                                          | <0.07          | <0.07  | -      | <0.019       |        | <0.022        | < 0.0051       | <0.012   | -        | <0.7   | <0.5         | <0.00022 | <0.63   |
|       | Th                           | 0.046    | -   | <0.02   | < 0.02       | <0.029       | <0.029     | < 0.029      | 0.015  | <0.016  | < 0.016 |        | 0.048      | <0.21                                                                                                                                                                                          | <0.2           | <0.2   | -      | <3.4         |        | < 0.07        | <0.021         | <0.00069 |          | <0.1   | <0.1         | < 0.0076 | <0.078  |
|       | Pb                           | 2        | -   | 4       | 1.7          | 11           | 0.77       | 1.8          | 2.5    | 1       | < 0.14  | 6.3    | 0.7        | 1.1                                                                                                                                                                                            | 2.5            | 0.8    |        | <2.1         | 0.25   | 0.69          | <0.43          | 0.84     | 0.7      | <1     | 0.04         | 0.22     | 0.1     |
|       | その他(Be)                      | -        | -   | -       | -            | -            | -          | -            | -      | <0.015  | <0.015  | <0.015 | 0.016      | -                                                                                                                                                                                              | -              | -      | -      | -            | -      | -             | -              | -        | -        | -      | -            | -        |         |
|       | その他(Cd)                      | -        | -   | -       | -            | -            | -          | -            | -      | < 0.063 | < 0.063 | 0.12   | < 0.063    | -                                                                                                                                                                                              | -              | -      | -      | -            | -      | -             | -              | -        | 0.01     | < 0.05 | <0.2         | -        | -       |
|       | その他(Sr)                      | -        | -   | -       | -            | -            | -          | -            | -      | -       | -       | -      | -          | -                                                                                                                                                                                              | -              | -      | -      | -            | -      | -             | -              | -        | -        | -      | -            | -        | -       |
|       | その他(Y)                       | -        | -   | -       | -            | -            | -          | -            | -      | -       | -       | -      | -          | -                                                                                                                                                                                              | -              | -      | -      | -            | -      | -             | -              | -        | -        | -      | -            | -        | -       |
|       | その他(TI)                      | -        | -   | -       | -            | -            | -          | -            | -      | -       | -       | -      | -          | -                                                                                                                                                                                              | -              | -      | -      | -            | -      | -             | -              | -        | -        | -      | -            | -        | -       |
| 炭素成分  | OC1                          | 0        | -   | 0.21    | 0.15         | 0            | 0          | 0            | 0      | < 0.046 | < 0.046 | 0.046  | < 0.046    | <0.10                                                                                                                                                                                          | < 0.4          | <0.4   |        | 0.04         |        | 0.05          | < 0.0070       | <0.021   | <0.039   | <0.08  | < 0.04       | < 0.027  | <0.023  |
|       | OC2                          | 0.49     | -   | 1.1     | 0.92         | 1.5          | 2.1        | 2.6          | 0.43   | 0.8     | 0.7     | 0.63   | 0.54       | 1.3                                                                                                                                                                                            | 0.5            | <0.4   | 0.43   | 0.44         |        | 0.9           | 0.68           | 0.74     | 0.27     | 0.81   | 0.41         | 0.26     | 0.17    |
|       | OC3                          | 0.24     | -   | 1.4     | 1.3          | 1.2          | 2.2        | 2.5          | 0.86   | 0.79    | 0.47    | 0.78   | 0.66       | 0.28                                                                                                                                                                                           | < 0.4          | 0.5    |        | 0.33         |        | 0.5           | 0.48           | 0.76     |          | 0.7    | 0.3          | 0.29     | 0.24    |
|       | OC4                          | 0.15     | -   | 0.54    | 0.55         | 0.52         | 0.63       | 0.78         | 0.45   | 0.25    | 0.15    | 0.24   | 0.3        | 0.11                                                                                                                                                                                           | < 0.4          | <0.4   |        | 0.13         | 0.19   | 0.19          | 0.33           | 0.54     |          | 0.2    | 0.09         | 0.22     | 0.1     |
|       | Ocpyro                       | 0.12     |     | 0.74    | 0.44         | 0.44         | 0.74       | 0.98         | 0.14   | 0.29    | 0.068   | 0.22   | 0.54       | 0.24                                                                                                                                                                                           | 0.45           | 0.43   |        | 0.11         | <0.1   | 0.16          | 0.27           | 0.44     |          | 0.55   | <0.06        | 0.2      | < 0.14  |
|       | EC1                          | 0.26     | -   | 1.1     | 0.72         | 0.71         | 1          | 1.6          | 0.62   | 0.57    | 0.15    | 0.39   | 0.61       | 0.3                                                                                                                                                                                            | 0.2            | 0.26   | 0.17   | 0.15         | 0.19   | 0.28          | 0.36           | 0.53     | 0.23     | 1      | 0.1          | 0.19     | 0.12    |
|       | EC2                          | 0.23     | -   | 0.67    | 0.54         | 0.75         | 0.71       | 0.64         | 0.27   | 0.55    | 0.12    | 0.47   | 0.58       | 0.36                                                                                                                                                                                           | 0.25           | 0.32   | 0.39   | 0.08         | 0.24   | 0.23          | 0.44           | 0.6      | 0.09     | 0.93   | 0.17         | 0.21     | 0.19    |
|       | EC3                          | 0        | -   | 0.05    | 0.04         | 0.025        | 0.05       | 0.045        | <0.043 | 0.12    | 0.005   | 0.055  | 0.035      | <0.017                                                                                                                                                                                         | 0.01           | 0.01   | 0.017  | 0            | <0.026 | 0             | <0.028         | <0.028   | <0.025   | <0.06  | <0.009       | <0.028   | <0.028  |
|       | OC                           | 1        | -   | 4       | 3.4          | 3.7          | 5.7        | 6.9          | 1.9    | 2.1     | 1.4     | 1.9    | 2          | 1.9                                                                                                                                                                                            | 0.95           | 0.93   | 0.62   | 1.1          | 1.2    | 1.8           | 1.8            | 2.5      | 1.3      | 2.3    | 0.8          | 0.97     | 0.51    |
|       | EC                           | 0.37     | -   | 1.1     | 0.86         | 1            | 1          | 1.3          | 0.75   | 0.95    | 0.21    | 0.7    | 0.69       | 0.43                                                                                                                                                                                           | 0.01           | 0.16   | 0.49   | 0.12         | 0.43   | 0.35          | 0.53           | 0.69     | 0.2      | 1.4    | 0.27         | 0.2      | 0.31    |
|       | WSOC                         | -        |     | 2.2     | 1.8          | -            |            |              | -      | 1.4     | 2.5     | 1.6    | 2.3        | 0.46                                                                                                                                                                                           | -              | _      |        |              | 0.85   | -             | 0.84           | 0.97     |          | -      |              | 0.65     |         |
|       |                              |          |     |         |              |              |            |              |        |         |         |        |            |                                                                                                                                                                                                |                |        |        |              |        |               |                |          |          |        |              |          |         |

| OC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 衣4-1-      | 14 8月5                       | ロから     | 8月6日 | まじ      |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       | ( PM2.5 | ,灰系放     | え分 , イス | 「ン放分    | :µg/m | 無機风 | 分:ng/m  | i <sup>-</sup> ) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|---------|------|---------|---------|--------|--------|--------|--------|---------|---------|---------|---------|----------|--------|-------|--------|------|-------|---------|----------|---------|---------|-------|-----|---------|------------------|
| The part of the    | 自治         | 体名                           | 茨城県     | 栃木県  | 群馬県     | 群馬県     | 埼玉県    | 埼玉県    | 埼玉県    | さいたま市  | 千葉県     | 千葉県     | 千葉県     | 千葉県     | 千葉市      | 東京都    | 東京都   | 神奈川県   | 横浜市  | 川崎市   | 相模原市    | 山梨県      | 山梨県     | 長野県     | 静岡県   | 静岡県 | 静岡市     | 浜松市              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 調査         | 地点名                          | 土浦      | 真岡   | 前橋      | 富岡      | 鴻巣     | 日高     | 秩父     | 城南     | 市原      | 勝浦      | 佐倉      | 富津      | 千葉       |        | 多摩    | 大和     | 横浜   | 川崎    | 相模原     | 甲府       |         |         | 富士    | 湖西  | 静岡      | 浜松               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 基本事項       | PM2.5濃度                      | 5.9     | -    | 8.8     | 5.9     | 8.5    | 12.9   |        | 12.1   | 15.6    | 7.1     | 12.1    | 39.3    | 8.9      | 6.6    | 7.3   | 12.3   | 6.4  | 6.5   | 8       | -        | -       | 6.3     | 13.1  | -   | 4.2     |                  |
| NO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                              |         |      |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       | <0.02   | <0.0022  | <0.0022 |         |       | -   |         |                  |
| Section   Property     | 1.32 1.23  |                              |         | _    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       |     |         |                  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                              |         |      |         |         |        |        |        |        | 0.57    |         | 0.2     | 0.55    |          |        |       |        |      |       |         |          |         |         |       |     |         |                  |
| Mart   0.07   0.07   0.07   0.08   0.0   0.0   0.07   0.06   0.07   0.06   0.07   0.08   0.08   0.00   0.05   0.05   0.05   0.05   0.05   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.   |            |                              |         |      |         |         |        |        |        |        | 0.40    |         | 0.07    | 0.40    |          |        |       |        |      |       |         |          |         |         |       |     |         |                  |
| No.   Color    |            |                              | _       | -    |         |         |        |        |        |        |         |         |         |         | 0.19     |        |       |        |      |       |         |          |         |         | 0.089 | -   |         |                  |
| Main      |            | NH <sub>4</sub> <sup>+</sup> | 0.57    | -    | 0.17    | <0.082  | 0.8    | 0.45   | 0.3    | 0.65   | 0.97    | 0.66    | 0.76    | 0.61    | 1        | 0.89   | 0.89  | 0.81   | 0.69 | 0.84  | 0.76    | 0.36     | 0.27    | 0.24    | 1.4   | -   | 0.48    | 0.83             |
| Main      |            | K <sup>+</sup>               | 0.027   | -    | < 0.035 | < 0.035 | 0.22   | 0.044  | 0.017  | 0.055  | 0.018   | 0.048   | 0.11    | < 0.01  | < 0.0053 | 0.04   | 0.08  | 0.043  | 0.2  | 0.073 | 0.06    | < 0.24   | < 0.24  | 0.048   | 0.03  | -   | < 0.017 | 0.049            |
| Might 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | NA-2+                        |         |      |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       |     |         |                  |
| Miles   .   .   .   .   .   .   .   .   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ivig                         |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Ca <sup>∠+</sup>             | 0.008   | -    |         |         |        | 0.015  | 0.026  |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| Sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 無機成分       | Na                           | -       | -    |         | 62      | -      | -      | -      |        |         |         | 94      |         |          | 200    |       |        |      |       |         |          |         |         |       | -   |         |                  |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Al                           | <6.7    | -    | 130     | 62      | -      | -      | -      | 300    | 110     | 20      | 49      | 2000    | 75       | 13     | 13    | 280    | 30   | 16    | 92      | <18      | <18     | 51      | 67    | -   | <18     | <4.2             |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Si                           | -       |      | -       | -       | -      | -      | -      | 410    | 560     | 26      | 260     | 3600    | 200      | 70     | 40    |        | -    | -     | 130     | <12      | 14      | -       | 60    | -   | <15     | -                |
| Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | K                            | -       | -    | 54      | 75      | 260    | 24     | 76     | 95     | 52      | 33      | 30      | 200     | 36       | 40     | 40    | 73     | 28   | 67    | 33      | 50       | <52     | 50      | 30    | -   | 26      | 14               |
| Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Ca                           | -       | -    | 120     | 120     | 14     | 4      | 5.2    | <460   | 180     | <25     | 50      | 1800    | 55       | 60     | 30    | 26     | 48   | 24    | 63      | <49      | <110    | 43      | 43    | -   | <46     | <20              |
| Till   12   -   -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              | 0.094   | -    |         |         | <0.044 | <0.044 |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| V   5.4   - 0.72   0.46   75   0.9   3.4   2.1   6.8   2.4   4.8   20   3.7   18   1.4   2.2   1.4   16   1.7   1.3   1.2   0.56   2.2   1.1   2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Ti                           |         |      | V0.011  | V0.011  |        |        |        |        |         |         |         |         |          | 0.00   |       |        |      |       |         |          |         |         |       |     |         | 1                |
| Fig.   17   - 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | V                            |         |      | 0.70    | 0.46    |        |        |        |        |         |         |         |         |          | 10     |       |        |      |       |         |          |         |         |       |     |         | 20               |
| Min   42   28   15   53   63   19   71   71   0.58   38   35   42   18   21   68   61   43   35   28   0.88   22   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Cr                           |         |      |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| Fe 90 、 83 26 66 4200 32 280 220 20 100 1400 130 40 40 340 340 340 340 340 340 340 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                              |         |      |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         | 0.0   | -   |         |                  |
| No.   Co.   O.   O.   O.   O.   O.   O.   O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                              |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         | 1     | -   |         |                  |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                              |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| Part   12   - 16   7   33   12   9.4   433   15   3.9   8.2   11   6.6   14   12   17   3   5.6   6.8   4.5   4.1   9.4   12   - 228   1.7   5.8   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0       |            | Ni                           |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       | 0.56    |          |         |         |       | -   |         |                  |
| AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Cu                           | 2.5     | -    | <2.4    | <2.4    | 4.2    | 31     | 0.91   |        | 5.4     |         | <1.4    | 3.5     |          | 2.2    | 2.9   | <11    | 8.2  |       | 1       |          | 2.3     |         | 2.6   | -   | 0.83    |                  |
| Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Zn                           | 12      | -    | 16      | 7       | 33     | 12     | 9.4    | <33    | 15      | 3.9     | 8.2     | 11      | 6.6      | 14     | 12    | <17    | 3    | 5.6   | 6.8     | <5.2     | <41     | 9.4     | 12    | -   | <28     | 7.5              |
| Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | As                           | 0.36    | -    | 0.32    | 0.15    | 0.71   | 0.25   | 0.19   | 0.26   | 0.32    | 0.27    | 0.12    | 0.62    | < 0.38   | 0.2    | 0.2   | <0.48  | 0.19 | 0.21  | 0.15    | < 0.072  | 0.13    | 0.14    | < 0.7 | -   | 0.18    | 0.17             |
| Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Se                           | 0.093   |      | 0.26    | 0.14    | 1.5    | < 0.49 | < 0.49 | 0.29   | <1      | <1      | <1      | <1      | 0.73     | 0.4    | <0.3  | < 0.96 | <1.1 | 0.2   | < 0.4   | < 0.11   | 0.092   | 0.089   | < 0.3 | -   | 0.14    | 0.24             |
| Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              | -       | -    | 0.15    | 0.11    | 0.71   | 0.033  | 0.24   | < 0.75 | 0.15    | 0.054   | 0.11    | 0.96    | 0.14     | < 0.09 | 0.1   | < 0.29 | <1.1 | 0.058 | 0.06    | < 0.039  | 0.045   | 0.095   | 0.07  | -   | < 0.027 | < 0.034          |
| Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Mo                           | 0.39    | -    | 0.39    | < 0.009 | 1.1    | 9.6    | 0.17   | 0.23   | 0.5     | < 0.066 | 0.29    | 0.21    | 0.3      | < 0.5  | < 0.5 | 0.28   | <1.3 | 0.12  | < 0.09  | 0.048    | 0.057   | 0.09    | < 0.6 | -   | 0.062   | < 0.74           |
| 日本学校の日本学校の日本学校の日本学校の日本学校の日本学校の日本学校の日本学校の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                              |         |      | -       | -       |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| 日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              |         | -    | 0.017   | 0.016   |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              | 0.001   | _    |         | 2.010   |        | 16     | 1      |        | 3       |         |         |         |          |        |       |        |      |       |         |          |         |         |       | _   |         |                  |
| Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              | 0.007   |      |         | 0.010   |        | -0.042 | -0.042 |        | 0.47    |         |         |         |          |        |       |        |      |       |         |          |         |         |       |     |         |                  |
| Sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              |         |      |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       |     |         |                  |
| Hf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              |         |      |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         | -       |       |     |         |                  |
| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                              | <0.0095 | -    |         |         |        |        |        |        |         |         |         |         |          |        |       | <0.56  |      |       |         |          |         | -       |       | -   |         |                  |
| Ta <0.0031 <0.0031 <0.0045 <0.045 <0.045 <0.045 <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.07 <0.07 - <0.019 <0.014 <0.02 <0.021 <0.0051 <0.012 - <0.07 - <0.00022 <0.063<br>The 0.062 - <0.02 0.023 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.016 <0.016 <0.016 <0.016 <0.016 <0.012 <0.02 <0.02 - <3.4 <0.014 <0.07 <0.021 <0.00069 - <0.01 <0.00069 - <0.01 - <0.0076 <0.078<br>Pb 3.4 - 3.6   1.3   7.3   1.4   1.5   4   2.3   1   2   1.7   1.5   1.3   0.9   1.1   <2.1   0.67   0.6   0.55   0.72   2.5   <1   0.041 <0.0069 - <0.01   0.040 <0.016 <0.016 <0.016 <0.015 <0.015 <0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | HT                           | -       | -    |         |         |        |        |        |        |         |         |         |         |          |        |       | -      |      |       |         |          |         |         |       | -   |         |                  |
| Th 0.062 - <0.02 0.023 <0.029 <0.029 <0.029 <0.029 0.017 <0.016 <0.016 <0.016 0.12 <0.21 <0.2 <0.2 - <3.4 <0.014 <0.07 <0.021 <0.00069 - <0.1 - <0.0076 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <0.078 <    |            | W                            | 0.96    | -    |         |         | 0.20   |        | 0.0    |        |         |         |         | 0.0.0   |          |        |       |        |      |       |         |          |         | -       |       | -   |         |                  |
| Pb   3.4   - 3.6   1.3   7.3   1.4   1.5   4   2.3   1   2   1.7   1.5   1.3   0.9   1.1   <2.1   0.67   0.6   0.55   0.72   2.5   <1   - 0.34   0.59  <br>元が他(日)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                              | -       | -    |         |         |        |        |        |        |         |         |         |         |          |        |       | -      |      |       |         |          |         | -       |       | -   |         |                  |
| <ul> <li>その他(Be) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         | -    |         |         |        |        |        | 0.017  |         | <0.016  | < 0.016 |         |          |        |       | -      |      |       |         |          |         |         |       | -   |         |                  |
| その他(Sr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              | 3.4     | -    | 3.6     | 1.3     | 7.3    |        | 1.5    | 4      |         | 1       | 2       |         | 1.5      | 1.3    | 0.9   | 1.1    | <2.1 |       | 0.6     | 0.55     |         | 2.5     | <1    | -   | 0.34    | 0.59             |
| その他(Sr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              | -       | -    | -       | -       | -      |        | -      | -      |         |         |         |         | -        | -      | -     | -      | -    |       | -       | -        |         | -       | -     | -   | -       | -                |
| 表示性(Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | その他(Cd)                      | -       | -    | -       | -       | -      | -      | -      | -      | < 0.063 | < 0.063 | < 0.063 | 0.072   | -        | -      | -     | -      | -    | -     | -       | -        | -       | 0.04    | 0.06  | -   | -       | -                |
| 接奏成分 OC1 0 - 0.16 0.16 0 0 0 0 0 0 0 0.046 0.051 0.046 0.051 0.046 0.10 0.04 0.04 0.04 0.04 0.07 0.08 0.05 0.0070 0.021 0.039 0.08 - 0.027 0.02 0.03 0.08 - 0.02 0.03 0.08 - 0.02 0.03 0.08 0.08 0.08 0.07 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.09 0.05 0.08 0.05 0.070 0.08 0.05 0.070 0.09 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.09 0.05 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.09 0.05 0.08 0.05 0.070 0.08 0.05 0.070 0.08 0.05 0.070 0.09 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.07 0.04 0.04 0.04 0.05 0.05 0.08 0.05 0.08 0.05 0.07 0.07 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.07 0.07 0.08 0.05 0.07 0.08 0.05 0.08 0.05 0.08 0.05 0.07 0.07 0.08 0.05 0.07 0.07 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | その他(Sr)                      | -       | -    | -       | -       |        |        | -      | -      |         | -       | -       | -       | -        | -      |       | -      | -    | -     |         | _        |         | -       | -     | -   | -       | -                |
| 接索成分 OC1 0 - 0.16 0.16 0 0 0 0 0 0 0 0.046 0.046 0.051 0.046 0.010 0.04 0.04 0.04 0.07 0.08 0.05 0.0070 0.021 0.039 0.08 - 0.027 0.023 0.02 0.056 - 0.91 0.86 1.4 2.8 3.1 0.54 0.89 1.2 0.88 0.37 1.5 0.5 0.5 0.5 0.47 0.46 0.76 1.3 0.81 0.76 0.41 0.61 - 0.4 0.2 0.3 0.3 0.3 0.3 0.2 0.3 1.0 0.7 0.65 0.66 0.63 0.89 0.21 0.4 0.4 0.4 0.3 0.21 0.29 0.44 0.6 0.76 0.99 0.5 - 0.3 0.1 0.7 0.65 0.66 0.63 0.89 0.21 0.4 0.4 0.4 0.4 0.17 0.1 0.19 0.19 0.3 0.55 0.38 0.1 - 0.18 0.83 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | その他(Y)                       | -       |      | -       | -       | -      | -      | -      | -      | -       | -       |         | -       | -        | -      | -     | -      | -    | -     | -       | -        | -       | -       | -     | -   | -       | -                |
| 接索成分 OC1 0 - 0.16 0.16 0 0 0 0 0 0 0 0.046 0.046 0.051 0.046 0.010 0.04 0.04 0.04 0.07 0.08 0.05 0.0070 0.021 0.039 0.08 - 0.027 0.023 0.02 0.056 - 0.91 0.86 1.4 2.8 3.1 0.54 0.89 1.2 0.88 0.37 1.5 0.5 0.5 0.5 0.47 0.46 0.76 1.3 0.81 0.76 0.41 0.61 - 0.4 0.2 0.3 0.3 0.3 0.3 0.2 0.3 1.0 0.7 0.65 0.66 0.63 0.89 0.21 0.4 0.4 0.4 0.3 0.21 0.29 0.44 0.6 0.76 0.99 0.5 - 0.3 0.1 0.7 0.65 0.66 0.63 0.89 0.21 0.4 0.4 0.4 0.4 0.17 0.1 0.19 0.19 0.3 0.55 0.38 0.1 - 0.18 0.83 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | その他(TI)                      | -       | -    | -       | -       | - 1    | -      | -      | -      | -       | -       | -       | -       | -        | -      | -     | -      | -    | -     | -       | -        | -       | -       | -     | -   | -       | -                |
| OC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 炭素成分       |                              | 0       | -    | 0.16    | 0.16    | 0      | 0      | 0      | 0      | < 0.046 | < 0.046 | 0.051   | < 0.046 | <0.10    | < 0.4  | <0.4  | <0.042 | 0.07 | <0.08 | 0,05    | < 0.0070 | < 0.021 | < 0.039 | <0.08 | -   | < 0.027 | < 0.023          |
| OC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 343,112,73 |                              | 0.56    | -    |         |         |        | 2.8    | 3 1    | 0.54   |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         | 0.2              |
| CC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                              |         |      |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         | 0.0.  |     |         |                  |
| Ocpyro         0.15         -         0.43         0.3         0.52         0.81         0.91         0.54         0.51         0.39         0.63         1.2         0.35         0.57         0.47         0.36         0.19         0.22         0.36         0.51         0.58         0.32         0.41         -         0.27         0.17           EC1         0.26         -         0.75         0.62         0.84         1.2         1.2         0.67         0.6         0.34         0.67         1.3         0.4         0.29         0.34         0.42         0.21         0.37         0.6         0.64         0.33         -         0.28         0.15           EC2         0.2         -         0.59         0.54         0.6         0.82         0.75         0.23         0.56         0.82         0.35         0.27         0.38         0.46         0.11         0.29         0.25         0.51         0.53         0.24         0.57         -         0.32         0.18           EC3         0         -         0.045         0.06         0.04         0.03         <0.043         0.065         0.082         0.075         0.019         0.007         0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       |     |         |                  |
| EC1 0.26 - 0.75 0.62 0.84 1.2 1.2 0.67 0.6 0.34 0.67 1.3 0.4 0.29 0.34 0.42 0.21 0.37 0.54 0.47 0.6 0.64 0.33 - 0.28 0.15   EC2 0.2 - 0.59 0.54 0.6 0.82 0.75 0.37 0.5 0.23 0.56 0.82 0.35 0.27 0.38 0.46 0.11 0.29 0.25 0.51 0.53 0.24 0.57 - 0.32 0.18   EC3 0 - 0.045 0.06 0.04 0.04 0.04 0.03 <0.043 0.065 0.005 0.08 0.055 0.019 <0.007 <0.007 <0.007 <0.007 <0.007 <0.006 0 0.03 <0.028 0.044 <0.06 - <0.028 <0.044 <0.06 - <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.0 |            |                              |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       |     |         |                  |
| EC2 0.2 - 0.59 0.54 0.6 0.82 0.75 0.37 0.5 0.23 0.56 0.82 0.35 0.27 0.38 0.46 0.11 0.29 0.25 0.51 0.53 0.24 0.57 - 0.32 0.18   EC3 0 - 0.045 0.06 0.04 0.04 0.03 0.043 0.065 0.005 0.08 0.055 0.019 0.007 0.007 0.007 0.021 0 0.026 0 0.033 0.028 0.044 0.06 - 0.028 0.028   OC 1.1 - 3.2 3 3.2 6.9 7.9 2.3 2.2 2.4 2.4 2.5 2.2 1.1 0.97 1.3 1 1.5 2.3 2.2 2.6 2.1 1.6 - 1.2 0.6   EC 0.31 - 0.96 0.92 0.96 1.3 1.1 0.5 0.66 0.19 0.68 0.98 0.42 - 0.25 0.54 0.13 0.44 0.43 0.5 0.55 0.6 0.49 - 0.33 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                              |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| EC3 0 - 0.045 0.06 0.04 0.04 0.03 <0.043 0.065 0.005 0.08 0.055 0.019 <0.007 <0.007 <0.007 0.021 0 <0.026 0 0.033 <0.028 0.044 <0.06 - <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028 <0.028  |            |                              |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       |         |          |         |         |       | -   |         |                  |
| OC         1.1         -         3.2         3         3.2         6.9         7.9         2.3         2.2         2.4         2.4         2.5         2.2         1.1         0.97         1.3         1         1.5         2.3         2.2         2.6         2.1         1.6         -         1.2         0.6           EC         0.31         -         0.96         0.92         0.96         1.3         1.1         0.5         0.66         0.19         0.68         0.98         0.42         -         0.25         0.54         0.13         0.44         0.43         0.5         0.55         0.6         0.49         -         0.33         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                              |         | -    |         |         |        |        |        |        |         |         |         |         |          |        |       |        |      |       | 0.25    |          |         |         |       | -   |         |                  |
| EC 0.31 - 0.96 0.92 0.96 1.3 1.1 0.5 0.66 0.19 0.68 0.98 0.42 - 0.25 0.54 0.13 0.44 0.43 0.5 0.55 0.6 0.49 - 0.33 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                              | v       | -    |         | 0.06    |        |        |        |        |         |         | 0.08    |         |          |        |       |        | 0    |       | 0       |          |         |         |       | -   | <0.028  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         | -    |         | 3       |        |        |        |        |         |         | 2.4     |         |          | 1.1    |       |        | 1    |       |         |          |         |         |       | -   | 1.2     | 0.6              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              | 0.31    | -    |         | 0.92    | 0.96   | 1.3    | 1.1    | 0.5    | 0.66    |         | 0.68    |         |          | -      | 0.25  |        | 0.13 |       | 0.43    |          |         |         | 0.49  | -   |         | 0.16             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | WSOC                         | -       | -    | 0.72    | 1.3     | -      | -      | -      | -      | 1.3     | 2.2     | 1.7     | 2.7     | 0.58     | -      | -     | 0.82   | -    | 1.1   | -       | 1.3      | 1.2     | -       | -     | -   | 0.84    | -                |

| 表4-1- | 15 期間                        | 平均值     | (7月2       | 23 ⊟ ~ 8 | 3月6日ま  | まで)   |       |        |                |          |          |          |           |              |       |        |           |              |           | ( PM2.5       | ,炭素成     | 分,イオ      | ン成分:         | μq/m <sup>3</sup> | 無機成分         | : ng/m³     | )        |
|-------|------------------------------|---------|------------|----------|--------|-------|-------|--------|----------------|----------|----------|----------|-----------|--------------|-------|--------|-----------|--------------|-----------|---------------|----------|-----------|--------------|-------------------|--------------|-------------|----------|
|       | 台体名                          |         | 栃木県        |          |        | 埼玉県   | 埼玉県   | 埼玉県    | さいたま市          | 千葉県      | 千葉県      | 千葉県      | 千葉県       | 千葉市          | 東京都   | 東京都    | 神奈川県      | 横浜市          | 川崎市       | 相模原市          | 山梨県      | 山梨県       | 長野県          | 静岡県               | 静岡県          | 静岡市         | 浜松市      |
|       | 地点名                          | 土浦      | 真岡         | 前橋       | 富岡     | 鴻巣    | 日高    | 秩父     | 城南             | 市原       | 勝浦       | 佐倉       | 富津        | 千葉           | 綾瀬    | 多摩     | 大和        | 横浜           | 川崎        | 相模原           | 甲府       | 東山梨       | 長野           | 富士                | 湖西           | 静岡          | 浜松       |
| 基本事項  | PM2.5濃度                      | 15.1    | 20.6       | 18.8     | 18.8   | 19.5  | 20.8  | 21.5   | 19.1           | 17.4     | 12.9     | 16.7     | 22.5      | 16.3         | 19.3  | 17.9   | 18.9      | 15.9         | 16.2      | 18.8          | -        | -         | 14.2         | 19.7              | 12.2         | 16.5        | 11.3     |
| イオン成分 | CI-                          | 0.016   | 0.048      |          |        | 0.027 | 0.027 | 0.027  | 0.026          | 0.084    | 0.018    | 0.021    | 0.085     | 0.017        | 0.035 | 0.035  | 0.037     | 0.053        | 0.023     | 0.010         | 0.0011   | 0.0011    | 0.0096       | 0.024             | 0.042        | 0.035       | 0.047    |
|       | NO3-                         | 0.20    | 0.32       | 0.30     | 0.15   | 0.33  |       | 0.13   | 0.49           | 0.17     | 0.037    | 0.13     | 0.16      | 0.12         | 0.37  | 0.44   | 0.23      | 0.17         | 0.22      | 0.19          | 0.073    | 0.11      | 0.072        | 0.094             | 0.099        | 0.077       | 0.060    |
|       | SO42-                        | 4.5     | 6.9        | 3.5      | 3.9    | 5.6   | 5.5   | 4.9    | 4.9            | 5.4      | 3.0      | 4.0      | 4.4       | 5.1          | 5.1   | 5.7    | 5.8       | 5.6          | 5.9       | 5.5           | 5.2      | 4.8       | 3.4          | 6.5               | 4.4          | 4.8         | 3.6      |
|       | Na <sup>+</sup>              | 0.091   | 0.11       | 0.034    | 0.044  | 0.080 | 0.053 | 0.038  | 0.14           | 0.19     | 0.051    | 0.18     | 0.10      | 0.14         | 0.12  | 0.20   | 0.19      | 0.22         | 0.17      | 0.11          | 0.046    | 0.011     | 0.045        | 0.24              | 0.24         | 0.096       | 0.15     |
|       | NH <sub>4</sub> <sup>+</sup> | 1.4     | 1.9        | 1.4      | 1.2    | 2.2   | 2.0   | 1.8    | 1.7            | 1.7      | 0.9      | 1.3      | 1.2       | 1.8          | 2.1   | 2.2    | 2.0       | 1.9          | 2.0       | 2.1           | 1.7      | 1.7       | 1.2          | 2.4               | 1.4          | 1.5         | 1.1      |
|       | 141 1 <sub>4</sub>           | 0.12    | 1.1        |          |        | 0.14  |       | 0.13   | 0.16           | 0.065    | 0.040    | 0.14     | 0.035     | 0.068        | 0.13  | 0.14   | 0.12      | 0.16         | 0.14      | 0.16          | 0.16     | 0.12      | 0.049        | 0.087             | 0.18         | 0.078       | 0.082    |
|       | N 24                         |         | 0.085      |          | 0.073  |       |       |        |                | 0.003    |          | 0.020    |           |              |       |        | 0.12      |              |           | 0.022         |          | 0.075     |              |                   |              |             | 0.032    |
|       | Mg <sup>2+</sup>             | 0.0093  |            |          |        | 0.020 |       | 0.0054 | 0.025          |          | 0.0069   |          | 0.023     | 0.020        | 0.005 | 0.0116 |           | 0.040        | 0.035     |               | 0.075    |           | 0.010        | 0.028             | 0.030        | 0.010       |          |
|       | Ca <sup>2+</sup>             | 0.012   | 0.025      | _        |        | 0.014 | 0.019 | 0.037  | 0.10           | 0.088    | 0.015    | 0.065    | 0.45      |              | 0.023 | 0.054  | 0.14      | 0.11         | 0.064     | 0.050         | 0.080    | 0.080     | 0.032        | 0.10              |              | 0.035       | 0.028    |
| 無機成分  | Na                           | -       | 157        |          |        | 130   | 320   | 81     | 156            | 159      | 142      | 117      | 198       | 145          | 146   | 241    | 181       | 148          | 141       | 127           | 52       | 86        | 52           | 188               | 196          | 155         | 87       |
|       | Al                           | 21      | 56         | 105      | 42     | 68    | 149   | 56     | 143            | 46       | 16       | 54       | 363       | 27           | 12    | 18     | 74        | 74           | 17        | 65            | 16       | 21        | 48           | 21                |              | 21          | 14       |
|       | Si                           | -       | -          |          |        | -     | -     | -      | 182            | 133      | 33       | 145      | 836       | 53           | 61    | 75     | -         | 87           | -         | 95            | 20       | 28        |              | 63                |              | 19          | -        |
|       | K<br>C-                      | -       | 897<br>103 |          |        | 119   | 107   | 146    | 168<br>230     | 93<br>80 | 54<br>17 | 96<br>65 | 95<br>395 | 110<br>43    | 114   | 123    | 103<br>11 | 113<br>81    | 100<br>40 | 105<br>55     | 60<br>26 | 111<br>55 | 75           | 64<br>49          |              | 105         | 32<br>30 |
|       | Sc                           | 0.028   | 0.355      |          |        | 0.027 | 0.043 | U      | 0.17           | 0.037    | 0.037    | 0.041    | 0.090     | 0.46         | 0.067 | 0.063  | 0.40      | 0.055        | 0.012     |               | 0.021    | 0.010     | 35<br>0.0083 | 0.10              |              | 63<br>0.010 | 0.55     |
|       | Ti                           | 4.4     | 8.3        |          | 0.0055 | 3.0   |       | 2.5    | 9.8            | 4.7      | 1.5      | 4.8      | 24.4      | 3.2          | 2.6   | 2.6    | 9.8       | 4.9          | 2.7       | 6.7           | 1.3      | 1.8       | 3.8          | 2.5               |              | 1.0         | 2.3      |
|       | V                            | 5.7     | 3.7        |          | 1.5    | 5.5   |       |        | 6.5            | 8.0      | 5.3      | 5.1      | 14.8      | 5.4          | 4.5   | 11.0   | 5.7       | 10.0         | 13.3      | 4.1           | 2.7      | 2.7       | 0.9          | 15.7              |              | 4.8         | 3.5      |
|       | Cr                           | 1.2     | 1.3        |          |        | 0.63  |       |        | 1.4            | 1.8      | 0.55     | 1.1      | 0.78      | 1.8          | 1.3   | 1.8    | 1.1       | 1.0          | 3.1       | 0.90          | 1.3      | 1.4       | 0.47         | 2.6               |              | 0.89        | 0.70     |
|       | Mn                           | 4.9     | 3.4        |          |        |       |       |        | 6.3            | 5.7      | 0.83     | 4.5      | 9.3       | 4.2          | 4.4   | 6.3    | 6.0       | 4.6          | 7.4       | 4.2           | 1.8      | 2.3       | 3.1          | 2.5               |              | 2.4         | 2.6      |
|       | Fe                           | 83      | 65         |          |        | 47    |       | 86     | 166            | 131      | 24       | 124      | 330       | 114          | 70    | 116    | 158       | 117          | 156       | 95            | 24       | 32        | 48           | 47                |              | 27          | 22       |
|       | Co                           | 0.039   | 0.060      |          |        |       |       |        | 0.083          | 0.098    | 0.025    | 0.037    | 0.134     |              | 0.044 | 0.058  | 0.061     | 0.415        | 0.059     | - 00          | 0.032    | 0.027     |              | 0.040             |              | 0.023       | 0.022    |
|       | Ni                           | 2.1     | 4.0        |          |        |       |       | 1.8    | 2.5            | 3.6      | 1.6      | 1.7      | 4.1       | 1.9          | 1.4   | 3.8    | 2.2       | 3.3          | 4.2       | 1.6           | 0.86     | 0.88      | 0.43         | 6.3               |              | 1.6         | 1.1      |
|       | Cu                           | 3.5     | 28.6       | 15.1     |        |       |       | 2.5    | 6.3            | 3.1      | 1.1      | 2.6      | 2.3       | 1.9          | 4.7   | 4.5    | 7.6       | 4.3          | 4.5       |               | 1.9      | 4.5       | 2.8          | 2.7               |              | 7.3         | 1.1      |
|       | Zn                           | 27      | 22         |          |        |       |       | 18     | 28             | 62       | 5.2      | 16       | 17        | 18           | 23    | 35     | 19        | 14           | 21        | 18            | 8.9      | 21        | 12           | 28                | 15           | 18          | 9.9      |
|       | As                           | 0.53    | 1.7        | 0.50     | 0.51   | 0.50  |       | 0.48   | 0.58           | 0.45     | 0.31     | 0.45     | 0.43      | 0.50         | 0.56  | 0.69   | 0.51      | 0.49         | 0.62      | 0.54          | 0.32     | 0.53      | 0.36         | 0.35              | 0.35         | 0.57        | 0.24     |
|       | Se                           | 0.10    | 1.44       | 0.80     | 0.94   | 1.06  | 0.79  | 0.52   | 0.95           | 0.93     | 0.50     | 0.50     | 0.69      | 1.21         | 0.99  | 1.21   | 1.42      | 0.78         | 0.84      | 2.08          | 0.36     | 0.48      | 0.38         | 0.39              | 0.50         | 0.54        | 0.30     |
|       | Rb                           | -       | 0.34       | 0.22     | 0.17   | 0.24  | 0.15  | 0.40   | 1.01           | 0.25     | 0.093    | 0.23     | 0.31      | 0.35         | 0.21  | 0.27   | 0.18      | 0.55         | 0.19      | 0.17          | 0.11     | 0.16      | 0.16         | 0.16              | 0.050        | 0.16        | 0.074    |
|       | Mo                           | 0.49    | 1.15       | 0.33     | 0.27   | 0.68  | 1.07  | 0.43   | 0.79           | 0.60     | 0.14     | 0.47     | 0.30      | 0.76         | 0.49  | 1.05   | 0.64      | 0.65         | 1.88      | 0.47          | 0.19     | 0.27      | 0.22         | 0.50              | 0.42         | 0.33        | 0.45     |
|       | Sb                           | 0.88    | 0.91       |          | -      | 2.94  |       | 1.26   | 1.98           | 0.65     | 0.17     | 0.66     | 0.34      | 0.65         | 1.00  | 1.0    | 1.33      | 3.15         | 0.81      | 1.35          | 0.54     | 0.92      | 1.86         | 0.73              | 0.65         | 0.49        | 0.36     |
|       | Cs                           | 0.031   | 0.031      |          |        | 0.028 |       |        | 0.032          | 0.033    | 0.013    | 0.031    | 0.029     | 0.059        | 0.035 | 0.039  | 0.065     | 4.55         | 0.028     | 0.033         | 0.028    | 0.020     | -            | 0.054             | 0.050        | 0.018       | 0.015    |
|       | Ba                           | 3.0     | 67         |          |        | 4.5   |       | 2.5    | 16             | 3.0      | 1.7      | 2.6      | 3.2       | 2.5          | 7.5   | 6.5    | 6.6       | 6.9          | 3.6       | 5.4           | 2.4      | 4.1       | -            | 3.1               | 3.3          | 2.8         | 1.7      |
|       | La                           | 0.076   | 0.076      |          |        | 0.022 |       | 0.022  | 0.11           | 0.19     | 0.021    | 0.089    | 0.11      | 0.20         | 0.08  | 0.115  | 0.19      | 5.5          | 0.064     | 0.099         | 0.036    | 0.026     | 0.033        | 0.035             | 0.035        | 0.032       | 0.018    |
|       | Ce                           | 0.083   | 0.067      | 0.076    |        | 0.012 |       | 0.012  | 0.18           | 0.12     | 0.020    | 0.066    | 0.18      | 0.17         | 0.10  | 0.14   | 0.16      | 6.5          | 0.098     | 0.15          | 0.046    | 0.038     | -            | 0.040             | 0.040        | 0.042       | 0.030    |
|       | Sm                           | 0.0048  | 0.075      |          | 0.0020 | 0.014 |       | 0.014  | 0.0088         | 0.011    | 0.011    | 0.011    | 0.019     | 0.031        | 0.050 | 0.050  | 0.28      | 9.5          | 0.0075    | 0.040         | 0.018    | 0.0016    | -            | 0.10              | 0.10         | 0.0048      | 0.017    |
|       | Hf                           | - 0.50  | 0.095      |          | 0.0060 | 0.098 | 0.15  | 0.075  | 0.011          | 0.030    | 0.039    | 0.062    | 0.033     | 0.21         | 0.040 | 0.040  | -         | 0.013        | 0.027     | 0.015         | 0.045    | 0.00085   | -            | 0.14              | 0.12         | 0.00084     | 0.25     |
|       | Ta                           | 0.50    | 0.19       |          |        | 0.29  |       | 0.12   | 0.27<br>0.0018 | 0.18     | 0.098    | 0.16     | 0.12      | 0.27<br>0.15 | 0.18  | 0.27   | 0.30      | 1.6<br>0.010 | 0.91      | 0.21<br>0.011 | 0.067    | 0.043     |              | 0.48              | 0.58<br>0.29 | 0.068       | 0.11     |
|       | Th                           | 0.019   | 0.12       |          |        | 0.023 |       | 0.023  | 0.0018         | 0.0080   | 0.0080   | 0.0080   | 0.011     | 0.15         | 0.035 | 0.035  | -         | 1.7          | 0.0075    | 0.011         | 0.0029   | 0.0000    | -            | 0.054             | 0.29         | 0.00021     | 0.315    |
|       | Pb                           | 4.6     | 6.9        |          | 2.9    | 4.9   |       | 3.4    | 6.8            | 4.2      | 1.2      | 4.0      | 2.5       | 5.4          | 4.1   | 6.9    | 3.1       | 2.8          | 3.9       | 3.5           | 1.8      | 2.6       | 3.2          | 2.6               | 2.1          | 3.0         | 1.4      |
|       | その他(Be)                      | - 4.0   | 0.090      |          | - 2.5  | - +.5 | - 3.0 |        | - 0.0          | 0.0075   | 0.0075   | 0.0075   | 0.0096    | - 3.4        | - 7.1 | - 0.9  | - 3.1     | - 2.0        | - 3.9     | - 5.5         | - 1.0    | - 2.0     | - 5.2        | - 2.0             |              | - 3.0       | - 1.4    |
|       | その他(Cd)                      | -       | 0.030      |          | -      | _     | -     | -      | -              | 0.10     | 0.051    | 0.0070   | 0.085     | -            | -     | -      | -         | -            |           | _             | -        | -         | 0.093        | 0.071             | 0.10         | -           | _        |
|       | その他(Sr)                      | -       | -          | -        | -      | -     | -     | -      | -              | -        | -        | -        | -         | -            | -     | -      | -         | -            | -         | -             | -        | -         | -            | -                 | -            | -           | -        |
|       | その他(Y)                       | -       | -          | -        | -      | -     | -     | -      | -              | -        | -        | -        | -         | -            | -     | -      | -         | -            | -         | -             | -        | -         | -            | -                 | - 1          | -           | -        |
|       | その他(TI)                      | -       | -          | -        | -      | -     | -     | -      | -              | -        | -        | -        | -         | -            | -     | -      |           | - 1          | -         | -             | -        | -         | -            | -                 | - 1          | -           | -        |
| 炭素成分  | OC1                          | 0.067   | 0.014      | 0.30     | 0.50   |       | 0.019 | 0.049  | 0.025          | 0.079    | 0.082    | 0.057    | 0.037     | 0.050        | 0.20  | 0.20   | 0.093     | 0.24         | 0.055     | 0.21          | 0.0054   | 0.011     | 0.030        | 0.040             | 0.020        | 0.018       | 0.013    |
|       | OC2                          | 0.91    | 1.1        |          |        | 2.0   | 2.4   | 2.9    | 1.2            | 2.5      | 1.5      | 1.2      | 1.2       | 3.2          | 1.14  | 0.9    | 1.3       | 1.1          | 1.5       | 2.1           | 1.5      | 1.4       | 0.63         | 1.4               | 0.90         | 1.1         | 0.76     |
|       | OC3                          | 0.63    | 0.86       | 1.5      |        | 1.4   |       | 2.1    | 1.2            | 1.2      | 0.95     | 1.3      | 1.1       | 0.82         | 0.86  | 0.81   | 0.87      | 0.87         | 1.0       | 1.2           | 1.1      | 1.1       | 1.4          | 1.1               | 0.70         | 0.87        | 0.66     |
|       | OC4                          | 0.42    | 0.45       | 0.72     | 0.80   | 0.82  | 0.98  | 1.09   | 0.81           | 0.37     | 0.29     | 0.43     | 0.40      | 0.38         | 0.59  | 0.51   | 0.47      | 0.52         | 0.61      | 0.64          | 0.65     | 0.78      | 0.48         | 0.35              | 0.31         | 0.57        | 0.38     |
|       | Ocpyro                       | 0.50    | 1.8        |          |        | 1.2   |       | 1.5    | 0.96           | 1.1      | 0.69     | 1.2      | 1.1       | 1.5          | 1.08  | 0.9    | 0.87      | 0.69         | 0.66      | 0.91          | 1.3      | 1.3       | 1.0          | 1.3               | 0.80         | 1.0         | 0.65     |
|       | EC1                          | 0.87    | 2.6        |          |        | 1.9   |       | 2.3    | 1.6            | 1.7      | 0.70     | 1.6      | 1.3       | 2.4          | 1.3   | 1.2    | 1.2       | 1.3          | 1.5       | 1.9           | 1.3      | 1.4       | 1.2          | 1.8               |              | 1.1         | 0.68     |
|       | EC2                          | 0.17    | 0.92       |          |        | 0.69  |       | 0.62   | 0.73           | 0.59     | 0.40     | 0.62     | 0.69      | 0.52         | 0.52  | 0.53   | 0.74      | 0.21         | 0.32      | 0.37          | 1.1      | 1.1       | 0.42         | 0.70              | 0.38         | 1.1         | 0.59     |
|       | EC3                          | 0.00036 | 0.053      |          |        | 0.045 |       | 0.042  | 0.070          | 0.054    | 0.037    | 0.064    | 0.068     | 0.014        | 0.037 | 0.027  | 0.041     | 0.0043       | 0.013     | 0.046         | 0.031    | 0.026     | 0.075        | 0.035             | 0.012        | 0.016       | 0.015    |
|       | OC                           | 2.5     | 4.2        |          |        |       |       | 7.7    | 4.2            | 5.2      | 3.5      | 4.3      | 3.8       | 5.9          | 3.6   | 3.0    | 3.5       | 3.5          | 3.8       | 5.0           | 4.5      | 4.6       | 3.6          | 4.1               | 2.7          | 3.6         | 2.4      |
|       | EC                           | 0.55    | 1.8        |          |        |       | 1.4   | 1.5    | 1.4            | 1.2      | 0.45     | 1.1      | 0.96      | 1.5          | 0.73  | 0.86   | 1.1       | 0.85         | 1.2       | 1.4           | 1.1      | 1.1       | 0.72         | 1.2               | 0.50         | 1.1         | 0.63     |
|       | WSOC                         | -       | 4.3        | 3.2      | 3.7    | -     | -     | -      | -              | 3.0      | 3.2      | 3.1      | 3.6       | 2.5          | -     | -      | 3.4       | 1.4          | 3.1       | -             | 3.0      | 3.9       | -            | -                 | -            | 2.8         | -        |

表4-2 フィルターパック法によるガス状成分及びエアロゾル成分濃度

(nmol/m<sup>3</sup>)

| 表4-2     | ノイル           | ターハ                   |                | _ よる <i>刀</i> .<br>ング期間 | 人小风            | ガ及し            | ハエ アレ<br>ガ   |                | 队冗训        | 長足          |              |              | エマロバ         | 1.(粒乙)       | ١          | (1          | nmol/m³)     |
|----------|---------------|-----------------------|----------------|-------------------------|----------------|----------------|--------------|----------------|------------|-------------|--------------|--------------|--------------|--------------|------------|-------------|--------------|
| 調査地点名    | 試料            | 開                     |                | クグ期间 終                  | 7              |                |              |                |            |             |              |              | エアロゾノ        |              |            |             |              |
| (自治体名)   | 番号            | Date                  | Time           | Date                    | Time           | SO2            | HNO3         | HCI            | NH3        | SO42-       | NO3-         | CI-          | NH4+         | Na+          | K+         | Mg2+        | Ca2+         |
|          | 1             | 2014/7/28             | 9:55           |                         | 9:56           | 35.9           | 6.2          | 1.2            | 92         | 0.5         | 4.0          | 0.6          | 0.5          | 1.8          | 0.0        | 0.0         | 3.5          |
|          | 2             | 2014/7/29             | 10:00          | 2014/7/30               | 9:55           | 29.4           | 14.4         | 0.7            | 115        | 0.5         | 2.3          | 0.4          | 2.8          | 1.4          | 0.0        | 0.0         | 2.8          |
|          | 3             | 2014/7/30             | 10:00          | 2014/7/31               | 9:55           | 32.4           | 3.7          | 0.7            | 86         | 3.8         | 5.6          | 2.1          | 4.6          | 8.3          | 0.0        | 0.0         | 4.6          |
| 土浦       | 4             | 2014/7/31             | 10:00          | 2014/8/1                | 9:55           | 34.7           | 16.5         | 0.0            | 73         | 28.6        | 16.4         | 5.3          | 53.1         | 16.2         | 0.0        | 1.0         | 12.9         |
| (茨城県)    | 5             | 2014/8/1              | 10:00          | 2014/8/2                | 9:56           | 15.1           | 16.6         | 0.4            | 95         | 15.9        | 10.2         | 1.2          | 34.2         | 5.7          | 0.0        | 0.0         | 8.5          |
|          | 6<br>7        | 2014/8/2<br>2014/8/3  | 10:00<br>10:00 | 2014/8/3                | 9:55<br>10:00  | 34.8<br>25.7   | 27.4<br>6.3  | 6.8<br>4.6     | 132<br>73  | 22.3<br>4.1 | 32.7<br>4.5  | 3.3          | 53.1<br>8.4  | 17.2<br>7.4  | 0.0        | 2.7<br>1.1  | 18.4<br>5.1  |
|          | 1             | 2014/7/28             | 10:02          | 2014/7/29               | 10:16          | 15.6           | 6.8          | 16.0           | 389        | 13.5        | 18.0         | 4.5          | 33.6         | 16.3         | 0.0        | 2.3         | 5.9          |
|          | 2             | 2014/7/29             | 10:21          | 2014/7/30               | 10:16          | 22.9           | 35.1         | 22.4           | 468        | 24.3        | 43.6         | 6.0          | 65.7         | 17.7         | 6.4        | 2.8         | 15.6         |
|          | 3             | 2014/7/30             | 10:19          |                         | 10:02          | 23.5           | 31.7         | 19.6           | 560        | 44.5        | 40.6         | 5.8          | 100.8        | 18.9         | 4.1        | 2.8         | 12.3         |
| 前橋       | 4             | 2014/7/31             | 10:04          | 2014/8/1                | 9:57           | 35.8           | 36.1         | 28.0           | 747        | 49.3        | 33.3         | 4.9          | 105.8        | 14.2         | 2.6        | 2.4         | 14.4         |
| (群馬県)    | 5             | 2014/8/1              | 9:59           | 2014/8/2                | 10:02          | 21.0           | 33.0         | 48.6           | 482        | 37.3        | 15.0         | 1.6          | 73.0         | 5.5          | 1.4        | 1.5         | 10.5         |
|          | 6             | 2014/8/2              | 10:04          | 2014/8/3                | 10:30          | 11.9           | 34.4         | 46.7           | 831        | 26.6        | 17.9         | 1.8          | 60.1         | 5.4          | 2.8        | 1.5         | 8.7          |
|          | 7             | 2014/8/3              | 10:35          | 2014/8/4                | 10:06          | 19.2           | 28.3         | 48.0           | 667        | 36.2        | 16.6         | 1.9          | 66.4         | 6.5          | 4.2        | 1.5         | 7.3          |
|          | 2             | 2014/7/28 2014/7/29   | 11:00          |                         | 10:45          | 4.8            | 34.5         | 94.7           | 29         | 4.2         | 14.3         | 4.8          | 0.1          | 12.5         | 1.8        | 0.0         | 1.8          |
|          | 3             | 2014/7/29             | 10:45<br>10:55 | 2014/7/31 2014/8/1      | 10:55<br>11:03 | 9.3<br>12.3    | 43.1<br>43.7 | 100.6<br>103.6 | 52<br>37   | 7.8<br>20.5 | 18.1<br>25.8 | 6.1<br>7.5   | 6.3<br>25.3  | 19.4<br>26.0 | 4.5<br>5.6 | 0.0         | 3.2          |
| 鴻巣       | 4             | 2014/7/31             | 11:04          | 2014/8/2                | 10:52          | 9.7            | 54.8         | 103.0          | 44         | 6.2         | 6.7          | 0.2          | 2.0          | 6.5          | 1.7        | 0.0         | 1.2          |
| (埼玉県)    | 5             | 2014/8/1              | 10:53          | 2014/8/3                | 11:03          | 6.7            | 48.9         | 106.0          | 39         | 16.5        | 15.7         | 1.3          | 16.1         | 9.0          | 4.3        | 0.0         | 4.2          |
|          | 6             | 2014/8/2              | 11:04          | 2014/8/4                | 10:50          | 8.5            | 36.8         | 102.5          | 55         | 8.3         | 15.2         | 2.3          | 2.8          | 10.2         | 4.1        | 0.0         | 2.9          |
|          | 7             | 2014/8/3              | 10:52          | 2014/8/5                | 10:44          | 2.1            | 30.9         | 91.6           | 23         | 2.7         | 4.8          | 1.3          | 0.0          | 4.5          | 0.4        | 0.0         | 1.1          |
|          | 1             | 2014/7/28             | 10:00          |                         | 10:00          | 27.9           | 12.1         | 31.1           | 150        | 13.2        | 25.4         | 49.4         | 10.7         | 49.3         | 0.0        | 13.5        | 35.6         |
|          | 2             | 2014/7/29             | 10:00          |                         | 10:00          | 36.7           | 9.3          | 21.1           | 271        | 23.2        | 29.5         | 25.0         | 20.9         | 41.8         | 5.1        | 9.4         | 44.9         |
| 市原       | 3             | 2014/7/30 2014/7/31   | 10:00<br>10:00 | 2014/7/31 2014/8/1      | 10:00<br>10:00 | 60.9           | 0.1<br>11.7  | 7.1<br>17.8    | 261<br>189 | 10.3        | 9.7<br>39.5  | 12.1         | 10.8         | 18.2<br>43.9 | 0.0        | 2.4<br>10.9 | 8.9<br>73.0  |
| (千葉県)    | 5             | 2014/7/31             | 10:00          | 2014/8/1                | 10:00          | 201.9<br>102.4 | 0.1          | 6.9            | 260        | 56.6<br>7.7 | 9.5          | 45.2<br>15.9 | 60.8         | 13.8         | 4.7<br>0.0 | 3.3         | 18.4         |
| (1****)  | 6             | 2014/8/2              | 10:00          | 2014/8/3                | 10:00          | 313.4          | 40.2         | 40.8           | 262        | 51.3        | 63.4         | 64.2         | 48.7         | 74.8         | 5.3        | 13.0        | 69.8         |
|          | 7             | 2014/8/3              | 10:00          | 2014/8/4                | 10:00          | 163.6          | 0.1          | 11.9           | 206        | 5.1         | 5.3          | 19.1         | 0.0          | 13.0         | 0.0        | 2.6         | 12.8         |
|          | 1             | 2014/7/28             | 10:00          | 2014/7/29               | 9:30           | 36.1           | 7.1          | 8.4            | 306        | 16.5        | 38.2         | 22.0         | 16.1         | 42.3         | 1.3        | 5.8         | 12.7         |
|          | 2             | 2014/7/29             | 10:00          |                         | 9:30           | 110.2          | 14.7         | 25.7           | 309        | 19.1        | 19.1         | 9.4          | 22.3         | 17.1         | 0.5        | 3.3         | 9.2          |
| 64.347   | 3             | 2014/7/30             | 10:00          | 2014/7/31               | 9:30           | 94.5           | 33.7         | 47.4           | 315        | 19.1        | 13.2         | 4.1          | 19.5         | 11.8         | 0.5        | 0.7         | 2.4          |
| 綾瀬 (東京都) | <u>4</u><br>5 | 2014/7/31 2014/8/1    | 10:00<br>10:00 | 2014/8/1 2014/8/2       | 9:30<br>9:30   | 60.1<br>100.9  | 10.1<br>3.3  | 16.9<br>20.3   | 255<br>472 | 37.7<br>3.4 | 30.8<br>5.3  | 13.1<br>1.4  | 31.5<br>5.2  | 23.0<br>1.8  | 0.9        | 4.2<br>0.0  | 11.4<br>1.6  |
| (東京都)    | 6             | 2014/8/1              | 10:00          | 2014/8/3                | 9:30           | 170.0          | 13.1         | 78.8           | 300        | 22.7        | 32.4         | 23.9         | 20.0         | 25.8         | 1.4        | 4.2         | 13.8         |
|          | 7             | 2014/8/3              | 10:00          | 2014/8/4                | 9:30           | 20.2           | 35.0         | 65.5           | 425        | 10.2        | 20.7         | 18.4         | 10.6         | 24.3         | 3.3        | 3.4         | 11.3         |
|          | 1             | 2014/7/28             | 10:24          | 2014/7/29               | 10:08          | 68.9           | 4.6          | 7.0            | 241        | 7.9         | 11.2         | 11.6         | 19.7         | 21.5         | 0.8        | 3.0         | 10.9         |
|          | 2             | 2014/7/29             | 10:10          | 2014/7/30               | 10:10          | 42.8           | 7.7          | 15.0           | 197        | 23.2        | 28.5         | 17.4         | 47.4         | 39.4         | 2.6        | 5.8         | 15.5         |
|          | 3             | 2014/7/30             | 10:15          |                         | 10:20          | 72.8           | 8.7          | 17.6           | 341        | 60.7        | 41.8         | 25.5         | 100.9        | 58.7         | 3.8        | 8.3         | 24.7         |
| 川崎       | 4             | 2014/7/31             | 10:22          | 2014/8/1                | 11:01          | 59.9           | 16.6         | 20.6           | 352        | 42.8        | 32.6         | 13.9         | 71.7         | 35.3         | 2.1        | 5.5         | 22.5         |
| (川崎市)    | 5             | 2014/8/1<br>2014/8/2  | 11:04<br>10:40 | 2014/8/2<br>2014/8/3    | 10:37<br>10:08 | 78.0           | 12.4         | 31.3<br>8.8    | 425        | 32.7        | 39.3<br>13.7 | 26.0         | 54.0<br>18.0 | 43.4         | 3.7<br>2.1 | 7.6         | 36.9<br>14.6 |
|          | 6<br>7        | 2014/8/3              | 10:40          |                         | 10.06          | 108.5          | 5.6          | 0.0            | 316        | 8.7         | 13.7         | 6.8          | 16.0         | 8.3          | 2.1        | 2.8         | 14.6         |
|          | 1             | 2014/7/28             | 10:00          |                         | 9:30           | 111.9          | 6.8          | 3.6            | 198        | 0.0         | 10.5         | 0.0          | 12.1         | 0.0          | 0.0        | 0.0         | 0.0          |
|          | 2             | 2014/7/29             | 10:00          | 2014/7/30               | 9:30           | 12.3           | 8.6          | 0.0            | 129        | 0.0         | 1.7          | 0.0          | 0.0          | 0.0          | 0.0        | 0.0         | 0.0          |
|          | 3             | 2014/7/30             | 10:00          | 2014/7/31               | 9:30           | 77.7           | 28.8         | 23.1           | 83         | 84.2        | 22.9         | 0.0          | 136.2        | 0.0          | 0.0        | 0.0         | 0.0          |
| 甲府       | 4             | 2014/7/31             | 10:00          | 2014/8/1                | 9:30           | 24.3           | 24.1         | 19.8           | 93         | 47.2        | 11.1         | 0.0          | 59.3         | 0.0          | 0.0        | 0.0         | 0.0          |
| (山梨県)    | 5             | 2014/8/1              | 10:00          | 2014/8/2                | 9:30           | 27.6           | 26.4         | 34.2           | 75         | 26.0        | 18.3         | 0.0          | 55.8         | 0.0          | 0.0        | 0.0         | 0.0          |
|          | 6<br>7        | 2014/8/2              | 10:00<br>10:00 | 2014/8/3                | 9:30<br>9:30   | 48.2<br>2.3    | 17.6<br>9.7  | 10.3<br>17.0   | 217<br>82  | 5.9<br>0.0  | 7.2<br>7.5   | 0.0          | 11.9<br>17.1 | 0.0          | 0.0        | 0.0         | 0.0          |
|          | 1             | 2014/6/3              | 10:05          | 2014/8/4                | 9:52           | 4.4            | 3.4          | 7.8            | 108        | 5.4         | 8.0          | 4.4          | 27.3         | 6.3          | 2.6        | 0.0         | 0.0          |
|          | 2             | 2014/7/29             | 10:05          | 2014/7/30               | 9:48           | 3.3            | 18.9         | 5.8            | 129        | 27.3        | 12.3         | 1.1          | 71.8         | 3.8          | 2.8        | 0.0         | 0.0          |
|          | 3             | 2014/7/30             | 10:01          | 2014/7/31               | 9:50           | 5.4            | 21.1         | 15.3           | 128        | 68.9        | 12.8         | 2.5          | 147.2        | 7.1          | 3.0        | 0.0         | 0.0          |
| 長野       | 4             | 2014/7/31             | 10:04          |                         | 9:50           | 1.8            | 15.2         | 6.4            | 130        | 34.3        | 3.7          | 2.7          | 87.0         | 1.5          | 2.5        | 0.0         | 0.0          |
| (長野県)    | 5             | 2014/8/1              | 10:06          |                         | 9:53           | 1.6            | 13.5         | 5.8            | 157        | 20.5        | 2.9          | 2.7          | 56.5         | 0.0          | 2.3        | 0.0         | 0.0          |
|          | <u>6</u><br>7 | 2014/8/2              |                | 2014/8/3                |                | 5.3            | 9.4<br>7.2   | 2.1            | 154<br>147 | 15.3        |              | 0.8          |              | 0.0          | 2.2        | 0.0         | 0.0          |
|          | 1             | 2014/8/3<br>2014/7/28 |                | 2014/8/4<br>2014/7/29   | 9:48<br>10:00  | 7.1<br>82.1    | 17.7         | 5.8<br>44.8    | 483        | 2.6<br>33.8 | 0.7<br>30.1  | 0.8<br>15.5  | 13.8<br>86.3 | 0.0<br>55.3  | 2.8<br>5.8 | 0.0<br>2.4  | 0.0<br>3.4   |
|          | 2             | 2014/7/29             |                | 2014/7/29               |                | 64.8           | 13.0         | 22.2           | 784        | 16.1        | 11.5         | 4.0          | 45.7         | 34.9         | 3.7        | 1.0         |              |
|          | 3             | 2014/7/30             |                | 2014/7/31               | 10:00          | 352.8          | 12.6         | 39.6           | 338        | 177.2       | 29.0         | 17.0         | 389.8        | 61.9         | 8.0        | 4.5         | 13.2         |
| 富士       | 4             | 2014/7/31             | 10:00          | 2014/8/1                | 10:00          | 113.2          | 6.4          | 0.0            | 497        | 101.2       | 43.3         | 15.3         | 246.3        | 63.8         | 5.0        | 4.2         | 1.9          |
| (静岡県)    | 5             | 2014/8/1              | 10:00          |                         | 10:00          | 81.5           | 1.7          | 0.0            | 440        | 21.1        | 28.4         | 20.4         | 47.0         | 44.6         | 4.4        | 2.2         | 0.0          |
|          | 6             | 2014/8/2              | 10:00          |                         |                | 74.9           |              | 0.0            | 514        | 1.8         |              | 2.1          | 3.3          | 4.0          | 0.0        | 0.0         |              |
|          | 7             | 2014/8/3              | 10:00          | 2014/8/4                | 10:00          | 88.0           | 0.1          | 0.0            | 503        | 7.9         | 6.9          | 14.5         | 11.0         | 22.0         | 3.4        | 1.2         | 0.0          |

計算結果がマイナス値となったため、0に修正した

# 5 調査地点の概況

調査地点番号 1

っちうら 調査地点名 土浦 ( 茨城県土浦保健所 )

種類 一般局 都県市コード 8203

住所 茨城県土浦市下高津 2-7-46 調査地点の緯度・経度(世界測地系) 比高m

・北緯 36°04′16″・東経 140°11′27″ 3m

用途地域 住居地域 局舎屋上 採取位置

工場及び道路等付近の状況:保健所駐車場の一角にあり、周囲は病院・住宅等、北 西方向約 300m に国道 354 号線がある。

地形等の自然条件: 霞ヶ浦から西に 2.6km の微高地上に位置し、北約 700m には東西 に桜川が流れている。北約 10km には筑波山麓がある。



測定局周辺の風景





調査地点名 真岡 (栃木県真岡市役所)

種類 一般局 都県市コード 9209

住所 栃木県真岡市荒町 5191

調査地点の緯度・経度(世界測地系) 比高m

・北緯 36°26′25″・東経 140°00′45″ 10m

用途地域 近隣商業地域

採取位置 真岡市役所 庁舎屋上

工場及び道路等付近の状況:周囲は住宅地であり、東部には田地が広がる。 南東約 500m に国道 294 号があり、工業団地は西側約 5km にある。

地形等の自然条件:付近は平坦地で拓けている。市役所の道路を挟んですぐ脇を北東から南西に五行川が流れている。

#### 調査地点位置図





調査地点名 前橋(群馬県衛生環境研究所)

種類 一般局 都県市コード 10201

住所 群馬県前橋市上沖町 378

調査地点の緯度・経度(世界測地系) 比高m

・北緯 36°24′18″・東経 139°05′45″ 3m

用途地域 市街化調整区域

採取位置 群馬県衛生環境研究所敷地内の地上 (大気汚染常時監視局)

工場及び道路等付近の状況:付近は田園地帯であり、約500m南には住宅地が広がる。約2km北に小規模の工業団地がある。約150m北に県道が東西に走っている。

地形等の自然条件:赤城山麓の南にあり、付近は平坦地である。約 300m 南に桃の木川があり、西から東に流れる。

#### 調査地点位置図





中央の建物が前橋一般局、 手前は研究所庁舎



PM2.5 採取装置 (FRM2025)(左・中央) PM2.5 自動測定装置(右)

調査地点名 富岡(群馬県富岡市立富岡小学校)

種類 一般局 都県市コード 10210

住所 群馬県富岡市富岡 1359

調査地点の緯度・経度(世界測地系) 比高m

・北緯 36°15′33″・東経 138°53′43″ 3m

用途地域第二種住居地域

採取位置 地上

工場及び道路等付近の状況:周辺は住宅および商業地域である。500m 東には工場がある。50m 南は国道 254 号、500m 北は国道 254 号バイパスが通っている。

地形等の自然条件:周辺は平坦地である。南に鏑川、北に高田川が流れており、測定地点は河岸段丘上にあたる。

#### 調査地点位置図





調査地点名 鴻巣(埼玉県鴻巣市役所)

種類 一般局 都県市コード 112178

住所 埼玉県鴻巣市中央 1-1

調査地点の緯度・経度(世界測地系) 比高m

・北緯 36°3′56"・東経 139°31′16" 4m

用途地域第一種中高層住居専用地域

採取位置 局舎屋上

工場及び道路等付近の状況:付近は住宅街であるが、約500m 北からは田園地帯が 広がる。北300m には免許センター、南西約420m に国道17号線がある。

地 形 等 の 自 然 条 件 : 周辺は平坦地で、北約 600m のところに西から東に元荒川が流れている。

## 調査地点位置図





調査地点名 日高(埼玉県日高市高麗川南公民館)

種類 一般局 都県市コード 11242

住所 埼玉県日高市中鹿山 81

調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°53′36″・東経 139°20′36″ 4m

用途地域 未指定

採取位置 局舎屋上

工場及び道路等付近の状況:付近は住宅街。北西約300mと西約500mに県道がある。 北に約2kmにセメント工場及び工業団地がある。

地形等の自然条件:周辺は平坦地で、北西約 1.5km のところに南西から北東に高麗川が流れている。

# 調査地点位置図





調査地点名 秩父(秩父農林振興センター)

種類 一般局 都県市コード 11207

住所 埼玉県秩父市日野田町 1-1-44 調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°59′18″・東経 139°04′51″ 4m

用途地域 第一種住居地域

採取位置 局舎屋上

工場及び道路等付近の状況:付近は住宅街であるが、東約300m に国道140号線がある。

地 形 等 の 自 然 条 件 : 秩父山地に囲まれた秩父盆地にあり、西 900mに南西から北に荒川が流れている。南約 5km に武甲山があり、石灰岩の採掘が行われている。

### 調査地点位置図



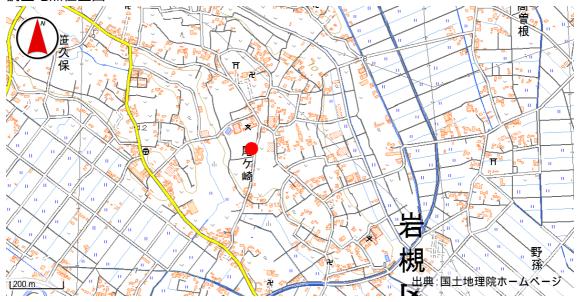


調査地点名 城南(埼玉県さいたま市立城南中学校)

種類 一般局 都県市コード 11100

住所 埼玉県さいたま市岩槻区笹久保 577

調査地点の緯度・経度(世界測地系) 比高 m


・北緯 35°54′49″・東経 139°43′37″ 4m

用途地域 調整区域

採取位置 地上

工場 及び 道路 等付 近の 状況: 周辺は畑に囲まれ、北東側と南側に住宅がまばらに存在する。西約 450m、北約 800mに県道がある。

地形等の自然条件:付近は平坦地で、北東約2kmのところに元荒川が流れている。



測定局周辺の風景



調査地点名 市原 (千葉県環境研究センター)

種類 一般局 都県市コード 12219

住所 千葉県市原市岩崎西 1-8-8 調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°31′36″・東経 140°04′05″ 海抜 5m

用途地域 準工業地域

採取位置 千葉県環境研究センター屋上(測定局の南南西 80m)

工場及び道路等付近の状況:京葉臨海工業地帯に隣接し、北東から南西に国道 16号(24時間交通量 36,742台 大型車混入率 29.1%)があり、この道路と庁舎の間には緑地公園がベルト状にある。庁舎は特別工業地域内にある。

地形等の自然条件:付近は平坦地で、北東から南西側に東京湾、海までの最短距離は北西 700m である。東側には南東から北北西にかけて東京湾へ流れる二級河川の養老川があり、川への最短距離は東 1000m である。

#### 調查地点位置図



測定局周辺の風景



中央の建物が市原岩崎西局



本館屋上の FRM2025i

勝浦(千葉県勝浦市立北中学校) 調査地点名

種類 一般局 都県市コード 12218

住所 千葉県勝浦市小羽戸 58-2

調査地点の緯度・経度(世界測地系) 比高 m

・北緯 35°10′45″・東経 140°15′56″ 海抜 100m

無指定地域 用途地域 採取位置 測定局舎屋上

工場及び道路等付近の状況:国道 297号松野交差点(24時間交通量 8,200 台)より県道勝浦夷隅線(24時間交通量,4900台)を4kmほど入ったと ころにある。

地形等の自然条件:海岸までは直線で 4.7km あり、周囲は森林と畑で民家 は少ない。

測定局位置図



測定局周辺の風景





調査地点名 佐倉(千葉県佐倉市江原新田)

種類 一般局 都県市コード 12212

住所 千葉県佐倉市江原新田 54-1 調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°43′40″・東経 140°12′23″ 海抜 27m

用途地域 市街化調整区域 採取位置 測定局舎屋上

工場及び道路等付近の状況:周囲 3km 以内には工場はない。東から北西にかけて国道 296号(24 時間交通量 16,462 台)があり、最短は北東 200mの位置になる。周辺は緑地。

地形等の自然条件:平坦な地形で印旛沼が北西 1.4km にある。周囲は水田と畑が多い。

# 測定局位置図





調査地点名 富津(千葉県富津市富津中学校)

種類 一般局 都県市コード 12226

住所 千葉県富津市下飯野 1135

調査地点の緯度・経度(世界測地系) 比高 m

・北緯 35°19′20″・東経 139°51′12″ 海抜 9m

用途地域第一種低層住居専用地域

採取位置測定局舎屋上

工場及び道路等付近の状況:北西 600m の方向に国道 16 号 (24 時間交通量 9,485 台)がある。約 3km 北に新日鐵住金の製鉄所がある。周辺は砂利の駐車場。

地形等の自然条件:平坦で周辺は水田が多い。東京湾が北から南西の方向にあり最短距離は北西 1.3km である。二級河川の小糸川が東から北へ流れ、最短距離は北東 1.6km である。

## 測定局位置図





調査地点名 千葉 (千葉市立千城台北小学校)

種類 一般局 都県市コード 12104

住所 千葉市若葉区千城台北 1-4-1 調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°37′43″・東経 140°11′01″ 5m

用途地域第一種低層住居専用地域

採取位置 局舎屋上

工場及び道路等付近の状況:大規模な住宅団地内の北端にある小学校の一角に位置している。周囲に大規模な工場はない。

地形等の自然条件:測定地点付近は平地であり、北側にが雑木林がある。 測定地点から南西約 1.5km のところに、北西から南東に川が流れている。 測定局位置図



測定局周辺の風景



調査地点名 綾瀬 (東京都立東綾瀬公園)

種類 一般局 都県市コード 13121

住所 東京都足立区綾瀬 6-23

調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°46′13″・東経 139°49′33″ 3m

用途地域 住居地域

採取位置 地上

工場及び道路等付近の状況:都立東綾瀬公園内にあり、周囲は中低層の住宅である。 付近に幹線道路などはない。

地形等の自然条件:付近は平坦地である。

測定局位置図



測定局周辺の風景





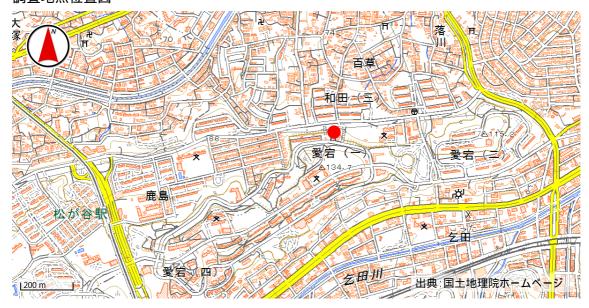
たま 調査地点名 多摩(愛宕測定局)

種類 一般局 都県市コード 13224

住所 東京都多摩市愛宕 1-65-1

調査地点の緯度・経度(世界測地系) 比高 m

・北緯 35°38′05″・東経 139°25′54″ 3m


用途地域 住居地 域

採取位置 地上

工場及び道路等付近の状況:多摩市所有の緑地帯の中にあり、周囲は神社・小学校・住宅等がある。付近に幹線道路などはない。

地形等の自然条件:愛宕山傾斜地の中腹にある。

# 調査地点位置図







調査地点名 大和(神奈川県大和市役所)

種類 一般局 都県市コード 14213

住所 神奈川県大和市下鶴間 1-1-1

調査地点の緯度・経度(世界測地系) 比高 m

・北緯 35°29′14″・東経 139°27′28″ 2m

用途地域 住居地域

採取位置 大和市役所

工場及び道路等付近の状況:付近は住宅地で学校、病院等がある。北にショッピングモールが隣接している。南 400m には国道 246 号、南 600m には東名高速道路がある。

地形等の自然条件:付近は平坦地で、東 800m には境川があり、北から南に流れている。

#### 調査地点位置図







局舎(コンテナ)上に採取機を設置し、試料採取を実施。

調査地点名 横浜 (神奈川県横浜市磯子区総合庁舎)

種類 一般局 都県市コード 14107

住所 神奈川県横浜市 磯 子 区 磯 子 3-5-1

調査地点の緯度・経度(世界測地系) 比高 m

・北緯 35°24′06"・東経 139°37′05" 10m

用途地域 商業地域

採取位置 磯子区総合庁舎屋上

工場及び道路等付近の状況:北約 1~2km に都市ガス工場、LNG火力発電所及び石炭火力発電所があり、北東約 2km には、石油精製工場がある。また、西北西約 50m に国道 16 号線があり、東南東 30m には、市道磯子方面 578 号線がある

地形等の自然条件:横浜市南東部に位置し、根岸湾までの最短距離は南東約 500m である。また、JR 根岸線以西は数十メートルの崖となっている。



測定局周辺の風景





調査地点名 川崎(田島測定局・田島こども文化センター)

種類 一般局 都県市コード 14131

住所 神奈川県川崎市川崎区田島町 20-23

調査地点の緯度・経度(世界測地系) 比高 m

・北緯 35°30′57″・東経 139°42′42″ 3m

用途地域 住居地域

採取位置 地上

工場及び道路等付近の状況:採取場所から南南東 490m 先を県道東京大師横浜線、首都高速横浜羽田線が走り、その先は臨海工業地帯である。北東8km に羽田空港、東 5km に川崎港がある。

地形等の自然条件:付近は平坦地で住宅が密集しており緑の少ない地点である。南東5kmに東京湾、北2.4kmに多摩川が流れる。



測定局周辺の風景





調査地点名 相模原(神奈川県相模原市役所)

種類 一般局 都県市コード 14209

住所 神奈川県相模原市中央 2-11-15 調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°34′19″・東経 139°22′23″ 3m

用途地域商業地域

採取位置地上

工場及び道路等付近の状況:付近は公共施設が多い官庁街であり、西側には住宅地が広がっている。北約 200m に国道 16 号がある。相模原台地北部に位置しており、付近は平坦地である。

地形等の自然条件:相模原台地北部に位置しており、付近は平坦地である。調査地点位置図



測定局周辺の風景





調査地点名 甲府(山梨県衛生環境研究所)

種類 一般局 都県市コード 19201

住所 山梨県甲府市富士見 1-7-31 調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°40′19″・東経 138°33′02″ 4.5m

 用途地域
 住居地域

 採取位置
 局舎屋上

工場及び道路等付近の状況: 甲府市外の北西部に位置しており、付近は住宅地域で工場はない。交通量が多い道路として北約 100m 及び 400m に幹線道路があるが、 $NO_2$  の環境基準超過の事例はない。

地形等の自然条件: 甲府盆地の北西部、標高 280m の地点で、北~東側は山地に近接し、西側約 100m を荒川が流れる。昨年度、測定局舎南側に隣接する形で託児所が建設されたため、東風または西風が卓越している。



測定局周辺の風景





のがしやまなし 調査地点名 東山梨(東山梨合同庁舎)

種類 一般局 都県市コード 19213

住所 山梨県甲州市塩山上塩後 11239-1

調査地点の緯度・経度(世界測地系) 比高 m

・北緯 35°42′14"・東経 138°42′50" 3m

用途地域 未指定地域

採取位置 地上

工場及び道路等付近の状況:市中心街から外れた西側に位置し、住居及び 果樹園に囲まれている。南側約 200 m に幹線道路があるが、大規模な工場 等は無い。

地形等の自然条件:甲府盆地東部に位置し、山岳地帯から流れ出した複数の河川によって作られた複合扇状地である。桃やブドウ等の果樹栽培が盛んであるため、秋季から冬季にかけて、周辺で野焼きが頻繁に行われている。



測定局周辺の風景





種類 一般局 都県市コード 20201

住所 長野県長野市安茂里米村 1978

調査地点の緯度・経度(世界測地系) 比高m

・北緯 36°38′07″・東経 138°10′43″ 4m

用途地域 第一種低層住居専用地域

採取位置 局舎屋上

工場及び道路等付近の状況: 長野市街地の南西部に位置し、東側に裾花川が流れている。周囲は住居地域であるが、1km 以内には食品工場が点在する。東約 300m と北約 600m には、交通量の多い国道等の幹線道路がある。

地形等の自然条件: 南西から北東に流れる千曲川に沿った紡錘形の盆地で、盆地の幅は約8kmである。盆地底部の標高は海抜300~400mで、周囲は海抜1000~2000mの山地に囲まれる。



測定局周辺の風景





調査地点名 富士 (静岡県富士市救急医療センター)

種類 一般局 都県市コード 22210

住所 静岡県富士市津田蓮台場 217 調査地点の緯度・経度(世界測地系) 比高m

・北緯 35°09′15″・東経 138°40′39″ 3m

 用途地域
 工業地域

 採取位置
 局舎屋上

工場及び道路等付近の状況: 富士市街地の南東部に位置し、周囲は工場地域であるが、製紙工場を中心に様々な工場が点在する。南約 1km に東海道新幹線、北約 2.8km に東名高速自動車道があり、また北約 200mと西約 10m に比較的交通量の多い国道等の幹線道路がある。

地形等の自然条件:付近は平坦地で、西南約 200m に潤井川が西から南に流れ、田子の浦港にそそいでいる。



測定局周辺の風景





調查地点名 湖西 (静岡県湖西市役所)

種類 一般局 都県市コード 22221

住所 静岡県湖西市吉美 3268

調査地点の緯度・経度(世界測地系) 比高 m

・北緯 34°43′08″・東経 137°31′51″ 5m

用途地域 第二種住居地域

採取位置 局舎屋上

工場及び道路等付近の状況:周囲には主に自動車関連や電器関連の工場が点在しており、東側には主要幹線道路の国道301号が通っている。また、北側ではミカン栽培などの農業や養豚などの畜産が行われている。

地形等の自然条件:静岡県の最西端に位置し、浜松市、豊橋市に隣接している。南側約5kmには遠州灘、東側は浜名湖が面している。

#### 調査地点位置図







調査地点名 静岡 (静岡県静岡市立服織小学校)

種類 一般局 都県市コード 22101

住所 静岡県静岡市葵区羽鳥 6-9-1 調査地点の緯度・経度(世界測地系) 比高m

・北緯 34°59′06″・東経 138°20′09″ 3m

用途地域住居地域採取位置局舎屋上

工場及び道路等付近の状況:静岡市街の北西部にあり、小学校の敷地の隅に設置されている。周辺は住宅地で大きな工場はない。交通量が多い道路として東約1.4kmに国道1号線バイパス及び南約200mに国道362号線がある。

地形等の自然条件:付近は平坦で、住宅と田畑が混在している。東~北~西側は山地に、東~南~西側は安倍川と藁科川に囲まれている。標高は36mであり、北西の風が多い。







調査地点名 浜松 (静岡県浜松市立葵が丘小学校)

種類 一般局 都県市コード 22131

住所 静岡県浜松市中区高丘東 3-51-1

調査地点の緯度・経度(世界測地系) 比高m

・北緯 34°45′43″・東経 137°43′03″ 49m

 用途地域
 住居地域

 採取位置
 局舎屋上

工場及び道路等付近の状況:住宅地の中であるが、約300m 北には東名高速道路が東西に走っており、約300m 以南には工業地域が広がっている。地形等の自然条件:平坦地の住宅地内にあり、近傍には河川などはない。1.5km ほど東には染地川や馬込川が南北に流れている。7~8km ほど西から南西にかけては浜名湖が広がっている。

#### 調査地点位置図







# 6 精度管理結果

#### 6.1 イオン成分

# 6.1.1 試料の調製方法

陰イオン、陽イオンそれぞれについて、下記の手順で精度管理用試料を調製し、各機関 へ未知濃度試料として配布した。調製濃度を表 6-1 に示す。

#### (1) 陰イオン混合試料

市販の Cl<sup>-</sup>、NO<sub>3</sub><sup>-</sup>、SO<sub>4</sub><sup>2</sup>-混合標準液(それぞれ 10, 50,100 mg/L)20mL を 1000mL メスフラスコに分取後メスアップし、精度管理用試料(陰イオン)とした。

### (2)陽イオン混合試料

市販の  $Na^+$ 、 $NH_4^+$ 、 $K^+$ 、 $Mg^{2+}$ 、 $Ca^{2+}$ 混合標準液(それぞれ 20,25,50,30,50 mg/L) 20mL を 1000mL メスフラスコに分取後メスアップし、精度管理用試料(陽イオン)とした。

表 6-1 精度管理試料の調製濃度(イオン成分)

(単位: mg/L)

|      |                 | 陰イオン     |                               |      |                   | 陽イオン    |                  |                  |
|------|-----------------|----------|-------------------------------|------|-------------------|---------|------------------|------------------|
|      | CI <sup>-</sup> | $NO_3^-$ | SO <sub>4</sub> <sup>2-</sup> | Na⁺  | $\mathrm{NH_4}^+$ | $K^{+}$ | Mg <sup>2+</sup> | Ca <sup>2+</sup> |
| 調製濃度 | 0.20            | 1.0      | 2.0                           | 0.40 | 0.50              | 1.0     | 0.60             | 1.0              |

### 6.1.2 各機関の測定結果

測定結果の一覧を表 6-2 に示す。

#### (1)陰イオン

各機関の測定結果の平均値は、調製濃度とほぼ一致した。

CI と  $SO_4^2$ については、機関によるバラツキが CV で 7%以内であり、良好であった。  $NO_3$ については、平均濃度から 30%以上過大な値を示した機関が 1 機関あったが、この値を除外すると CV で 8%になった。

#### (2)陽イオン

各機関の測定結果の平均値は、調製濃度とほぼ一致した。

 $Na^+$ 、 $NH_4^+$ 、 $Mg^{2+}$ 、 $Ca^{2+}$ については、機関によるバラツキが CV で 8%以内であり、良好であった。

 $K^+$ については、平均濃度から 30% 以上過小な値を示した機関が 1 機関あったが、この値を除外すると CV で 6% になった。

表 6-2 各機関の精度管理試料測定結果(イオン成分)

(単位:CV%を除きmg/L)

|         |                 | 陰イオン              |                               |      |          | 陽イオン        | , , O V /0 ' <b>正</b> 肉 | (C mg/ L)        |
|---------|-----------------|-------------------|-------------------------------|------|----------|-------------|-------------------------|------------------|
| 機関番号    | CI <sup>-</sup> | NO <sub>3</sub> - | SO <sub>4</sub> <sup>2-</sup> | Na⁺  | $NH_4^+$ | K⁺          | Mg <sup>2+</sup>        | Ca <sup>2+</sup> |
| 1       | 0.19            | 0.95              | 2.0                           | 0.40 | 0.52     | 1.0         | 0.60                    | 1.0              |
| 2       | 0.18            | 0.99              | 2.0                           | 0.39 | 0.50     | 0.97        | 0.51                    | 0.73             |
| 3       | 0.19            | 1.0               | 2.0                           | 0.39 | 0.49     | 0.97        | 0.59                    | 0.96             |
| 4       | 0.17            | 0.88              | 2.0                           | 0.39 | 0.44     | <i>0.53</i> | 0.59                    | 0.97             |
| 5       | 0.18            | 1.0               | 2.0                           | 0.34 | 0.50     | 0.84        | 0.64                    | 1.0              |
| 6       | 0.18            | 0.94              | 2.0                           | 0.37 | 0.51     | 0.98        | 0.59                    | 0.96             |
| 7       | 0.20            | 1.0               | 2.0                           | 0.32 | 0.51     | 0.92        | 0.60                    | 1.0              |
| 8       | 0.22            | 1.2               | 2.0                           | 0.42 | 0.56     | 1.0         | 0.59                    | 1.0              |
| 9       | 0.19            | 0.97              | 2.0                           | 0.33 | 0.49     | 0.89        | 0.56                    | 0.90             |
| 10      | 0.19            | 1.0               | 2.0                           | 0.38 | 0.49     | 0.99        | 0.56                    | 1.0              |
| 11      | 0.20            | 0.96              | 2.0                           | 0.36 | 0.55     | 0.92        | 0.58                    | 0.95             |
| 12      | 0.19            | 0.98              | 2.0                           | 0.40 | 0.52     | 0.98        | 0.60                    | 0.99             |
| 13      | 0.20            | 0.99              | 2.0                           | 0.39 | 0.51     | 1.0         | 0.57                    | 0.97             |
| 14      | 0.18            | <u>1.3</u>        | 2.1                           | 0.42 | 0.53     | 1.0         | 0.62                    | 1.0              |
| 15      | 0.21            | 1.1               | 2.2                           | 0.42 | 0.55     | 1.1         | 0.66                    | 1.1              |
| 調製濃度    | 0.20            | 1.0               | 2.0                           | 0.40 | 0.50     | 1.0         | 0.60                    | 1.0              |
| 平均濃度    | 0.19            | 1.0               | 2.0                           | 0.38 | 0.51     | 0.94        | 0.59                    | 0.97             |
| 標準偏差    | 0.01            | 0.11              | 0.06                          | 0.03 | 0.03     | 0.13        | 0.04                    | 0.08             |
| CV(%)** | 7               | 11(8)             | 3                             | 8    | 6        | 14(6)       | 6                       | 8                |

<sup>\*</sup> 調製濃度からのズレと、平均濃度からのズレがいずれも30%以上の測定値を*下線* で示す

#### 6.2 炭素成分

#### 6.2.1 試料の調製方法

2 台のハイボリウムエアサンプラーで同時に大気粉塵を石英繊維ろ紙に採取し(捕集面積 400cm²、捕集大気量 1426.8 m³(ろ紙 )及び 1438.5m³(ろ紙 ))、そのろ紙を 47mmのカッターで切り抜き、ペトリスライドに入れ、検体とした。また、新品の石英繊維ろ紙を 47mmのカッターで切り抜き、ペトリスライドに入れ、ブランクろ紙とした。

## 6.2.2 各機関の測定結果

測定結果(ブランクろ紙の値を差し引いた値)を表 6-3 に示す。

平均濃度をろ紙 、ろ紙 の順に示すと、OCが11.7と11.1 $\mu$ g/cm²、ECが15.6と15.9 $\mu$ g/cm²、Char-EC(EC1-OCpyro)が5.9と5.6 $\mu$ g/cm²、WSOCが71.8と74.0 $\mu$ g/枚であった。F 検定(有意水準5%)を実施したところ、いずれの成分もろ紙 と の分散に有意差は認められなかった。また、t 検定(等分散を仮定した2標本による検定、有意水準5%)を実施したところ、いずれの成分もろ紙 と の平均濃度に有意差は認められなかった。そのため、表6-3では、ろ紙 と を区別せずに平均濃度と標準偏差を算出した。

OC、EC、WSOC は平均濃度からのズレが 30%以上の値はなかったが、CV は OC が 13%、EC が 7%、WSOC が 9%であり、OC のバラツキがやや大きかった。

Char-EC は CV が 17% と大きく、平均濃度から 30%以上過小な値を示した 1 機関のデータを除外しても CV は 15% であった。

<sup>\* \*</sup> 括弧内は調製濃度からのズレと平均濃度からのズレがいずれも30%以上の測定値 を除外した値

OC、EC、Char-EC について、平均濃度を測定機種別に見ると、DRI MODEL2001A(以 下、D ) Sunset Lavoratory(以下、S)の順にOCが12.5と10.6µg/cm²、ECが16.0と15.5µg/cm²、 Char-EC が 6.0 と 5.6μg/cm<sup>2</sup> であった。F 検定(有意水準 5%)を実施したところ、いずれ の成分も D と S の分散に有意差は認められなかった。また、t 検定 ( 等分散を仮定した 2 標本による検定、有意水準 5%) を実施したところ、ECと Char-ECについては Dと Sの平 均濃度に有意差は認められなかったが、OC については有意差が認められた。

参考として TC(OC + EC)の値も示した。TC は OC に比べてバラツキが小さく、CV は 7% で EC と同程度であった。

表 6-3 各機関の精度管理試料測定結果(炭素成分)

機関番号 ろ紙 機種<sup>1)</sup> OC EC Char-EC TC(参考) WSOC D 12 15 5.0 27 1 2 D 13 15 5.9 28 64 D 3 11 16 6.2 27 86 4 D 12 17 6.6 29 D 13 5.4 29 69 16 S

13

17

17

16

15

15

15

(単位: OC,EC,Char-EC,TCはμg/cm<sup>2</sup>、WSOCはμg/枚)

23

28

31

25

27

25

27

73

69

70

69

75

78

5.3

6.6

6.6

*3.9* 

5.9

4.4

7.0

S

D

S

S

S

S

10

11

14

12

12

9.4

9.9

# 6.3 無機元素成分

#### 6.3.1 試料の調製方法

6

7

8

9

10

11

12

13

あらかじめ超純水800mLと硝酸50mLを入れた1000mLメスフラスコに、混合標準液4mL を分取後メスアップし、精度管理用試料(無機元素成分)とした。調製濃度を表 6-4 に示 す。

表 6-4 精度管理試料の調製濃度(無機元素成分)

(単位:ng/ml)

|      |                  |                     |                   | ( <del>+ 12 : 119 / 1112 /</del> |
|------|------------------|---------------------|-------------------|----------------------------------|
| 元素   | Na,Al,K,Ca,Fe,Zn | V,Cr,Mn,Ni,Cu,Ba,Pb | As,Se,Rb,Mo,Sb,Ce | Sc,Co,Cs,La,Sm                   |
| 調製濃度 | 各40              | 各4.0                | 各2.0              | 各0.40                            |

#### 6.3.2 各機関の測定結果

各機関で測定している元素について、報告を求めた。結果を表 6-5 に示す。

各機関の測定結果の平均値は調製濃度とほぼ一致した。

Na、Al、V、Cr、Mn、Fe、Co、Ni、As 、Rb、Mo、Sb、Cs、Ba、Ce、Sm 、Pb は機関 によるバラツキが CV で 9%以内であり、良好であった。

K、Cu、Zn、La は、機関によるバラツキが CV で 10~11%と若干大きかった。このうち

S 14 9.1 17 7.0 26 15 S 27 16 4.6 11 平均濃度 27.1 72.6 11.4 15.7 5.7 標準偏差 1.4 1.1 1.0 2.0 6.5 13 17(15) 9 CV(%) 7

<sup>1)</sup> D: DRI MODEL2001A S: Sunset Lavoratory

平均濃度からのズレが30%以上の測定値を*下線*で示す

<sup>\*\*</sup> 括弧内は平均濃度からのズレが30%以上の測定値を除外した値

Cu と La は、調製濃度からのズレと平均濃度からのズレがいずれも 30%以上の測定値を除外すると、CV で 7%以内になった。

Ca、Sc、Se は、機関によるバラツキが CV で  $23 \sim 32\%$  と比較的大きかったが、調製濃度からのズレと平均濃度からのズレがいずれも 30% 以上の測定値を除外すると、CV で 9% 以内になった。

表 6-5 各機関の精度管理試料測定結果(無機元素成分)

|                | リリノ作用 |     |             | 則化約        | 古果(無        |     |      | <b>J</b> ' ) | (単位         | <u>ኔ</u> : CV% | <u>を除きn</u> | g/mL)      |
|----------------|-------|-----|-------------|------------|-------------|-----|------|--------------|-------------|----------------|-------------|------------|
| 機関番号           | Na    | Al  | K           | Ca         | Sc          | V   | Cr   | Mn           | Fe          | Co             | Ni          | Cu         |
| 1              | 39    | 44  | 35          | 36         | 0.41        | 4.1 | 4.0  | 4.0          | 39          | 0.41           | 4.3         | 4.1        |
| 2              | -     | 41  | -           | -          | 0.41        | 3.9 | 4.0  | 3.9          | 39          | 0.41           | 4.2         | 3.7        |
| 3              | 42    | 44  | 33          | 37         | <u>0.60</u> | 4.1 | 4.1  | 4.0          | 41          | 0.40           | 4.2         | 4.0        |
| 4              | 37    | 44  | 47          | <u>4.6</u> | 0.42        | 4.4 | 4.4  | 4.9          | 54          | 0.48           | 3.7         | 4.5        |
| 5              | 38    | 44  | 38          | 36         | 0.40        | 4.0 | 4.1  | 4.0          | 41          | 0.41           | 4.2         | 4.0        |
| 6              | 46    | 58  | 47          | <u>59</u>  | 0.38        | 4.4 | 4.5  | 4.4          | 42          | 0.45           | 4.5         | <u>5.4</u> |
| 7              | 41    | 43  | 41          | 38         | 0.40        | 4.0 | 4.0  | 3.9          | 39          | 0.39           | 4.1         | 3.9        |
| 8              | 37    | 43  | 38          | 35         | 0.41        | 4.0 | 4.0  | 4.0          | 40          | 0.40           | 4.1         | 4.0        |
| 9              | 41    | 46  | 37          | 40         | <i>0.93</i> | 4.3 | 4.1  | 4.0          | 44          | 0.39           | 4.2         | 3.9        |
| 10             | 44    | 47  | 36          | 44         | <0.69       | 3.8 | 4.0  | 4.3          | 41          | 0.44           | 4.5         | 4.4        |
| 11             | 40    | 44  | 38          | 38         | 0.40        | 4.0 | 4.1  | 4.0          | 41          | 0.40           | 4.1         | 3.9        |
| 12             | 41    | 45  | 46          | 45         | 0.43        | 4.2 | 4.1  | 4.1          | 44          | 0.41           | 4.5         | 4.2        |
| 13             | 39    | 43  | 40          | 40         | 0.40        | 4.0 | 4.0  | 4.0          | 40          | -              | 4.1         | 3.9        |
| 14             | 37    | 40  | 39          | 42         | 0.40        | 3.8 | 4.1  | 4.0          | 40          | 0.39           | 4.1         | 3.9        |
| 15             | 37    | 43  | 42          | 36         | 0.40        | 4.1 | 4.1  | 4.1          | 42          | 0.39           | 4.1         | 3.9        |
| 調製濃度           | 40    | 40  | 40          | 40         | 0.40        | 4.0 | 4.0  | 4.0          | 40          | 0.40           | 4.0         | 4.0        |
| 平均濃度           | 40    | 45  | 40          | 38         | 0.46        | 4.1 | 4.1  | 4.1          | 42          | 0.41           | 4.2         | 4.1        |
| 標準偏差           | 2.8   | 4.1 | 4.4         | 11         | 0.15        | 0.2 | 0.1  | 0.3          | 3.7         | 0.03           | 0.2         | 0.4        |
| CV(%)**        | 7     | 9   | 11          | 30         | 32          | 5   | 4    | 6            | 9           | 6              | 5           | 10         |
| CV(%)          | ′     | 9   | 11          | (9)        | (3)         | 5   | 4    | 0            | 9           | O              | 5           | (5)        |
| 144.00 - 5 - 0 |       |     |             |            |             |     |      |              |             |                |             |            |
| 機関番号           | Zn    | As  | Se          | Rb         | Мо          | Sb  | Cs   | Ва           | La          | Се             | Sm          | Pb         |
| 1              | 39    | 2.0 | 2.0         | 2.0        | 2.0         | 2.0 | 0.40 | 4.0          | 0.40        | 1.9            | 0.42        | 4.1        |
| 2              | 35    | 1.8 | <u>0.58</u> | -          | 1.9         | 1.9 | 0.40 | 3.8          | 0.41        | 2.0            | 0.42        | 4.0        |
| 3              | 35    | 1.8 | 1.8         | 2.0        | 2.3         | 2.0 | 0.41 | 4.1          | 0.42        | 2.1            | 0.43        | 4.4        |
| 4              | 41    | 2.3 | 1.9         | 2.2        | 2.4         | 2.2 | 0.42 | 4.0          | 0.41        | 2.1            | 0.42        | 4.4        |
| 5              | 32    | 1.9 | 1.8         | 2.1        | 2.0         | 2.0 | 0.41 | 4.1          | 0.40        | 2.0            | 0.42        | 4.0        |
| 6              | 41    | 2.1 | 2.1         | 2.1        | 2.3         | 2.1 | 0.44 | 4.2          | 0.42        | 2.1            | 0.41        | 4.2        |
| 7              | 40    | 2.0 | 2.1         | 2.0        | 1.9         | 2.0 | 0.40 | 3.9          | 0.38        | 1.9            | 0.41        | 4.0        |
| 8              | 31    | 1.9 | 1.8         | 2.0        | 2.0         | 1.9 | 0.40 | 4.1          | 0.40        | 2.0            | 0.41        | 3.9        |
| 9              | 31    | 1.8 | 1.9         | 2.0        | 2.3         | 1.9 | 0.37 | 4.1          | 0.37        | 1.9            | 0.42        | 4.0        |
| 10             | 35    | 2.3 | 2.3         | 2.1        | 2.0         | 2.2 | 0.36 | 3.8          | <u>0.55</u> | 2.0            | 0.36        | 3.8        |
| 11             | 38    | 1.9 | 1.8         | 2.0        | 2.0         | 1.9 | 0.41 | 4.1          | 0.41        | 2.0            | 0.42        | 4.0        |
| 12             | 41    | 2.0 | 2.0         | 2.1        | 2.0         | 2.0 | 0.41 | 3.9          | 0.42        | 2.1            | 0.45        | 4.2        |
| 13             | 37    | 1.9 | 1.9         | 2.1        | 2.0         | 2.0 | -    | -            | 0.50        | -              | -           | 3.9        |
| 14             | 39    | 2.1 | 2.0         | 1.6        | 1.8         | 2.0 | 0.39 | 3.9          | 0.40        | 1.9            | 0.40        | 4.0        |
| 15             | 38    | 1.8 | 1.9         | 2.1        | 2.0         | 1.9 | 0.39 | 4.2          | 0.38        | 2.0            | 0.40        | 4.1        |
| 調製濃度           | 40    | 2.0 | 2.0         | 2.0        | 2.0         | 2.0 | 0.40 | 4.0          | 0.40        | 2.0            | 0.40        | 4.0        |
| 平均濃度           | 37    | 2.0 | 1.9         | 2.0        | 2.1         | 2.0 | 0.40 | 4.0          | 0.42        | 2.0            | 0.41        | 4.1        |
| 標準偏差           | 3.6   | 0.2 | 0.4         | 0.1        | 0.2         | 0.1 | 0.02 | 0.1          | 0.05        | 0.1            | 0.02        | 0.2        |
| CV(%)**        | 10    | 8   | 20          | 6          | 8           | 5   | 5    | 3            | 11          | 4              | 5           | 4          |

<sup>\*</sup> 調製濃度からのズレと、平均濃度からのズレがいずれも30%以上の測定値を下線で示す

<sup>\* \*</sup> 括弧内は調製濃度からのズレと平均濃度からのズレがいずれも30%以上の測定値を除外した値

# 7. 年間を通じた PM2.5 高濃度の出現状況(本編5章)の解析対象地点

表 7 年間高濃度事象解析の対象地点

| 都県  | 測定局名                                                                                | 地点数 | 都県   | 測定局名                                                                                  | 地点数 |
|-----|-------------------------------------------------------------------------------------|-----|------|---------------------------------------------------------------------------------------|-----|
| 茨城県 | 日立市役所<br>水戸石川<br>鹿島宮中<br>神栖消防<br>波崎太田<br>土浦保健所<br>取手市役所<br>古河市役所                    | 8   |      | 印西高花<br>野田桐ケ作<br>匝瑳椿<br>鎌ケ谷軽井沢<br>香取羽根川<br>成田加良部<br>我孫子湖北台<br>習志野鷺沼                   |     |
| 栃木県 | 栃木市役所<br>鹿沼市役所<br>日光市今市小学校<br>小山市役所<br>真岡市役所<br>大田原市総合文化会館<br>矢板市役所<br>那須塩原市黒磯保健センタ | 12  | 千葉県  | 四街道鹿渡<br>館山亀ケ原<br>木更津中央<br>横芝光横芝<br>富津下飯野<br>市原岩崎西<br>勝浦小羽戸<br>佐倉江原新田                 | 23  |
|     | 益子町役場<br>県南那須庁舎<br>県安蘇庁舎<br>催宮中学校<br>群馬県衛生環境研究所<br>富岡市立富岡小学校                        |     |      | 千葉寒川(寒川小学校)<br>千葉蘇我(蘇我保育所)<br>千葉花見川(花見川第一小学校)<br>千葉真砂(真砂公園)<br>千葉大椎(土気)<br>千葉宮野木(宮野木) |     |
| 群馬県 | 東吾妻町立原町中<br>嬬恋村運動公園<br>桐生市立東小学校<br>館林市民センター<br>太田市中央小学校<br>沼田市沼田小学校                 | 8   | 東京都  | 千葉呂野不(呂野不)<br>千葉千城台(千城台北小学校)<br>千代田区神田司町<br>板橋区本町<br>足立区綾瀬<br>江戸川区南葛西<br>立川市泉町        | 8   |
|     | 八潮<br>戸田<br>入間                                                                      |     |      | 武蔵野市関前<br>青梅市東青梅<br>多摩市愛宕                                                             |     |
| 埼玉県 | 日幸<br>連<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・            | 16  | 神奈川県 | 磯栄 都 泉国生弘相津大小追久悪谷 宗 (会)                           | 15  |
|     |                                                                                     |     |      | 西行政センター<br>旭小学校                                                                       |     |

表7(つづき) 年間高濃度事象解析の対象地点

| 都県  | 測定局名                                  | 地点数 | 都県  | 測定局名                                                          | 地点数 |
|-----|---------------------------------------|-----|-----|---------------------------------------------------------------|-----|
| 山梨県 | 甲府富士見<br>大月<br>東山梨<br>吉田              | 4   |     | 湖西市役所<br>掛川市大東支所<br>島田市役所<br>救急医療センター                         |     |
| 長野県 | 環境保全研究所<br>松本<br>諏訪<br>伊那<br>佐久<br>木曽 | 6   | 静岡県 | 裾野市民文化センター<br>下田市役所<br>常磐公園<br>千代田小学校<br>長田南中学校<br>服織小学校      | 16  |
|     |                                       |     |     | 清水庵原中学校<br>清水三保第一小学校<br>清水興津北公園<br>浜松中央測定局<br>北部測定局<br>三ヶ日測定局 |     |
|     | 合計地点数                                 |     |     | 116                                                           |     |

# 8 調査結果の発表及び投稿一覧

- 芳住 邦雄(東京都公害研究所):南関東における大気エアロゾルのキャラクタリゼーション, 第 25 回大気汚染学会講演要旨集, 348(1984)
- 芳住 邦雄, 朝来野国彦(東京都環境科学研究所):南関東における大気エアロゾルのキャラクタリゼーション(第2報), 第26回大気汚染学会講演要旨集,594(1985)
- 小山 恒人(神奈川県公害センター):南関東における大気エアロゾルのキャラクタリゼーション(第3報), 第27回大気汚染学会講演要旨集,305(1986)
- 小山 恒人(神奈川県公害センター):南関東における大気エアロゾルのキャラクタリゼーション(第4報), 第30回大気汚染学会講演要旨集,204(1989)
- 小山 恒人(神奈川県公害センター):南関東における大気エアロゾルのキャラクタリゼーション(第6報), 第31回大気汚染学会講演要旨集,254(1990)
- 小山 恒人(神奈川県公害センター),新井 久雄,太田 正雄(横浜市環境科学研究所):南関東 における冬期の微小粒子組成について,第 32 回大気汚染学会講演要旨集, 203(1991)
- 内藤 季和(千葉県公害研究所), 新井 久雄(横浜市環境科学研究所):南関東における大気エアロゾルのキャラクタリゼーション(第7報), 第32回大気汚染学会講演要旨集, 499(1991)
- 新井 久雄, 太田 正雄(横浜市環境科学研究所), 井上 康明(川崎市公害研究所), 小山 恒人 (神奈川県環境科学センター):南関東における大気エアロゾルのキャラクタリゼーション(第8報), 第33回大気汚染学会講演要旨集,243(1992)
- 渡邊 武春(東京都環境科学研究所), 内藤 季和(千葉県環境科学研究所), 井上 康明(川崎市公害研究所):南関東における大気エアロゾルのキャラクタリゼーション(第9報), 第33回大気汚染学会講演要旨集,244(1992)
- 小山 恒人(神奈川県環境科学センター), 新井 久雄, 太田 正雄(横浜市環境科学研究所):南 関東における冬期の微小粒子組成について(第2報), 第33回大気汚染学会講演要 旨集,250(1992)
- 内藤 季和(千葉県環境研究所):南関東における大気エアロゾルのキャラクタリゼーション (第 10 報), 第 34 回大気汚染学会講演要旨集, 325(1993)
- 新井 久雄,太田 正雄,白砂 裕一郎(横浜市環境科学研究所):南関東地域での年末年始時に おける浮遊粒子状物質の高濃度出現事例,第 34 回大気汚染学会講演要旨集, 327(1993)
- 太田 正雄(横浜市環境科学研究所):横浜市および南関東における PAHs 濃度の挙動,第 34 回大気汚染学会講演要旨集,324(1993)
- 小山 恒人(神奈川県環境科学センター):南関東地域の正月前後時における大気エアロゾル の特徴, 第 35 回大気環境学会講演要旨集, 497(1994)
- 福田 真道,町田 繁(埼玉県公害センター):南関東における大気エアロゾルのキャラクタリゼーション(第11報), 第35回大気環境学会講演要旨集,265(1994)
- 秋山 薫,鎌滝 裕輝,渡辺 武春(東京都環境科学研究所):南関東における大気エアロゾルのキャラクタリゼーション(第 12 報), 第 36 回大気環境学会講演要旨集, 256(1995)

- 小山 恒人(神奈川県環境科学センター):南関東における大気エアロゾルのキャラクタリゼーション(第 13 報), 第 37 回大気環境学会講演要旨集, 377(1996)
- 清水 源治, 高橋 照美:山梨県大月における浮遊粒子状物質のキャラクタリゼーション, 第38 回大気環境学会講演要旨集, 618(1997)
- 鎌滝 裕輝(東京都環境科学研究所):南関東における大気エアロゾルのキャラクタリゼーション(第 14 報)、第 38 回大気環境学会講演要旨集, 619(1997)
- 清水 源治(山梨県衛生公害研究所):南関東における大気エアロゾルのキャラクタリゼーション(第15報), 第39回大気環境学会講演要旨集,387(1998)
- 小山 恒人(神奈川県環境科学センター),吉岡 秀俊(東京都環境科学研究所):関東地域の正月 前後時における炭素系微小粒子の動向,第 40 回大気環境学会講演要旨集, 438(1999)
- 松尾 清孝, 岩淵 美香(川崎市公害研究所):関東における大気エアロゾルのキャラクタリゼーション(第 16 報), 第 40 回大気環境学会講演要旨集, 444(1999)
- 押尾 敏夫(千葉県環境研究所):関東における大気エアロゾルのキャラクタリゼーション (第 17 報) 平成 10 年度調査結果の概要 ,第 41 回大気環境学会講演要旨集, 290(2000)
- 石井 康一郎(東京都環境科学研究所):関東における大気エアロゾルのキャラクタリゼーション(第 18 報) 平成 11 年度調査結果の概要,第 42 回大気環境学会講演要旨集, 249(2001)
- 米持 真一(埼玉県環境科学国際センター):関東における大気エアロゾルのキャラクタリゼーション(第19報)平成12年度調査結果の概要,第43回大気環境学会講演要旨集,381(2002)
- 小山 恒人(神奈川県環境科学センター):関東における大気エアロゾルのキャラクタリゼーション(第 20 報)平成 13 年度調査結果の概要, 第 44 回大気環境学会講演要旨集, 340(2003)
- 内藤 季和(千葉県環境研究センター):関東における大気エアロゾルのキャラクタリゼーション(第 21 報) 平成 14 年度調査結果の概要, 第 45 回大気環境学会講演要旨集, 309(2004)
- 小山 恒人(神奈川県環境科学センター):関東における大気エアロゾルのキャラクタリゼーション(第 22 報) 道路沿道 PM2.5 調査結果について, 第 45 回大気環境学会講演要旨集, 309(2004)
- 篠原 英二郎(静岡県環境衛生科学研究所):関東における大気エアロゾルのキャラクタリゼーション(第 23 報) 平成 15 年度調査結果の概要, 第 46 回大気環境学会講演要旨集, 564(2005)
- 小山 恒人(神奈川県環境科学センター):関東における大気エアロゾルのキャラクタリゼーション(第 24 報) 道路沿道 PM2.5 調査結果について(2), 第 46 回大気環境学会講演要旨集,567(2005)
- 清水 源治(山梨県衛生公害研究所):関東における大気エアロゾルのキャラクタリゼーション(第 25 報) 平成 17 年度調査結果の概要,第 47 回大気環境学会講演要旨集, 2E0948 (2006)

- 岡田 和則(茨城県霞ケ浦環境科学センター):関東における大気エアロゾルのキャラクタリゼーション(第 26 報) 平成 17 年度調査結果の概要, 第 48 回大気環境学会講演要旨集, 563(2007)
- 内藤 季和(千葉県環境研究センター): 浮遊粒子状物質のトレンド解析と発生源寄与の推定 ~ 関東 SPM 共同調査の夏期・冬期調査の結果から ~ , 第 48 回大気環境学会講演 要旨集, 386 (2007)
- 飯島 明宏, 冨岡 淳(群馬県衛生環境研究所):関東における大気エアロゾルのキャラクタリゼーション(第 27 報) 平成 18 年度調査結果の概要, 第 49 回大気環境学会講演要旨集, 280(2008)
- 清水 源治(山梨県衛生公害研究所):関東における大気エアロゾルのキャラクタリゼーション(第 28 報) これまでの調査結果から見た 18 年度の結果について, 第 46 回大気環境学会講演要旨集、281(2008)
- 中込 和徳,佐々木一敏(長野県環境保全研究所):関東における大気エアロゾルのキャラクタ リゼーション(第29報) 平成元年から19年までの調査結果の概要,第50回大気環 境学会講演要旨集,465(2009)
- 飯島 明宏,小沢 邦壽(群馬県衛生環境研究所),清水 源治(山梨県衛生公害研究所):関東における大気エアロゾルのキャラクタリゼーション(第30報) PMF法による総合解析,第50回大気環境学会講演要旨集,466(2009)
- 小平 智之,石原島 栄二(栃木県保健環境センター),関東地方大気環境対策推進連絡会浮遊 粒子状物質調査会議:関東における PM2.5 のキャラクタリゼーション(第1報) - 平成20年度調査結果の概要 - ,第51回大気環境学会講演要旨集,296(2010)
- 熊谷 貴美代(群馬県衛生環境研究所):関東北部における微小粒子中有機成分の特徴,第51回 大気環境学会講演要旨集,166(2010)
- 秋山 薫((財)東京都環境整備公社東京都環境科学研究所), 関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議, 関東における PM2.5 のキャラクタリゼーション (第2報), 第52 回大気環境学会講演要旨集, 408(2011)
- 米持 真一(埼玉県環境科学国際センター), 関東地方大気環境対策推進連絡会浮遊粒子状物 質調査会議, 関東甲信静における PM2.5 のキャラクタリゼーション(第3報), 第 53 回大気環境学会講演要旨集, 498(2012)
- 米持 真一(埼玉県環境科学国際センター), 関東甲信静における合同調査から見た最近の PM2.5 の状況, 第 53 回大気環境学会講演要旨集, 70-71(2012)
- 山田 大介(川崎市環境局環境対策部環境対策課), 関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議, PMF モデルを用いた関東広域の PM2.5 の発生源解析(2008~2010), 第 53 回大気環境学会講演要旨集, 499(2012)
- 小松 宏昭(神奈川県環境科学センター), 関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議, 関東甲信静における PM2.5 のキャラクタリゼーション(第4報), 第54 回大気環境学会講演要旨集, 218(2013)
- 内藤 季和(千葉県環境研究センター),関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議,関東甲信静における PM2.5 のキャラクタリゼーション(第5報),第55回大気環境学会講演要旨集,381(2014)

- 三宅 健司(静岡県環境衛生科学研究所),関東地方大気環境対策推進連絡会浮遊粒子状物 質調査会議,関東甲信静における PM2.5 のキャラクタリゼーション(第6報),第 56 回大気環境学会講演要旨集,217(2015)
- 柳 尚仁(静岡県くらし・環境部環境局生活環境課), 関東地方大気環境対策推進連絡会浮 遊粒子状物質調査会議, 関東甲信静における PM2.5 のキャラクタリゼーション (平成25 年度のまとめ), 全国大気汚染防止連絡協議会第61 回全国大会(2015)